EP0384061A2 - Procédé et appareil pour l'ajustage sélectif de dimensions d'une bobine à haute fréquence pour l'imagerie par résonance magnétique - Google Patents

Procédé et appareil pour l'ajustage sélectif de dimensions d'une bobine à haute fréquence pour l'imagerie par résonance magnétique Download PDF

Info

Publication number
EP0384061A2
EP0384061A2 EP89309341A EP89309341A EP0384061A2 EP 0384061 A2 EP0384061 A2 EP 0384061A2 EP 89309341 A EP89309341 A EP 89309341A EP 89309341 A EP89309341 A EP 89309341A EP 0384061 A2 EP0384061 A2 EP 0384061A2
Authority
EP
European Patent Office
Prior art keywords
coil
mri
bridge
tuning
inductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89309341A
Other languages
German (de)
English (en)
Other versions
EP0384061A3 (fr
EP0384061B1 (fr
Inventor
Joseph W. Carlson
Leon Kaufman
Peter A. Rothschild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of EP0384061A2 publication Critical patent/EP0384061A2/fr
Publication of EP0384061A3 publication Critical patent/EP0384061A3/fr
Application granted granted Critical
Publication of EP0384061B1 publication Critical patent/EP0384061B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34084Constructional details, e.g. resonators, specially adapted to MR implantable coils or coils being geometrically adaptable to the sample, e.g. flexible coils or coils comprising mutually movable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34053Solenoid coils; Toroidal coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil

Definitions

  • This invention is generally related to the field of magnetic resonance imaging (MRI) using nuclear magnetic resonance (NMR) phenomena. It is particularly directed towards method and apparatus for realizing practical adjustably sized RF coils for use in MRI procedures.
  • MRI magnetic resonance imaging
  • NMR nuclear magnetic resonance
  • Magnetic resonance imaging is now in widespread commercial usage. Magnetic resonance spectroscopic imaging (MRSI) is also now emerging from the laboratory.
  • MRSI Magnetic resonance spectroscopic imaging
  • MRI magnetic resonance imaging
  • NMR nuclear magnetic resonance
  • Resultant NMR RF responses are detected as emanating from that same volume and subsequently are processed so as to produce spatial maps of NMR nuclei populations which appear as visual images representing cross-sections through the image volume.
  • Necessary RF signal coupling to/from the image volume is made via tuned RF coils spatially disposed about or substantially adjacent to the image volume. Sometimes a common coil structure is used for both RF signal transmission and reception. In other instances, separate dedicated RF coil structures are utilized for the transmit and receive phases, respectively of the MRI process.
  • the coil structure can be selectively opened at this joint area so as to permit admission of the patient anatomy and then closed about the anatomy making proper RF electrical connections for use in a subsequent MRI procedure (after which the joint is then again opened to permit easy egress of the patient anatomy).
  • the need for achieving high filling factors is especially useful, for example, with relatively low magnetic field MRI (having correspondingly lower NMR frequencies) and where so-called "surface" coils of the solenoidal type are used to wrap about the appropriate portion of the patient anatomy (e.g., abdomen, neck, etc.).
  • neck coils might take, for example, three turns while belt coils for imaging the abdomen may typically involve two turns.
  • such coils might have, for example, two microhenries of inductance for operation at 2.77 MHz with about 1600 picofarads of parallel RF tuning capacitance so as to achieve resonance at this frequency.
  • RF resonance tuning is achieved with only about 100 picofarads of variable capacitance range since this is the typical range of the typical varicap used for remote RF tuning. If additional varicaps are connected in parallel so as to achieve added tuning range, then the capacitance per volt of tuning control voltage quickly becomes too great for proper fine tuning control.
  • the overall inductance of the coil also must be within a similarly narrow range for proper resonance tuning (e.g., after the coil is loaded by insertion of the patient anatomy).
  • proper resonance tuning e.g., after the coil is loaded by insertion of the patient anatomy.
  • there is perhaps only about 100 picofarads of variable capacitance out of a total tuning capacitance of 1600 picofarads there is only about 6% variability -- implying that the total loaded coil inductance also can only have a range of about 6% for proper resonant tuning.
  • a head coil supplied by Picker MRI Inc. for its' MRI system includes a section which may be completely disconnected from other portions of the coil so as to permit easy entry of the head anatomy. It is then reconnected via a suitable RF plug connectors so as to effectively reassemble the coil about the patient's head. So far as presently known, it does not appear that such plug connected section is used to change the size of the basic coil structure in this arrangement.
  • the bridge element may include both inductive and capacitive impedance which collectively present a sufficiently low net added impedance (when the bridge element is additively connected into the joint area of the coil so as to increase its size) that the same RF tuning/impedance matching capacitance may be used to tune the loaded (and now expanded size) coil to resonance and matched impedance conditions.
  • the main coil structure preferably includes flexible portions so as to accommodate the bridge element(s) and thus change its size
  • the bridge elements(s) themselves preferably may be relatively more rigid and of a properly curved cross-section so as to help determine the final shape of the expanded coil structure when connected therewithin.
  • an RF receiver coil for use in an MRI system may include plural turns having respectively associated inductances L1, L2 and L3 collectively connected across a parallel tuning capacitance C p and through coupling capacitances C s (which may be balanced or unbalanced).
  • the purposes of the capacitance C p and the capacitances C s are to achieve RF resonance at a predetermined frequency (i.e., the NMR frequency for nuclei to be imaged within a magnetic field of given strength) and also to match the RF impedance to a suitable transmission line (e.g., for connection to the standard RF receiver of the MRI system).
  • a predetermined frequency i.e., the NMR frequency for nuclei to be imaged within a magnetic field of given strength
  • a suitable transmission line e.g., for connection to the standard RF receiver of the MRI system.
  • variable tuning capacitance C p may actually be realized as an electrically tuned varicap providing a fairly narrow predetermined tuning range for the RF receiver coil.
  • the main RF receiver coil 100 may include a plug-connectable joint area 102.
  • a plug-connected bridge element iu4 When a plug-connected bridge element iu4 is inserted into this joint area, it provides an adjustable size for the main RF receiver coil by including properly sized bridge conductors for each turn having associated inductance LB1, LB2, and LB3.
  • a properly sized capacitance C B is included serially in at least one of the bridge conductors so as to minimize the net inductive impedance added by the bridge element 104 when plug-connected within the joint area 102 of the main RF receiver coil.
  • the standard RF tuning and impedance matching circuit 106 may still be used to achieve proper RF resonance tuning.
  • FIGURE 3 A simplified electrical schematic diagram of the resultant circuit is depicted in FIGURE 3.
  • the bridge capacitor is sized so as to minimize if not totally eliminate the net inductance added by the bridge conductors inserted within the various turns of the coil.
  • the original or main coil inductance may typically be approximately 2 microhenries. With added bridge elements this might be increased to approximately 2.5 microhenries (without any capacitive components). With these parameter values, the capacitance C B should be approximately 6,600 picofarads so as to approximately cancel the added net inductance associated with the bridge conductors per se . In this manner, the total composite net inductance of the coil structure is left at approximately 2 microhenries even after the adjustable bridge element has been inserted (by suitable plug connectors within the joint area 102).
  • the exemplary embodiments utilize solenoidal RF receiver coils
  • the invention can be used with virtually any type of MRI RF coil (especially of the surface type) where adjustably sized segments can be utilized so as to permit better fits to variably sized anatomies.
  • Such features are, of course, of more importance for lower frequency operations (e.g., 2.77 MHz) where the limited tuning range of a typical varicap capacitance is an important factor.
  • higher frequencies e.g.,15 MHz
  • coils of higher inductance may be able to realize advantage from use of this invention.
  • FIGURE 4 An expanded size coil 100 already having bridge element 104 plug-connected in place is diagrammatically depicted at FIGURE 4 in place about a patient's neck anatomy.
  • the zero net inductance bridge may have a selected length X to similarly expand the coil size when plug-connected between the female and male connector portions 102A and 102B of joint area 102 (which connectors 102A and 102B may be matingly connected together for a "normal" smaller size patient).
  • the main RF receiver coil 100 includes conductive portions 200 formed on a flexible insulating substrate 202 (which may be photo-resist etched from a copper cladded insulating substrate in the manner of conventional printed circuit boards).
  • the male and female mating plug connectors 102B, 102A on the main coil structure 100 and connectors 204B, 204A on the bridge element may be of suitable conventional design.
  • the female connector may include a beryllium copper spring portions (e.g., of the type used on door connectors of RF screen rooms) while the male portion of the connector may be a simple extended portion of the printed circuit conductor of the turn (or an extender conductor element soldered or otherwise conductively affixed thereto).
  • the bridge element 104 may typically also be formed on an insulating substrate 206.
  • this substrate is of a more rigid material and is formed so as to include an appropriate curvature to help establish the proper shape of the flexible main coil 100 when the bridge element is connected within the Joint area 102.
  • FIGURE 6 A plan view of the bridge unit 104 is shown in FIGURE 6.
  • the bridge capacitance C B is shown schematically in FIGURE 6, but in reality may take the form of a small rectangular or circular element with tabs soldered across a conductivity break in the middle bridge conductor.
  • the capacitance is located so as to present a symmetrical, balanced, RF circuit.
  • a support stand 250 may be suitably shaped (e.g., to aid in proper neck or back support) and fixedly attached to the mid-portion of coil 100 so as to maintain it in a predetermined orientation.
  • This housing also may contain any necessary RF tuning impedance matching components.
  • a collection or "set" of bridges A, B, C having different respective lengths (and correspondingly different suitably sized capacitance) and relatively more rigid cross-sections of appropriate curvature may be associated with the coil apparatus so that an appropriate one of the bridges might be used to realize an appropriate final diameter for the composite coil structure in actual use.
  • FIGURE 8-12 An exemplary neck coil embodiment of this invention is depicted more particularly at FIGURE 8-12.
  • the joint portion 102 as shown as connected without a bridge connector so is to realize the minimum diameter coil 100.
  • suitable connections to RF MRI circuits and to tuning/matching control voltage conductors may be made via suitable cable connections with the base 250 (in which the tuning and matching circuits may be located).
  • the adaptor may be made of suitable dimensions (e.g., 3.5 inches long plus additional connector housing length) and made of relatively rigid structure having a slight bend to match the radius of curvature of the resulting composite coil.
  • three solenoidal turns are employed of 1/2 inch wide copper with approximately 1/4 inch spaces between the copper conductors of the turns at the lower portion disposed nearest the neck's spinal column members.
  • a suitable narrowing and shaping of the coil is effected as shown.
  • the center of these three bridge conductors contains a serially connected capacitance element (e.g., 6,000 picofarads) to minimize the added collective inductive reactance of the several bridge conductors.
  • the flexible circuit board used for the main neck coil has the configuration and size shown in FIGURE 11 for the presently preferred exemplary embodiment of neck coil.
  • Base 250 is similarly depicted in more detail at FIGURE 12.
  • the printed circuit board is fixedly mounted onto the base with suitable electrical connections being made from the coil at the lower portion of the turns directly into the base housing area.
  • the coil is suitably and conventionally connected to RF tuning/matching components.
  • the coil 100 has three turns so there will be three male "pins" on one side and three female plugs on the other side of the connector structure used in the joint area 102.
EP89309341A 1989-02-21 1989-09-14 Procédé et appareil pour l'ajustage sélectif de dimensions d'une bobine à haute fréquence pour l'imagerie par résonance magnétique Expired - Lifetime EP0384061B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US312189 1989-02-21
US07/312,189 US4897604A (en) 1989-02-21 1989-02-21 Method and apparatus for selective adjustment of RF coil size for magnetic resonance imaging

Publications (3)

Publication Number Publication Date
EP0384061A2 true EP0384061A2 (fr) 1990-08-29
EP0384061A3 EP0384061A3 (fr) 1991-01-30
EP0384061B1 EP0384061B1 (fr) 1995-02-01

Family

ID=23210276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89309341A Expired - Lifetime EP0384061B1 (fr) 1989-02-21 1989-09-14 Procédé et appareil pour l'ajustage sélectif de dimensions d'une bobine à haute fréquence pour l'imagerie par résonance magnétique

Country Status (5)

Country Link
US (1) US4897604A (fr)
EP (1) EP0384061B1 (fr)
JP (1) JPH0616761B2 (fr)
AT (1) ATE118099T1 (fr)
DE (1) DE68920990T2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221759A1 (de) * 1991-10-11 1993-04-15 Hitachi Medical Corp Empfangsspulenvorrichtung fuer ein kernspintomographiegeraet
DE4318134A1 (de) * 1993-06-01 1994-12-08 Siemens Ag Zirkular polarisierende Lokalantenne
GB2319086A (en) * 1993-09-27 1998-05-13 British Tech Group Testing a sample by nuclear resonance
DE19730753A1 (de) * 1997-07-17 1999-01-21 Siemens Ag Halterung für eine flexible Oberflächenspule eines Magnetresonanzgerätes
EP0930510A3 (fr) * 1997-12-26 2001-04-11 Ge Yokogawa Medical Systems, Ltd. Bobine de détection pour appareil de diagnostic par résonance magnétique
US6268152B1 (en) 1993-06-25 2001-07-31 Affymetrix, Inc. Probe kit for identifying a base in a nucleic acid
DE102005002094A1 (de) * 2005-01-14 2006-07-27 Schleifring Und Apparatebau Gmbh HF - Spulen für Kernspintomographen
DE102005030745A1 (de) * 2005-06-29 2007-01-11 Schleifring Und Apparatebau Gmbh HF-Spulen für Kernspintomographen

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394508A1 (fr) * 1989-04-24 1990-10-31 Siemens Aktiengesellschaft Bobine de surface pour appareil de résonance de spin nucléaire
WO1991000528A1 (fr) * 1989-07-05 1991-01-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Sonde pour la tomographie a resonance magnetique nucleaire de tout le corps ou pour la spectroscopie a resonance magnetique nucleaire in-vivo localisee
US5168233A (en) * 1990-09-14 1992-12-01 General Electric Company Antenna joint for surface coils provided with a strain relief flexture joint
JP3341306B2 (ja) * 1992-08-06 2002-11-05 株式会社日立製作所 傾斜磁場コイル及びこれを用いる核磁気共鳴撮影装置
US5357958A (en) * 1993-03-18 1994-10-25 The Regents Of The University Of California Interventional MRI system and RF coils therefore
US5542424A (en) * 1993-03-25 1996-08-06 Rochester Institute Of Technology Resonator for magnetic resonance imaging
US5361764A (en) * 1993-07-09 1994-11-08 Grumman Aerospace Corporation Magnetic resonance imaging foot coil assembly
US5400787A (en) * 1993-11-24 1995-03-28 Magna-Lab, Inc. Inflatable magnetic resonance imaging sensing coil assembly positioning and retaining device and method for using the same
DE19509371C2 (de) * 1994-04-15 2000-03-23 Siemens Ag Veränderbare Antenne für ein Magnetresonanzgerät
US5492122A (en) * 1994-04-15 1996-02-20 Northrop Grumman Corporation Magnetic resonance guided hyperthermia
DE4434951C2 (de) * 1994-09-29 1996-08-22 Siemens Ag Kernspintomographiegerät mit einer Kombination aus Hochfrequenzantenne und Gradientenspule
US5706812A (en) * 1995-11-24 1998-01-13 Diagnostic Instruments, Inc. Stereotactic MRI breast biopsy coil and method for use
DE19615184C2 (de) * 1996-04-17 1998-04-02 Siemens Ag Antennensystem für ein diagnostisches Magnetresonanzgerät
US6549800B1 (en) 1996-04-25 2003-04-15 Johns Hopkins Unversity School Of Medicine Methods for in vivo magnetic resonance imaging
US6263229B1 (en) * 1998-11-13 2001-07-17 Johns Hopkins University School Of Medicine Miniature magnetic resonance catheter coils and related methods
US6898454B2 (en) * 1996-04-25 2005-05-24 The Johns Hopkins University Systems and methods for evaluating the urethra and the periurethral tissues
US6675033B1 (en) 1999-04-15 2004-01-06 Johns Hopkins University School Of Medicine Magnetic resonance imaging guidewire probe
US7236816B2 (en) * 1996-04-25 2007-06-26 Johns Hopkins University Biopsy and sampling needle antennas for magnetic resonance imaging-guided biopsies
DE19618988C2 (de) * 1996-05-10 2001-12-13 Gore W L & Ass Gmbh Körperspule mit Vakuumkissen
DE19618989A1 (de) * 1996-05-10 1997-11-13 Gore W L & Ass Gmbh Körperspule
IT1288452B1 (it) 1996-11-20 1998-09-22 Esaote Spa Metodo per migliorare l'efficienza di sistemi di bobine in particolare nei dispositivi di acquisizione di immagini mediante
US6054858A (en) * 1997-01-27 2000-04-25 General Electric Company Method to automatically tune MRI RF coils
US6144203A (en) * 1997-11-28 2000-11-07 Hitachi Medical Corporation Coil harness assembly for interventional MRI application
US6169400B1 (en) * 1998-05-11 2001-01-02 Ge Yokogawa Medical Systems, Limited Radio frequency coil
US7848788B2 (en) 1999-04-15 2010-12-07 The Johns Hopkins University Magnetic resonance imaging probe
ATE484757T1 (de) 2000-02-01 2010-10-15 Surgivision Inc Transseptale nadelantenne für ein mr- bildgebungsgerät
EP1269206A2 (fr) 2000-03-24 2003-01-02 Surgi-Vision Dispositif, systemes et procedes d'imagerie par resonance magnetique in vivo
US6684096B2 (en) * 2000-12-15 2004-01-27 Berndt P. Schmit Restraining apparatus and method for use in imaging procedures
JP3884244B2 (ja) * 2001-07-04 2007-02-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Rf送信回路およびmri装置
JP3619485B2 (ja) 2001-10-24 2005-02-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Rfコイルおよび磁気共鳴撮影装置
DE10302550B3 (de) * 2003-01-22 2004-08-12 Forschungszentrum Karlsruhe Gmbh Gürtelspule als Sende-/Empfangsantenne in einer Transpondereinrichtung
JP4564292B2 (ja) * 2004-06-30 2010-10-20 株式会社東芝 高周波コイル及び磁気共鳴イメージング装置
WO2006083737A2 (fr) * 2005-01-31 2006-08-10 Robert Van Wyk Ensemble et methode d'immobilisation utilises dans des procedures diagnostiques et therapeutiques
DE102005053280B4 (de) * 2005-11-08 2011-08-18 Siemens AG, 80333 Volumenspulen für MR-Tomographen
JP4854448B2 (ja) * 2006-09-28 2012-01-18 株式会社東芝 Mri装置及びmri装置用rfコイルユニット
DE102007030629A1 (de) * 2007-07-02 2009-01-08 Siemens Ag Anordnung zur Lagerung eines Patienten
CN201141913Y (zh) * 2007-10-31 2008-10-29 西门子(中国)有限公司 磁共振线圈
WO2009124263A1 (fr) * 2008-04-04 2009-10-08 Mayo Foundation For Medical Education And Research Procédé pour inversion d’élastographie par résonance magnétique à l’aide d’un modèle de milieu fini
US20100141260A1 (en) * 2008-12-05 2010-06-10 Schleifring Und Apparatebau Gmbh RF Coils for Magnetic Resonance Tomography
EP2336798A1 (fr) * 2009-12-21 2011-06-22 Koninklijke Philips Electronics N.V. Antenne RF pour IRM avec un conducteur détachable
US9864032B2 (en) * 2010-01-05 2018-01-09 National Health Research Institutes Magnetic resonance imaging system
DE102010033322A1 (de) 2010-08-04 2012-02-09 Siemens Aktiengesellschaft Mechanisch flexible MR Spule mit öffnungsfähigen Leiterstrukturen für insbesondere interventionelle MRT
DE102010063724B4 (de) * 2010-12-21 2013-10-02 Siemens Aktiengesellschaft Lokalspule und Verfahren zum Verändern des Innendurchmessers einer Lokalspule
JP6430249B2 (ja) 2011-07-04 2018-11-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴撮像システム、磁気共鳴撮像システムの作動方法及びコンピュータプログラム
JP5815902B1 (ja) * 2014-05-14 2015-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ブリッジユニットを有し、磁性粒子に影響を与える及び/又は検出する装置及び方法
KR20160139811A (ko) * 2015-05-28 2016-12-07 삼성전자주식회사 헤드 코일 및 이를 채용한 자기 공명 영상 장치
DE102015218749A1 (de) * 2015-09-29 2017-03-30 Siemens Healthcare Gmbh Adaptive MR-Lokalspule
DE102016212724B4 (de) * 2016-07-13 2018-02-08 Siemens Healthcare Gmbh Größenveränderliche Lokalspulenmatrix mit variabler Entkopplung
CN108020797B (zh) * 2016-11-03 2020-11-10 上海东软医疗科技有限公司 磁共振发射线圈及核磁共振成像设备
DE102016222635B4 (de) * 2016-11-17 2019-06-06 Siemens Healthcare Gmbh Spulenanordnung umfassend eine flexible Lokalspule und eine starre Lokalspule
US11624792B2 (en) * 2016-11-25 2023-04-11 General Electric Company Radio frequency head coil for a magnetic resonance imaging system and methods thereof
CN113759299A (zh) * 2021-09-29 2021-12-07 上海电气(集团)总公司智惠医疗装备分公司 一种头部线圈、核磁设备及调整方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135326A2 (fr) * 1983-08-12 1985-03-27 Picker International Limited Appareil à résonance magnétique nucléaire
EP0142760A2 (fr) * 1983-11-14 1985-05-29 General Electric Company Bobine à sections multiples couplée inductivement à champ haute fréquence pour la résonance magnétique nucléaire
US4649348A (en) * 1984-08-20 1987-03-10 Technicare Corporation Radio frequency coils for nuclear magnetic resonance imaging systems
DE3635006A1 (de) * 1985-10-14 1987-04-23 Toshiba Kawasaki Kk Sonde fuer ein magnetresonanzabbildungsgeraet
US4725780A (en) * 1984-10-19 1988-02-16 Mitsubishi Denki Kabushiki Kaisha RF field generator and detector
US4733190A (en) * 1987-03-16 1988-03-22 Medical Advances, Inc. NMR local coil with adjustable spacing
EP0318257A2 (fr) * 1987-11-25 1989-05-31 THE GENERAL ELECTRIC COMPANY, p.l.c. Dispositions de bobines pour un appareil de résonance magnétique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI65365C (fi) * 1982-07-07 1984-05-10 Instrumentarium Oy Spolanordning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135326A2 (fr) * 1983-08-12 1985-03-27 Picker International Limited Appareil à résonance magnétique nucléaire
EP0142760A2 (fr) * 1983-11-14 1985-05-29 General Electric Company Bobine à sections multiples couplée inductivement à champ haute fréquence pour la résonance magnétique nucléaire
US4649348A (en) * 1984-08-20 1987-03-10 Technicare Corporation Radio frequency coils for nuclear magnetic resonance imaging systems
US4725780A (en) * 1984-10-19 1988-02-16 Mitsubishi Denki Kabushiki Kaisha RF field generator and detector
DE3635006A1 (de) * 1985-10-14 1987-04-23 Toshiba Kawasaki Kk Sonde fuer ein magnetresonanzabbildungsgeraet
US4733190A (en) * 1987-03-16 1988-03-22 Medical Advances, Inc. NMR local coil with adjustable spacing
EP0318257A2 (fr) * 1987-11-25 1989-05-31 THE GENERAL ELECTRIC COMPANY, p.l.c. Dispositions de bobines pour un appareil de résonance magnétique

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221759A1 (de) * 1991-10-11 1993-04-15 Hitachi Medical Corp Empfangsspulenvorrichtung fuer ein kernspintomographiegeraet
DE4318134C2 (de) * 1993-06-01 1999-02-11 Siemens Ag Zirkular polarisierende Lokalantenne
DE4318134A1 (de) * 1993-06-01 1994-12-08 Siemens Ag Zirkular polarisierende Lokalantenne
US5519321A (en) * 1993-06-01 1996-05-21 Siemens Aktiengesellschaft Circularly polarizing local antenna arrangement with a movable antenna
US6268152B1 (en) 1993-06-25 2001-07-31 Affymetrix, Inc. Probe kit for identifying a base in a nucleic acid
GB2319086A (en) * 1993-09-27 1998-05-13 British Tech Group Testing a sample by nuclear resonance
FR2769370A1 (fr) * 1993-09-27 1999-04-09 British Tech Group Procede et appareil pour le test d'un echantillon
US6246237B1 (en) 1993-09-27 2001-06-12 Btg International Ltd. Method of and apparatus for testing a sample
GB2319086B (en) * 1993-09-27 1998-09-02 British Tech Group Method of and apparatus for testing a sample
DE19730753A1 (de) * 1997-07-17 1999-01-21 Siemens Ag Halterung für eine flexible Oberflächenspule eines Magnetresonanzgerätes
EP0930510A3 (fr) * 1997-12-26 2001-04-11 Ge Yokogawa Medical Systems, Ltd. Bobine de détection pour appareil de diagnostic par résonance magnétique
DE102005002094A1 (de) * 2005-01-14 2006-07-27 Schleifring Und Apparatebau Gmbh HF - Spulen für Kernspintomographen
DE102005030745A1 (de) * 2005-06-29 2007-01-11 Schleifring Und Apparatebau Gmbh HF-Spulen für Kernspintomographen
DE102005030745B4 (de) * 2005-06-29 2008-05-29 Schleifring Und Apparatebau Gmbh HF-Spulen für Kernspintomographen
US7518372B2 (en) 2005-06-29 2009-04-14 Harry Schilling MRI RF coil arrangement with solder joint reinforcement of discrete components

Also Published As

Publication number Publication date
DE68920990T2 (de) 1995-06-14
ATE118099T1 (de) 1995-02-15
EP0384061A3 (fr) 1991-01-30
US4897604A (en) 1990-01-30
JPH0616761B2 (ja) 1994-03-09
EP0384061B1 (fr) 1995-02-01
JPH02241434A (ja) 1990-09-26
DE68920990D1 (de) 1995-03-16

Similar Documents

Publication Publication Date Title
EP0384061B1 (fr) Procédé et appareil pour l'ajustage sélectif de dimensions d'une bobine à haute fréquence pour l'imagerie par résonance magnétique
US5376885A (en) MRI RF ground breaker assembly
US7893693B2 (en) Assymetric radio frequency magnetic line array
US4733190A (en) NMR local coil with adjustable spacing
US8022705B2 (en) Microstrip coil designs for MRI devices
US5045792A (en) Split and non-circular magnetic resonance probes with optimum field uniformity
US7136023B2 (en) Antenna arrangement and coupling method for a magnetic resonance apparatus
WO2002031522A1 (fr) Procede et appareil d'imagerie par resonance magnetique et de spectroscopie utilisant des bobines a ligne de transmission microruban
US5552707A (en) RF probe which can vary distance between receiving coils which face each other
US5585721A (en) Inductively coupled dedicated RF coils for MRI
US5143068A (en) Flexible and curved radio frequency (RF) coil for the human shoulder for magnetic resonance imaging apparatus
US5543712A (en) Parasitic compensating matching circuit integral with ground breaker for MRI RF coils
EP1651973B1 (fr) Sonde rmn multinucleaire comprenant un element quart d'onde detachable avec une longueur electrique ajustable
US5850143A (en) Antenna system for a diagnostic magnetic resonance apparatus
CN108663642B (zh) 一种射频线圈的调谐去谐结构和去谐方法
JPH07163547A (ja) 磁気共鳴装置用の二重共鳴アンテナ装置
JPH0345246A (ja) Mri装置用受信コイル
JP3142311B2 (ja) フレクシブルバードケージコイル
JP2965178B2 (ja) 核磁気共鳴装置における送受信回路
JP2723290B2 (ja) Nmr用高周波プローブ
KR20040013704A (ko) 횡전자기파를 이용한 두부용 공명 코일
JPH0724655B2 (ja) Mri装置のアンテナ装置
JPH01293859A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910314

17Q First examination report despatched

Effective date: 19931005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950201

Ref country code: LI

Effective date: 19950201

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950201

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950201

Ref country code: CH

Effective date: 19950201

Ref country code: BE

Effective date: 19950201

Ref country code: AT

Effective date: 19950201

REF Corresponds to:

Ref document number: 118099

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 68920990

Country of ref document: DE

Date of ref document: 19950316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960814

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960820

Year of fee payment: 8

Ref country code: NL

Payment date: 19960820

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960828

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970914

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST