EP0375506B1 - Halbstarre Kabel für Mikrowellenübertragung - Google Patents
Halbstarre Kabel für Mikrowellenübertragung Download PDFInfo
- Publication number
- EP0375506B1 EP0375506B1 EP89403439A EP89403439A EP0375506B1 EP 0375506 B1 EP0375506 B1 EP 0375506B1 EP 89403439 A EP89403439 A EP 89403439A EP 89403439 A EP89403439 A EP 89403439A EP 0375506 B1 EP0375506 B1 EP 0375506B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- triplate line
- dielectric
- width
- planar
- conductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 title description 7
- 239000004020 conductor Substances 0.000 claims description 55
- 239000002184 metal Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims 4
- 238000005253 cladding Methods 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 claims 1
- YFXPPSKYMBTNAV-UHFFFAOYSA-N bensultap Chemical compound C=1C=CC=CC=1S(=O)(=O)SCC(N(C)C)CSS(=O)(=O)C1=CC=CC=C1 YFXPPSKYMBTNAV-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 230000002745 absorbent Effects 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 4
- 230000009102 absorption Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 206010001488 Aggression Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000135309 Processus Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/08—Microstrips; Strip lines
- H01P3/085—Triplate lines
Definitions
- the present invention relates to a semi-rigid cable intended for the transmission of microwave waves, such as the waves used for example in radars or for cable broadcasting of television, in particular high definition digital television.
- a US patent -A- 3,258,724 discloses the structure of a triplate line and an article "THE DESIGN OF MICROWAVE COMPONENTS Vol 105B, n ° 20, March 1958, pages 155-172, the Institution of Electrical Ingeneers; JMC DUKES" constitutes a basic document on the ribbon lines.
- the radar antennas that are tending to be produced more and more are active antennas sampled at the surface, and therefore made up of a very large number of elementary, active and radiating modules, each of these modules comprising a transmitter and a own elementary receiver.
- a radar antenna of this type the dimensions of which, in width and in height, are generally several meters each, can comprise up to several thousand of these elementary transceiver modules.
- the signals picked up by these elementary receivers must also be able to be routed back to the processing installation, whether of the analog type or of the digital type.
- Cables meeting such constraints may also be required in the future to equip high definition digital television broadcasting networks.
- the necessary bandwidths will be so high that one must expect to encounter great difficulties in finding sufficient radio channels without causing interference: it might therefore be necessary to fall back on a cable broadcast, if one wants to be able to obtain a satisfactory quality for the signals received by the users, as well as a sufficient broadcasting radius.
- the most common microwave cable is the coaxial cable with braided metal sheath.
- This kind of cable is only crosstalk-free if it is double sheathed. It therefore comprises a central conductor with circular section, surrounded by a dielectric itself surrounded by two superimposed braided metal sheaths, with a conventional high density braid, the assembly of course being coated in an external insulating sheath, capable of ensuring mechanical protection and sealing.
- These conventional cables are not, however, perfectly suited, mainly due to the contact noises, called "braid noises", which tend to appear in the two superimposed braids.
- These braid noises which occur in particular during vibrations or other movements of the cable, are detrimental to the good transmission of microwave waves.
- the quality of the contacts between the two braided sleeves changes over time, especially in cable ends.
- the known solution which is currently the most satisfactory from the performance point of view, consists in using semi-rigid coaxial cables which consist of a solid metallic central core surrounded by a dielectric, which is generally a dielectric with low losses such as polyethylene or PTFE, itself being coated with an external conductor of solid copper.
- this cable is very expensive and it can only be produced on an industrial scale for limited lengths. It therefore lends itself poorly to the aforementioned applications, where it is necessary to install very large amounts of cable length. It also has the drawback of using fairly expensive connectors at each end. Finally, it does not lend itself well to the multiple transmission of auxiliary service signals (telephone channels, test report signals on distant equipment, etc.).
- the invention aims to remedy these drawbacks.
- each of the outer conductive layers of metallic strip of the triplate line is generally several times greater, and preferably of the order of three times greater, that is to say the spacing between these two outer planar conductors (i.e. i.e. the thickness of the dielectric), or the width of the central conductor (taken in the median plane of the triplate line, parallel to these plane conductors) in the case where this width is greater than the aforementioned spacing between the conductors exterior shots.
- the thickness of the dielectric is of course chosen so that the triplate line has the desired characteristic impedance.
- the thickness of the dielectric is of the same order of magnitude as the width of the central conductor taken in the median plane of the triplate line, that is to say the central plane parallel to the planar outer conductors of this triplate line.
- this thickness of the dielectric is chosen to be substantially equal to this width of the central conductor.
- the aforementioned shielding sheath practically directly covers the triplate line.
- the dielectric is advantageously of greater width (preferably slightly greater) than that of the two flat outer conductors of the triplate line, and the edges of the rectangle which constitutes the section of this dielectric are rounded in the part of this rectangle which is external to these flat conductors, so as to conform to the shape of the shielding sheath.
- this microwave cable further comprises, between the triplate line and the aforementioned shielding sheath, a sheath of material absorbing for microwave waves in the spectrum of use of the cable where higher modes can spread there.
- the outer section of this absorbent sheath preferably has an elliptical shape, the major axis of the ellipse being substantially coincident with the median plane of the triplate line, which is parallel to the two outer planar conductors of this line.
- this cable is able to propagate a microwave wave according to the first guided mode, which is the electro-magnetic transverse mode represented by the arrows in FIG. 2.
- the two electric field vectors E1, E2 are only truly equal and opposite only to a sufficient distance from the central line 1: it is only at this distance that we can be sure that they cancel each other out and do not therefore generate an electric field leak out of the triple line. This is why the width L1 of the outer strips 5, 6 is chosen to be much greater than the width a of the central strip 1.
- F vs 2 x ⁇ r x L2 in which c is the speed of light, ⁇ r is the relative dielectric constant of the dielectric material, and L2 is the maximum width of the dielectric strips.
- this parasitic mode introduces intolerable disturbances, so that the bandwidth of the cable of FIG. 1 is practically limited in value by this frequency F. This is why the width L2 should not be chosen too large either, so as not to reduce the width of this bandwidth too much: the value L1 ⁇ 3 a was chosen in this example of execution.
- the value of L1 can be chosen equal to 3 times the greater of the two values a and e.
- the outer shielding sheath 7 does not participate in the propagation of the radio wave, as is the case for cables of the prior art. It is an ordinary shielding sheath which has the function of increasing the radio sealing performance of the cable with respect to crosstalk and interference: it creates a final barrier to radiation to the outside, and it serves to rejection of signals from outside.
- This sheath can be imprecise in its realization, because it does not participate in the definition of the characteristic impedance of the line, and that it is not likely to contribute to the generation of amplitude and phase. It can therefore be a cheap sheath.
- the rounded edges 4 of the dielectric plates 2, 3 are intended to accommodate the mechanical constraints of producing the shielding sheath 7. It would indeed be difficult to obtain a metal shielding which is shaped around a rod to rectangular section with sharp corners: the role of rounding 4 is to avoid this difficulty, and consequently to allow the easy installation of a metal shield having rounded edges, and therefore without sharp corners.
- the cable which has just been described can be produced at very low cost, using continuous drawing and extrusion techniques.
- the two aforementioned field vectors E1 and E2 may each have a slightly different amplitude, and they can then give rise to a small field component of absolute value (E1 - E2), which tends to flee towards outside. This component can give rise to a propagation by parasitic mode for the frequencies higher than the frequency F defined above and leading to absorptions by resonances.
- shielding is indeed to oppose the propagation outward of such a parasitic mode component, but its effectiveness is zero with respect to internal resonances in the line and which may exist as soon as the frequency reaches or exceeds the aforementioned F value.
- FIGS. 3 and 4 represent a second embodiment of this cable, more sophisticated and therefore more expensive, which has the advantage of overcoming the aforementioned drawbacks of the cable of FIG. 1.
- This cable is therefore with a wider band than the previous one, and its absorption of the small leakage component in the event of asymmetry is much more satisfactory. It can also fulfill a function of absorbing harmonics filter at frequencies higher than the cutoff frequency F of the first parasitic propagation mode.
- This second cable differs from the previous essentially in that it comprises, between the three-plate line (1, 2, 3, 5, 6) and the metal shielding sheath 7 (which is shown in this case, by way of illustration, as a conventional sheath consisting of a metal band wound on a lathe around its longitudinal axis and crimped at 10), a relatively thick additional sheath 9, made of absorbent material for microwave waves in the entire frequency spectrum above the frequency of breaking of the first parasitic mode which can propagate in the cable.
- the material used for the sheath 9 is for example a rubber loaded with graphite, or a rubber loaded with finely divided metal oxide particles. It is in any case constituted by a very bad dielectric material.
- This absorbent sheath 9 can advantageously be obtained by extrusion of a charged plastic or by helical wrapping of such a plastic.
- Its external shape is preferably elliptical as shown, the major axis of the ellipse then being coincident with the median plane X of the triplate line, which contains the central conductor 1.
- the useful volume of the absorbent sheath 9 is indeed located around the two edges of the triplate line and, for a matter of economy of material and less weight, it is advisable to adopt, for the section of the sheath 9, a solution for which the maximum of absorbent material is located around the lips of the outer conductors 5 and 6.
- a rounded shape is desirable to allow easy production of the shielding sheath 7.
- the suitable elliptical shape meets these requirements, and has the advantage of being a simple shape, which closes progressive and continuous manner, and which makes the sheath 9 easy to manufacture by drawing or extrusion.
- the cable is capable of being produced in other equivalent forms, but always comprising a three-ply line shaped so as to have no leakage from the field of the fundamental mode towards the outside and at least an ordinary shield surrounding this triple line.
- the flat ribbon constituting the central conductor by an ordinary conductor with cylindrical section.
Landscapes
- Insulated Conductors (AREA)
- Communication Cables (AREA)
Claims (7)
- Dreiplattenleitung zur Übertragung von Mikrowellen, wobei die Leitung mindestens aufweist:- einen zentralen Leiter (1),- ein Dielektrikum (2, 3), das diesen zentralen Leiter (1) umgibt und dessen Querschnitt eine im wesentlichen nahezu rechteckige Form mit zwei großen ebenen äußeren Seiten symmetrisch zu beiden Seiten des zentralen Leiters besitzt, wodurch sich der dielektrische Bereich einer Leitung vom Dreiplattenleitungtyp ergibt,- zwei äußere leitende Schichten (5, 6), die aus kontinuierlichen Metallbändern bestehen, die mindestens den größten Teil jeder der beiden großen ebenen Seiten des nahezu rechteckigen Querschnitts des Dielektrikums (2, 3) bedecken, so daß sich eine Dreiplattenleitung mit dem zentralen Leiter (1) und diesem Dielektrikum ergibt,- und mindestens eine metallische Abschirmung (7), die diese Dreiplattenleitung umgibt, dadurch gekennzeichnet, daß die Abschirmung aus einer Hülle (7) besteht, wobei die Dreiplattenleitung ein halbstarres Kabel ergibt, das kontinuierlich hergestellt werden kann.
- Dreiplattenleitung nach Anspruch 1, dadurch gekennzeichnet, daß die Breite (L1) jedes der beiden äußeren Leiter (5, 6) um ein Mehrfaches größer als der Abstand (e) zwischen diesen beiden ebenen Leitern oder die Breite (a) des zentralen Leiters (1), gemessen in der mittleren Ebene der Dreiplattenleitung parallel zu diesen ebenen Leitern (5, 6), gewählt ist, sofern diese Breite (a) größer als der Abstand (e) ist.
- Dreiplattenleitung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Dicke (e) des Dielektrikums in derselben Größenordnung wie die Breite (a) des zentralen Leiters (1), gemessen in der mittleren Ebene (X) der Dreiplattenleitung (1, 2, 3, 5, 6) parallel zu den ebenen äußeren Leitern (5, 6) dieser Leitung, gewählt ist.
- Dreiplattenleitung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Breite (L1) jedes der beiden äußeren ebenen Leiter (5, 6) der Dreiplattenleitung etwa dreimal größer als entweder der Abstand (e) zwischen diesen beiden ebenen Leitern oder die Breite (a) des zentralen Leiters (1), gemessen in der mittleren Ebene (X) dieser Dreiplattenleitung parallel zu diesen ebenen Leitern (5, 6), gewählt ist, sofern diese Breite (a) größer als dieser Abstand (e) ist.
- Dreiplattenleitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Dielektrikum (2, 3) eine Gesamtbreite (L2) besitzt, die größer als die (L1) der beiden ebenen äußeren Leiter (5, 6) der Dreiplattenleitung ist, und daß die Ränder (4) des Rechtecks, welches den Querschnitt dieses Dielektrikums bildet, in dem Bereich des Rechtecks abgerundet sind, der außerhalb dieser beiden ebenen Leiter liegt, so daß das Dielektrikum sich der Form der Abschirmung (7) anpaßt, die diese Dreiplattenleitung (1, 2, 3, 5, 6) umgibt.
- Dreiplattenleitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie weiter zwischen der Dreiplattenleitung und der Abschirmung eine Hülle (9) aus einem Material besitzt, das für die Mikrowellen im Spektrum der Frequenzen, in dem ein höherer Modus sich fortpflanzen kann, absorbierend wirkt.
- Dreiplattenleitung nach Anspruch 6, dadurch gekennzeichnet, daß der äußere Querschnitt der absorbierenden Hülle (9) im wesentlichen elliptisch ist, wobei die große Ellipsenachse im wesentlichen mit der mittleren Ebene (X) der Leitung parallel zu den beiden äußeren ebenen Leitern (5, 6) zusammenfällt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8816811A FR2640819B1 (fr) | 1988-12-20 | 1988-12-20 | Cable semi-rigide destine a la transmission des ondes hyperfrequence |
FR8816811 | 1988-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0375506A1 EP0375506A1 (de) | 1990-06-27 |
EP0375506B1 true EP0375506B1 (de) | 1994-09-28 |
Family
ID=9373169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89403439A Expired - Lifetime EP0375506B1 (de) | 1988-12-20 | 1989-12-12 | Halbstarre Kabel für Mikrowellenübertragung |
Country Status (4)
Country | Link |
---|---|
US (1) | US5068632A (de) |
EP (1) | EP0375506B1 (de) |
DE (1) | DE68918569T2 (de) |
FR (1) | FR2640819B1 (de) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2763445B2 (ja) * | 1992-04-03 | 1998-06-11 | 三菱電機株式会社 | 高周波信号用配線及びそのボンディング装置 |
US5574415A (en) * | 1992-06-11 | 1996-11-12 | Peterson; Robert K. | Method of fabricating microwave interconnects and packaging and the interconnects and packaging |
US5414211A (en) * | 1992-12-21 | 1995-05-09 | E-Systems, Inc. | Device and method for shielding an electrically conductive cable from electromagnetic interference |
US5426403A (en) * | 1994-01-03 | 1995-06-20 | Motorola, Inc. | Printed circuit board transmission line component |
US5756932A (en) * | 1996-07-31 | 1998-05-26 | Hewlett-Packard Company | Signal distribution structure having lossy insulator |
US5885710A (en) * | 1997-03-26 | 1999-03-23 | Ericsson, Inc. | Flexible strip transmission line |
FR2766017B1 (fr) * | 1997-07-08 | 1999-09-24 | Thomson Csf | Antenne reseau antibrouillee |
US6492595B2 (en) | 1997-10-01 | 2002-12-10 | Decorp Americas, Inc. | Flat surface-mounted multi-purpose wire |
SE514406C2 (sv) * | 1999-06-17 | 2001-02-19 | Ericsson Telefon Ab L M | Elektrisk transmissionsanordning med korsande striplineledningar |
US6501350B2 (en) | 2001-03-27 | 2002-12-31 | Electrolock, Inc. | Flat radiating cable |
US6545223B2 (en) * | 2001-08-22 | 2003-04-08 | George M. Baldock | Cable |
GB2382725A (en) * | 2002-02-25 | 2003-06-04 | Bookham Technology Plc | Transmission line structure |
JP3876770B2 (ja) * | 2002-06-07 | 2007-02-07 | 日産自動車株式会社 | 配線構造 |
US7217884B2 (en) * | 2004-03-02 | 2007-05-15 | Southwire Company | Electrical wire and method of fabricating the electrical wire |
AU2015201287B2 (en) * | 2003-09-05 | 2015-10-08 | Newire, Inc. | Electrical wire and method of fabricating the electrical wire |
CN1868095B (zh) * | 2003-09-05 | 2010-06-16 | 尼威尔公司 | 电线及其制造方法 |
US7737359B2 (en) * | 2003-09-05 | 2010-06-15 | Newire Inc. | Electrical wire and method of fabricating the electrical wire |
US7145073B2 (en) | 2003-09-05 | 2006-12-05 | Southwire Company | Electrical wire and method of fabricating the electrical wire |
AU2012202608B2 (en) * | 2003-09-05 | 2014-12-11 | Newire, Inc. | Electrical wire and method of fabricating the electrical wire |
US8237051B2 (en) * | 2003-09-05 | 2012-08-07 | Newire, Inc. | Flat wire extension cords and extension cord devices |
US7314998B2 (en) * | 2006-02-10 | 2008-01-01 | Alan John Amato | Coaxial cable jumper device |
FR2916096B1 (fr) * | 2007-05-11 | 2015-05-22 | Valeo Equip Electr Moteur | Sous-ensemble de puissance d'un systeme micro-hybride pour vehicule automobile |
US20110021069A1 (en) * | 2009-07-21 | 2011-01-27 | Yiping Hu | Thin format crush resistant electrical cable |
US8894439B2 (en) * | 2010-11-22 | 2014-11-25 | Andrew Llc | Capacitivly coupled flat conductor connector |
US8876549B2 (en) * | 2010-11-22 | 2014-11-04 | Andrew Llc | Capacitively coupled flat conductor connector |
US9577305B2 (en) | 2011-08-12 | 2017-02-21 | Commscope Technologies Llc | Low attenuation stripline RF transmission cable |
US20130038410A1 (en) * | 2011-08-12 | 2013-02-14 | Andrew Llc | Thermally Conductive Stripline RF Transmission Cable |
US9209510B2 (en) | 2011-08-12 | 2015-12-08 | Commscope Technologies Llc | Corrugated stripline RF transmission cable |
US9419321B2 (en) * | 2011-08-12 | 2016-08-16 | Commscope Technologies Llc | Self-supporting stripline RF transmission cable |
US20130037301A1 (en) * | 2011-08-12 | 2013-02-14 | Andrew Llc | Multi-Conductor Stripline RF Transmission Cable |
JP5796256B2 (ja) * | 2011-12-15 | 2015-10-21 | ホシデン株式会社 | フレキシブルフラットケーブル |
JP6715411B2 (ja) * | 2018-07-27 | 2020-07-01 | 株式会社テクノ・コア | 信号伝送用フラットケーブル及びその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3258724A (en) * | 1966-06-28 | Strip line structures | ||
DE712278C (de) * | 1937-12-02 | 1941-10-15 | Marcel Gaupillat S A Ets | Halter oder Stativ fuer optische, vorzugsweise photographische Apparate |
US2754484A (en) * | 1954-11-22 | 1956-07-10 | Itt | Shield for microstrip circuits |
GB798629A (en) * | 1955-09-01 | 1958-07-23 | Standard Telephones Cables Ltd | Electrical high frequency transmission line filter arrangements |
US3004229A (en) * | 1959-02-24 | 1961-10-10 | Sanders Associates Inc | High frequency transmission line |
US2994050A (en) * | 1959-04-10 | 1961-07-25 | Sanders Associates Inc | High frequency transmission line |
US3534301A (en) * | 1967-06-12 | 1970-10-13 | Bell Telephone Labor Inc | Temperature compensated integrated circuit type narrowband stripline filter |
US3612744A (en) * | 1969-02-27 | 1971-10-12 | Hughes Aircraft Co | Flexible flat conductor cable of variable electrical characteristics |
GB1275200A (en) * | 1970-08-10 | 1972-05-24 | Standard Telephones Cables Ltd | Improved electric cable |
GB1473655A (en) * | 1974-11-15 | 1977-05-18 | Post Office | Dielectric waveguides |
JPS56158502A (en) * | 1980-05-12 | 1981-12-07 | Junkosha Co Ltd | Strip line |
US4673904A (en) * | 1984-11-14 | 1987-06-16 | Itt Corporation | Micro-coaxial substrate |
US4701727A (en) * | 1984-11-28 | 1987-10-20 | General Dynamics, Pomona Division | Stripline tapped-line hairpin filter |
US4707671A (en) * | 1985-05-31 | 1987-11-17 | Junkosha Co., Ltd. | Electrical transmission line |
US4845311A (en) * | 1988-07-21 | 1989-07-04 | Hughes Aircraft Company | Flexible coaxial cable apparatus and method |
-
1988
- 1988-12-20 FR FR8816811A patent/FR2640819B1/fr not_active Expired - Lifetime
-
1989
- 1989-12-12 DE DE68918569T patent/DE68918569T2/de not_active Expired - Fee Related
- 1989-12-12 EP EP89403439A patent/EP0375506B1/de not_active Expired - Lifetime
- 1989-12-15 US US07/451,821 patent/US5068632A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE68918569D1 (de) | 1994-11-03 |
EP0375506A1 (de) | 1990-06-27 |
FR2640819B1 (fr) | 1991-05-31 |
FR2640819A1 (fr) | 1990-06-22 |
DE68918569T2 (de) | 1995-01-26 |
US5068632A (en) | 1991-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0375506B1 (de) | Halbstarre Kabel für Mikrowellenübertragung | |
EP0114140B1 (de) | Abstimmbarer Mikrowellenfilter mit dielektrischen Resonatoren im TM010 Modus | |
EP2510574B1 (de) | Mikrowellenübergangsvorrichtung zwischen einer mikrostripleitung und einem rechteckigen wellenleiter | |
EP0213646B1 (de) | Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten | |
EP0064313B1 (de) | Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente | |
EP1416586B1 (de) | Antenne mit einer Filtermaterialanordnung | |
EP0487387A1 (de) | Flache Mikrowellen-Schlitzantenne | |
EP0485920A1 (de) | Elektrisches Kabel mit hoher Übertragungsgeschwindigkeit | |
EP0554160B1 (de) | Elektrisches Hochfrequenzkabel | |
EP3726642B1 (de) | Polarisationsschirm mit breitband-hochfrequenz-polarisationszelle(n) | |
EP0828305A1 (de) | Vorrichtung zum Transportieren eines gegen elektromagnetische Störungen geschütztes elektrisches Signal | |
WO2003028157A1 (fr) | Antenne a large bande ou multi-bandes | |
EP1523062B1 (de) | Rundstrahlende Antenne zum Senden und Empfangen von Audio/Video Signalen | |
EP0299125B1 (de) | Tiefpass-Propagationsstruktur | |
EP1016165B1 (de) | Strahlendes kabel | |
EP1163682B1 (de) | Strahlendes kabel | |
FR2748845A1 (fr) | Cable electrique de transmission haute frequence | |
EP1025620A1 (de) | Abstrahlendes koaxialkabel | |
CA2448636C (fr) | Antenne pourvue d'un assemblage de materiaux filtrant | |
FR3078435A1 (fr) | Cable de communication et de transmission multimedia | |
EP0623970A1 (de) | Antenne mit zirkularem oder elliptischem Profil, feststehend oder rotierend, für einen oder mehrere multipolarisierte Wellen abgebende Mikrowellengeneratoren | |
EP0851437A1 (de) | Einfach-anschliessbares abgeschirmtes Kabel | |
BE502149A (de) | ||
FR2793593A1 (fr) | Cable blinde passe-bas | |
BE502294A (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT NL |
|
17P | Request for examination filed |
Effective date: 19901203 |
|
17Q | First examination report despatched |
Effective date: 19930528 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THOMSON-CSF |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940928 |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 68918569 Country of ref document: DE Date of ref document: 19941103 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19941118 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19951120 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19951121 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19961212 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19961212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051212 |