EP0375506B1 - Halbstarre Kabel für Mikrowellenübertragung - Google Patents

Halbstarre Kabel für Mikrowellenübertragung Download PDF

Info

Publication number
EP0375506B1
EP0375506B1 EP89403439A EP89403439A EP0375506B1 EP 0375506 B1 EP0375506 B1 EP 0375506B1 EP 89403439 A EP89403439 A EP 89403439A EP 89403439 A EP89403439 A EP 89403439A EP 0375506 B1 EP0375506 B1 EP 0375506B1
Authority
EP
European Patent Office
Prior art keywords
triplate line
dielectric
width
planar
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403439A
Other languages
English (en)
French (fr)
Other versions
EP0375506A1 (de
Inventor
André Champeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0375506A1 publication Critical patent/EP0375506A1/de
Application granted granted Critical
Publication of EP0375506B1 publication Critical patent/EP0375506B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines

Definitions

  • the present invention relates to a semi-rigid cable intended for the transmission of microwave waves, such as the waves used for example in radars or for cable broadcasting of television, in particular high definition digital television.
  • a US patent -A- 3,258,724 discloses the structure of a triplate line and an article "THE DESIGN OF MICROWAVE COMPONENTS Vol 105B, n ° 20, March 1958, pages 155-172, the Institution of Electrical Ingeneers; JMC DUKES" constitutes a basic document on the ribbon lines.
  • the radar antennas that are tending to be produced more and more are active antennas sampled at the surface, and therefore made up of a very large number of elementary, active and radiating modules, each of these modules comprising a transmitter and a own elementary receiver.
  • a radar antenna of this type the dimensions of which, in width and in height, are generally several meters each, can comprise up to several thousand of these elementary transceiver modules.
  • the signals picked up by these elementary receivers must also be able to be routed back to the processing installation, whether of the analog type or of the digital type.
  • Cables meeting such constraints may also be required in the future to equip high definition digital television broadcasting networks.
  • the necessary bandwidths will be so high that one must expect to encounter great difficulties in finding sufficient radio channels without causing interference: it might therefore be necessary to fall back on a cable broadcast, if one wants to be able to obtain a satisfactory quality for the signals received by the users, as well as a sufficient broadcasting radius.
  • the most common microwave cable is the coaxial cable with braided metal sheath.
  • This kind of cable is only crosstalk-free if it is double sheathed. It therefore comprises a central conductor with circular section, surrounded by a dielectric itself surrounded by two superimposed braided metal sheaths, with a conventional high density braid, the assembly of course being coated in an external insulating sheath, capable of ensuring mechanical protection and sealing.
  • These conventional cables are not, however, perfectly suited, mainly due to the contact noises, called "braid noises", which tend to appear in the two superimposed braids.
  • These braid noises which occur in particular during vibrations or other movements of the cable, are detrimental to the good transmission of microwave waves.
  • the quality of the contacts between the two braided sleeves changes over time, especially in cable ends.
  • the known solution which is currently the most satisfactory from the performance point of view, consists in using semi-rigid coaxial cables which consist of a solid metallic central core surrounded by a dielectric, which is generally a dielectric with low losses such as polyethylene or PTFE, itself being coated with an external conductor of solid copper.
  • this cable is very expensive and it can only be produced on an industrial scale for limited lengths. It therefore lends itself poorly to the aforementioned applications, where it is necessary to install very large amounts of cable length. It also has the drawback of using fairly expensive connectors at each end. Finally, it does not lend itself well to the multiple transmission of auxiliary service signals (telephone channels, test report signals on distant equipment, etc.).
  • the invention aims to remedy these drawbacks.
  • each of the outer conductive layers of metallic strip of the triplate line is generally several times greater, and preferably of the order of three times greater, that is to say the spacing between these two outer planar conductors (i.e. i.e. the thickness of the dielectric), or the width of the central conductor (taken in the median plane of the triplate line, parallel to these plane conductors) in the case where this width is greater than the aforementioned spacing between the conductors exterior shots.
  • the thickness of the dielectric is of course chosen so that the triplate line has the desired characteristic impedance.
  • the thickness of the dielectric is of the same order of magnitude as the width of the central conductor taken in the median plane of the triplate line, that is to say the central plane parallel to the planar outer conductors of this triplate line.
  • this thickness of the dielectric is chosen to be substantially equal to this width of the central conductor.
  • the aforementioned shielding sheath practically directly covers the triplate line.
  • the dielectric is advantageously of greater width (preferably slightly greater) than that of the two flat outer conductors of the triplate line, and the edges of the rectangle which constitutes the section of this dielectric are rounded in the part of this rectangle which is external to these flat conductors, so as to conform to the shape of the shielding sheath.
  • this microwave cable further comprises, between the triplate line and the aforementioned shielding sheath, a sheath of material absorbing for microwave waves in the spectrum of use of the cable where higher modes can spread there.
  • the outer section of this absorbent sheath preferably has an elliptical shape, the major axis of the ellipse being substantially coincident with the median plane of the triplate line, which is parallel to the two outer planar conductors of this line.
  • this cable is able to propagate a microwave wave according to the first guided mode, which is the electro-magnetic transverse mode represented by the arrows in FIG. 2.
  • the two electric field vectors E1, E2 are only truly equal and opposite only to a sufficient distance from the central line 1: it is only at this distance that we can be sure that they cancel each other out and do not therefore generate an electric field leak out of the triple line. This is why the width L1 of the outer strips 5, 6 is chosen to be much greater than the width a of the central strip 1.
  • F vs 2 x ⁇ r x L2 in which c is the speed of light, ⁇ r is the relative dielectric constant of the dielectric material, and L2 is the maximum width of the dielectric strips.
  • this parasitic mode introduces intolerable disturbances, so that the bandwidth of the cable of FIG. 1 is practically limited in value by this frequency F. This is why the width L2 should not be chosen too large either, so as not to reduce the width of this bandwidth too much: the value L1 ⁇ 3 a was chosen in this example of execution.
  • the value of L1 can be chosen equal to 3 times the greater of the two values a and e.
  • the outer shielding sheath 7 does not participate in the propagation of the radio wave, as is the case for cables of the prior art. It is an ordinary shielding sheath which has the function of increasing the radio sealing performance of the cable with respect to crosstalk and interference: it creates a final barrier to radiation to the outside, and it serves to rejection of signals from outside.
  • This sheath can be imprecise in its realization, because it does not participate in the definition of the characteristic impedance of the line, and that it is not likely to contribute to the generation of amplitude and phase. It can therefore be a cheap sheath.
  • the rounded edges 4 of the dielectric plates 2, 3 are intended to accommodate the mechanical constraints of producing the shielding sheath 7. It would indeed be difficult to obtain a metal shielding which is shaped around a rod to rectangular section with sharp corners: the role of rounding 4 is to avoid this difficulty, and consequently to allow the easy installation of a metal shield having rounded edges, and therefore without sharp corners.
  • the cable which has just been described can be produced at very low cost, using continuous drawing and extrusion techniques.
  • the two aforementioned field vectors E1 and E2 may each have a slightly different amplitude, and they can then give rise to a small field component of absolute value (E1 - E2), which tends to flee towards outside. This component can give rise to a propagation by parasitic mode for the frequencies higher than the frequency F defined above and leading to absorptions by resonances.
  • shielding is indeed to oppose the propagation outward of such a parasitic mode component, but its effectiveness is zero with respect to internal resonances in the line and which may exist as soon as the frequency reaches or exceeds the aforementioned F value.
  • FIGS. 3 and 4 represent a second embodiment of this cable, more sophisticated and therefore more expensive, which has the advantage of overcoming the aforementioned drawbacks of the cable of FIG. 1.
  • This cable is therefore with a wider band than the previous one, and its absorption of the small leakage component in the event of asymmetry is much more satisfactory. It can also fulfill a function of absorbing harmonics filter at frequencies higher than the cutoff frequency F of the first parasitic propagation mode.
  • This second cable differs from the previous essentially in that it comprises, between the three-plate line (1, 2, 3, 5, 6) and the metal shielding sheath 7 (which is shown in this case, by way of illustration, as a conventional sheath consisting of a metal band wound on a lathe around its longitudinal axis and crimped at 10), a relatively thick additional sheath 9, made of absorbent material for microwave waves in the entire frequency spectrum above the frequency of breaking of the first parasitic mode which can propagate in the cable.
  • the material used for the sheath 9 is for example a rubber loaded with graphite, or a rubber loaded with finely divided metal oxide particles. It is in any case constituted by a very bad dielectric material.
  • This absorbent sheath 9 can advantageously be obtained by extrusion of a charged plastic or by helical wrapping of such a plastic.
  • Its external shape is preferably elliptical as shown, the major axis of the ellipse then being coincident with the median plane X of the triplate line, which contains the central conductor 1.
  • the useful volume of the absorbent sheath 9 is indeed located around the two edges of the triplate line and, for a matter of economy of material and less weight, it is advisable to adopt, for the section of the sheath 9, a solution for which the maximum of absorbent material is located around the lips of the outer conductors 5 and 6.
  • a rounded shape is desirable to allow easy production of the shielding sheath 7.
  • the suitable elliptical shape meets these requirements, and has the advantage of being a simple shape, which closes progressive and continuous manner, and which makes the sheath 9 easy to manufacture by drawing or extrusion.
  • the cable is capable of being produced in other equivalent forms, but always comprising a three-ply line shaped so as to have no leakage from the field of the fundamental mode towards the outside and at least an ordinary shield surrounding this triple line.
  • the flat ribbon constituting the central conductor by an ordinary conductor with cylindrical section.

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Claims (7)

  1. Dreiplattenleitung zur Übertragung von Mikrowellen, wobei die Leitung mindestens aufweist:
    - einen zentralen Leiter (1),
    - ein Dielektrikum (2, 3), das diesen zentralen Leiter (1) umgibt und dessen Querschnitt eine im wesentlichen nahezu rechteckige Form mit zwei großen ebenen äußeren Seiten symmetrisch zu beiden Seiten des zentralen Leiters besitzt, wodurch sich der dielektrische Bereich einer Leitung vom Dreiplattenleitungtyp ergibt,
    - zwei äußere leitende Schichten (5, 6), die aus kontinuierlichen Metallbändern bestehen, die mindestens den größten Teil jeder der beiden großen ebenen Seiten des nahezu rechteckigen Querschnitts des Dielektrikums (2, 3) bedecken, so daß sich eine Dreiplattenleitung mit dem zentralen Leiter (1) und diesem Dielektrikum ergibt,
    - und mindestens eine metallische Abschirmung (7), die diese Dreiplattenleitung umgibt, dadurch gekennzeichnet, daß die Abschirmung aus einer Hülle (7) besteht, wobei die Dreiplattenleitung ein halbstarres Kabel ergibt, das kontinuierlich hergestellt werden kann.
  2. Dreiplattenleitung nach Anspruch 1, dadurch gekennzeichnet, daß die Breite (L1) jedes der beiden äußeren Leiter (5, 6) um ein Mehrfaches größer als der Abstand (e) zwischen diesen beiden ebenen Leitern oder die Breite (a) des zentralen Leiters (1), gemessen in der mittleren Ebene der Dreiplattenleitung parallel zu diesen ebenen Leitern (5, 6), gewählt ist, sofern diese Breite (a) größer als der Abstand (e) ist.
  3. Dreiplattenleitung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Dicke (e) des Dielektrikums in derselben Größenordnung wie die Breite (a) des zentralen Leiters (1), gemessen in der mittleren Ebene (X) der Dreiplattenleitung (1, 2, 3, 5, 6) parallel zu den ebenen äußeren Leitern (5, 6) dieser Leitung, gewählt ist.
  4. Dreiplattenleitung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Breite (L1) jedes der beiden äußeren ebenen Leiter (5, 6) der Dreiplattenleitung etwa dreimal größer als entweder der Abstand (e) zwischen diesen beiden ebenen Leitern oder die Breite (a) des zentralen Leiters (1), gemessen in der mittleren Ebene (X) dieser Dreiplattenleitung parallel zu diesen ebenen Leitern (5, 6), gewählt ist, sofern diese Breite (a) größer als dieser Abstand (e) ist.
  5. Dreiplattenleitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Dielektrikum (2, 3) eine Gesamtbreite (L2) besitzt, die größer als die (L1) der beiden ebenen äußeren Leiter (5, 6) der Dreiplattenleitung ist, und daß die Ränder (4) des Rechtecks, welches den Querschnitt dieses Dielektrikums bildet, in dem Bereich des Rechtecks abgerundet sind, der außerhalb dieser beiden ebenen Leiter liegt, so daß das Dielektrikum sich der Form der Abschirmung (7) anpaßt, die diese Dreiplattenleitung (1, 2, 3, 5, 6) umgibt.
  6. Dreiplattenleitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie weiter zwischen der Dreiplattenleitung und der Abschirmung eine Hülle (9) aus einem Material besitzt, das für die Mikrowellen im Spektrum der Frequenzen, in dem ein höherer Modus sich fortpflanzen kann, absorbierend wirkt.
  7. Dreiplattenleitung nach Anspruch 6, dadurch gekennzeichnet, daß der äußere Querschnitt der absorbierenden Hülle (9) im wesentlichen elliptisch ist, wobei die große Ellipsenachse im wesentlichen mit der mittleren Ebene (X) der Leitung parallel zu den beiden äußeren ebenen Leitern (5, 6) zusammenfällt.
EP89403439A 1988-12-20 1989-12-12 Halbstarre Kabel für Mikrowellenübertragung Expired - Lifetime EP0375506B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8816811A FR2640819B1 (fr) 1988-12-20 1988-12-20 Cable semi-rigide destine a la transmission des ondes hyperfrequence
FR8816811 1988-12-20

Publications (2)

Publication Number Publication Date
EP0375506A1 EP0375506A1 (de) 1990-06-27
EP0375506B1 true EP0375506B1 (de) 1994-09-28

Family

ID=9373169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403439A Expired - Lifetime EP0375506B1 (de) 1988-12-20 1989-12-12 Halbstarre Kabel für Mikrowellenübertragung

Country Status (4)

Country Link
US (1) US5068632A (de)
EP (1) EP0375506B1 (de)
DE (1) DE68918569T2 (de)
FR (1) FR2640819B1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763445B2 (ja) * 1992-04-03 1998-06-11 三菱電機株式会社 高周波信号用配線及びそのボンディング装置
US5574415A (en) * 1992-06-11 1996-11-12 Peterson; Robert K. Method of fabricating microwave interconnects and packaging and the interconnects and packaging
US5414211A (en) * 1992-12-21 1995-05-09 E-Systems, Inc. Device and method for shielding an electrically conductive cable from electromagnetic interference
US5426403A (en) * 1994-01-03 1995-06-20 Motorola, Inc. Printed circuit board transmission line component
US5756932A (en) * 1996-07-31 1998-05-26 Hewlett-Packard Company Signal distribution structure having lossy insulator
US5885710A (en) * 1997-03-26 1999-03-23 Ericsson, Inc. Flexible strip transmission line
FR2766017B1 (fr) * 1997-07-08 1999-09-24 Thomson Csf Antenne reseau antibrouillee
US6492595B2 (en) 1997-10-01 2002-12-10 Decorp Americas, Inc. Flat surface-mounted multi-purpose wire
SE514406C2 (sv) * 1999-06-17 2001-02-19 Ericsson Telefon Ab L M Elektrisk transmissionsanordning med korsande striplineledningar
US6501350B2 (en) 2001-03-27 2002-12-31 Electrolock, Inc. Flat radiating cable
US6545223B2 (en) * 2001-08-22 2003-04-08 George M. Baldock Cable
GB2382725A (en) * 2002-02-25 2003-06-04 Bookham Technology Plc Transmission line structure
JP3876770B2 (ja) * 2002-06-07 2007-02-07 日産自動車株式会社 配線構造
US7217884B2 (en) * 2004-03-02 2007-05-15 Southwire Company Electrical wire and method of fabricating the electrical wire
AU2015201287B2 (en) * 2003-09-05 2015-10-08 Newire, Inc. Electrical wire and method of fabricating the electrical wire
CN1868095B (zh) * 2003-09-05 2010-06-16 尼威尔公司 电线及其制造方法
US7737359B2 (en) * 2003-09-05 2010-06-15 Newire Inc. Electrical wire and method of fabricating the electrical wire
US7145073B2 (en) 2003-09-05 2006-12-05 Southwire Company Electrical wire and method of fabricating the electrical wire
AU2012202608B2 (en) * 2003-09-05 2014-12-11 Newire, Inc. Electrical wire and method of fabricating the electrical wire
US8237051B2 (en) * 2003-09-05 2012-08-07 Newire, Inc. Flat wire extension cords and extension cord devices
US7314998B2 (en) * 2006-02-10 2008-01-01 Alan John Amato Coaxial cable jumper device
FR2916096B1 (fr) * 2007-05-11 2015-05-22 Valeo Equip Electr Moteur Sous-ensemble de puissance d'un systeme micro-hybride pour vehicule automobile
US20110021069A1 (en) * 2009-07-21 2011-01-27 Yiping Hu Thin format crush resistant electrical cable
US8894439B2 (en) * 2010-11-22 2014-11-25 Andrew Llc Capacitivly coupled flat conductor connector
US8876549B2 (en) * 2010-11-22 2014-11-04 Andrew Llc Capacitively coupled flat conductor connector
US9577305B2 (en) 2011-08-12 2017-02-21 Commscope Technologies Llc Low attenuation stripline RF transmission cable
US20130038410A1 (en) * 2011-08-12 2013-02-14 Andrew Llc Thermally Conductive Stripline RF Transmission Cable
US9209510B2 (en) 2011-08-12 2015-12-08 Commscope Technologies Llc Corrugated stripline RF transmission cable
US9419321B2 (en) * 2011-08-12 2016-08-16 Commscope Technologies Llc Self-supporting stripline RF transmission cable
US20130037301A1 (en) * 2011-08-12 2013-02-14 Andrew Llc Multi-Conductor Stripline RF Transmission Cable
JP5796256B2 (ja) * 2011-12-15 2015-10-21 ホシデン株式会社 フレキシブルフラットケーブル
JP6715411B2 (ja) * 2018-07-27 2020-07-01 株式会社テクノ・コア 信号伝送用フラットケーブル及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258724A (en) * 1966-06-28 Strip line structures
DE712278C (de) * 1937-12-02 1941-10-15 Marcel Gaupillat S A Ets Halter oder Stativ fuer optische, vorzugsweise photographische Apparate
US2754484A (en) * 1954-11-22 1956-07-10 Itt Shield for microstrip circuits
GB798629A (en) * 1955-09-01 1958-07-23 Standard Telephones Cables Ltd Electrical high frequency transmission line filter arrangements
US3004229A (en) * 1959-02-24 1961-10-10 Sanders Associates Inc High frequency transmission line
US2994050A (en) * 1959-04-10 1961-07-25 Sanders Associates Inc High frequency transmission line
US3534301A (en) * 1967-06-12 1970-10-13 Bell Telephone Labor Inc Temperature compensated integrated circuit type narrowband stripline filter
US3612744A (en) * 1969-02-27 1971-10-12 Hughes Aircraft Co Flexible flat conductor cable of variable electrical characteristics
GB1275200A (en) * 1970-08-10 1972-05-24 Standard Telephones Cables Ltd Improved electric cable
GB1473655A (en) * 1974-11-15 1977-05-18 Post Office Dielectric waveguides
JPS56158502A (en) * 1980-05-12 1981-12-07 Junkosha Co Ltd Strip line
US4673904A (en) * 1984-11-14 1987-06-16 Itt Corporation Micro-coaxial substrate
US4701727A (en) * 1984-11-28 1987-10-20 General Dynamics, Pomona Division Stripline tapped-line hairpin filter
US4707671A (en) * 1985-05-31 1987-11-17 Junkosha Co., Ltd. Electrical transmission line
US4845311A (en) * 1988-07-21 1989-07-04 Hughes Aircraft Company Flexible coaxial cable apparatus and method

Also Published As

Publication number Publication date
DE68918569D1 (de) 1994-11-03
EP0375506A1 (de) 1990-06-27
FR2640819B1 (fr) 1991-05-31
FR2640819A1 (fr) 1990-06-22
DE68918569T2 (de) 1995-01-26
US5068632A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
EP0375506B1 (de) Halbstarre Kabel für Mikrowellenübertragung
EP0114140B1 (de) Abstimmbarer Mikrowellenfilter mit dielektrischen Resonatoren im TM010 Modus
EP2510574B1 (de) Mikrowellenübergangsvorrichtung zwischen einer mikrostripleitung und einem rechteckigen wellenleiter
EP0213646B1 (de) Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten
EP0064313B1 (de) Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente
EP1416586B1 (de) Antenne mit einer Filtermaterialanordnung
EP0487387A1 (de) Flache Mikrowellen-Schlitzantenne
EP0485920A1 (de) Elektrisches Kabel mit hoher Übertragungsgeschwindigkeit
EP0554160B1 (de) Elektrisches Hochfrequenzkabel
EP3726642B1 (de) Polarisationsschirm mit breitband-hochfrequenz-polarisationszelle(n)
EP0828305A1 (de) Vorrichtung zum Transportieren eines gegen elektromagnetische Störungen geschütztes elektrisches Signal
WO2003028157A1 (fr) Antenne a large bande ou multi-bandes
EP1523062B1 (de) Rundstrahlende Antenne zum Senden und Empfangen von Audio/Video Signalen
EP0299125B1 (de) Tiefpass-Propagationsstruktur
EP1016165B1 (de) Strahlendes kabel
EP1163682B1 (de) Strahlendes kabel
FR2748845A1 (fr) Cable electrique de transmission haute frequence
EP1025620A1 (de) Abstrahlendes koaxialkabel
CA2448636C (fr) Antenne pourvue d'un assemblage de materiaux filtrant
FR3078435A1 (fr) Cable de communication et de transmission multimedia
EP0623970A1 (de) Antenne mit zirkularem oder elliptischem Profil, feststehend oder rotierend, für einen oder mehrere multipolarisierte Wellen abgebende Mikrowellengeneratoren
EP0851437A1 (de) Einfach-anschliessbares abgeschirmtes Kabel
BE502149A (de)
FR2793593A1 (fr) Cable blinde passe-bas
BE502294A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19901203

17Q First examination report despatched

Effective date: 19930528

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940928

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 68918569

Country of ref document: DE

Date of ref document: 19941103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941118

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051212