EP0365901B1 - Système de contrÔle d'une pluralité de postes de travail des machines textiles - Google Patents

Système de contrÔle d'une pluralité de postes de travail des machines textiles Download PDF

Info

Publication number
EP0365901B1
EP0365901B1 EP89118688A EP89118688A EP0365901B1 EP 0365901 B1 EP0365901 B1 EP 0365901B1 EP 89118688 A EP89118688 A EP 89118688A EP 89118688 A EP89118688 A EP 89118688A EP 0365901 B1 EP0365901 B1 EP 0365901B1
Authority
EP
European Patent Office
Prior art keywords
values
workstations
monitoring
individual
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89118688A
Other languages
German (de)
English (en)
Other versions
EP0365901A2 (fr
EP0365901A3 (en
Inventor
Peter F. Aemmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zellweger Luwa AG
Original Assignee
Zellweger Luwa AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zellweger Luwa AG filed Critical Zellweger Luwa AG
Publication of EP0365901A2 publication Critical patent/EP0365901A2/fr
Publication of EP0365901A3 publication Critical patent/EP0365901A3/de
Application granted granted Critical
Publication of EP0365901B1 publication Critical patent/EP0365901B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for monitoring a large number of workplaces of textile machines, in which measurement signals are generated and evaluated at the workplaces and characteristic parameters for the individual workplaces are obtained during the evaluation and are analyzed for significant deviations from corresponding setpoints.
  • Such methods are used, for example, in bobbins for monitoring automatic winding machines which have a large number of individual spindles and are equipped with yarn cleaning systems.
  • the analysis of the parameters obtained during the evaluation of the measurement signals is carried out more or less in isolation for each individual winding unit, so that occurring malfunctions can be identified and thus eliminated, but no automatic cross-comparisons between the individual malfunction situations are possible. This means that it is relatively difficult to weight the individual disturbance situations and to relate them to one another. Without such networking, the monitoring system only consists of a large number of isolated monitors for individual winding units.
  • the invention is now intended to create the possibility that the monitoring system itself can make certain conclusions by applying certain rules. This is to ensure that, on the one hand, the same conclusions are always drawn from the same data, and, on the other hand, that complex disturbance situations are clearly and reliably identified. In other words, the mode of operation of the monitoring system should be automated and objectified.
  • setpoints are formed for each machine connected to a computer in a learning process and the measured values are then compared with the setpoints, but the setpoints are always only from a single machine and not through the Behavior of a collective.
  • no generalized starting variables are used in this method either and consequently also not converted into absolute values during the monitoring.
  • Each winding machine has a number x of winding units, each of which is equipped with a measuring head MK for measuring the cross section of a running yarn G.
  • Each measuring head MK is part of an electronic yarn cleaner and is used to detect certain yarn defects, in particular short thick spots (so-called S-channel), long thick spots (so-called L-channel) and thin spots (so-called T-channel).
  • S-channel short thick spots
  • L-channel long thick spots
  • T-channel thin spots
  • the signals of all measuring heads MKll to MKlx, MKnl to MKnx of a winding machine are each fed to a machine station MSl or MSn, as are known, for example, from data systems of the USTER CONEDATA 200 brand (hereinafter referred to as CODA 200).
  • the machine stations MS provide the user with information about the running behavior of the winding machines and the yarn quality, for each individual machine position. Since the machine stations are also equipped with their own keyboard and LCD display, data from the connected winder can be entered, selected and displayed directly.
  • the data of all machine stations MS arrive via a so-called TEXBUS to a TEXBUS adapter TA and from there to a personal computer PC, the hardware structure of which essentially corresponds to that of the memory program computer described in EP-A-001 640 (FIGS. 2 and 3) corresponds, and which one in particular has a system memory, the division of which is shown schematically in FIG. 2.
  • the following software configuration can be seen in FIG. 2 from top to bottom within the personal computer PC: memory space for the operating system BS, memory space for the data system CODA 200, memory space for the so-called ACS manager, then a common memory space for three programs ACS Core, ACS-Main and ACS-Init, and finally again storage space for the operating system BS.
  • memory space for the operating system BS memory space for the data system CODA 200
  • memory space for the so-called ACS manager memory space for the so-called ACS manager
  • a common memory space for three programs ACS Core, ACS-Main and ACS-Init and finally again storage space for the operating system BS.
  • the common memory space for the three programs mentioned it should also be mentioned that these three programs are never active at the same time, so that everyone can use the same memory space, which saves memory space.
  • the monitoring system essentially consists of the hardware components shown in FIG. 1 and the programs shown in FIG. 2, the interaction of which opens up new possibilities for detecting malfunctioning situations in winding machines or in general in textile companies.
  • the system continuously updates the mean values of the individual events and the collective and continuously compares them with each other.
  • the system thus has a knowledge base and an automatic conclusion process.
  • a dynamic knowledge base is set up, the content of which can be formed, for example, by improved mean values of the collective after a long period of operation and / or by conclusions from rules.
  • the abbreviation ACS used in FIG. 2 stands for Alarm Conditions Scanner; this designation will be explained later.
  • the ACS manager forms the basis for all programs in connection with the ACS and all programs that work with the ACS only communicate via it.
  • the ACS manager takes care of the following eight main tasks: ACS daemon, management of the internal constants, winding configuration including shift and batch change and management of various tables (Fig. 3).
  • the ACS daemon is a subfunction of the ACS manager. It is activated periodically by CODA 200 and determines whether delta t has passed since the last call to the ACS core. If so, the ACS core is called again.
  • the main ACS routine is shown in the flowchart of FIG. 4.
  • the "Shift change" subroutine specified in this flowchart causes all xalt and yalt in the current tables to be reset to zero.
  • the “cycle” subroutine which is also shown in FIG. 4, is shown in the flow chart of FIG. 5. This cycle is carried out once for all winding units and channels. Alg (k) in FIG.
  • the ACS core only contains the algorithms and alarm processing. He has no statistical data and obtains all data material from the manager. ACS-Init loads the tables saved in files into the ACS Manager and is used to start the system.
  • ACS-Main is the program that the user can call from CODA 200 to change parameters, view pent-up alarms or obtain information online.
  • the ACS manager is loaded. To ensure that the latter receives the required parameters without the user having to type them in, the manager is supplied with the start parameters using ACS init. ACS-Init in turn gets these parameters from a file. Then CODA 200 is started, which is the main program in the following. In other words, this means that other programs are only started at the instigation of CODA 200 and that CODA 200 regains control once these programs have expired.
  • CODA 200 now supplies the ACS manager with the new winding data sporadically and periodically calls the ACS daemon (function of the ACS manager), which tests whether the time for an update and alarm cycle has arrived (update and alarm cycle are both parts of ACS core). If so, the ACS manager starts the ACS core and the necessary actions are carried out.
  • the ACS init, manager and core programs run invisibly to the user, apart from any alarm messages from the ACS core. However, the user can call up CODA 200 from ACS-Main and thereby implement the functions already mentioned.
  • alarm thresholds can be formed from empirical values, a reference base representative of a winding unit and a channel must be available. For a specific winding unit, this can be formed by all winding units of the same machine or by all winding units with the same yarn identification, that is to say with the same yarn section. In the practical version, there is a separate reference basis for each machine-dependent channel for each machine and for each yarn-dependent channel for each yarn section.
  • the alarm thresholds are values that must not be exceeded, for certain channels there are minima in addition to this maxima, these are thresholds that must not be fallen below.
  • the ACS is periodically activated and, during its activity, updates all channels at all winding units and determines any alarm conditions. Such an update is called a scan cycle.
  • FIG. 3a shows two winding machines M1 and M2, each with four winding positions 1.1 to 1.4 and 2.1 to 2.4, on which three different yarn sections G1 to G3 are wound.
  • 3b shows the corresponding assignments between winding units x, machines M (x) and yarn sections G (x).
  • 3c shows the current tables as they are obtained in the monitoring at the individual winding positions x for the individual channels k
  • FIG. 3d shows the reference tables used with the reference base machine for the two channels REDL and SS and the two winding machines M1 and M2 or with the reference base yarn for the three yarn lots G1 to G3 and the remaining 7 channels.
  • FIG. 3c there is a table with the current values for each winding unit.
  • This table in turn contains a table of the following form for each channel:
  • the MinTab and MaxTab data can be entered by the user or generated by the ACS.
  • the values xerf, yerf and erf are generated by the ACS.
  • mapping functions current table of the current type and ref: table of the reference type must exist.
  • ref table of the reference type
  • HolReferenz assigns the reference values to table ref, which apply to winding unit x and channel k. This function is more complicated than HolA Meeting.
  • the tables MaschRefTab and GarnRefTab serve as sources.
  • MaschRefTab is a two-dimensional table about all machines and all channels belonging to the machine
  • GarnRefTab is a two-dimensional table for all yarn lots and all channels belonging to the yarn lot.
  • Fix (DatFix, ErfFix) was used in the description of the shape of the table of the type reference (FIG. 3d).
  • a fix is a mark for the independent variable x. If x exceeds a certain fix, an appropriate action is triggered.
  • the DatFix and the ErfFix are there to save computing time so that there is no need to carry out complex calculations with every scan cycle that do not result in any significant changes.
  • the alarm fixes are used to grade the alarms.
  • a weighting of the past against the present is necessary, which is realized with the help of a past factor.
  • a past factor is defined for each channel, which applies to the entire winder.
  • the algorithm AN code table 4 does not observe any variable depending on another, but only adds up the frequency of an event since the last occurrence of another event. In practice, this means that AN is only used on one channel, namely on the SPLICE channel, and the number of splices per cone has been counting there, ie since the last cone change. If the splices exceed a certain number, an alarm is triggered. In contrast to AN, the algorithms RA and TP are used for several channels. The pseudo code is not specified for each channel here, but the data structures specified in Tables 2 and 3 are used.
  • the algorithm RA code table 5 maintains three pairs of values with x and y values, the x values of which are separated by DatFix.
  • the most current pair of values is x1 / y1, the "oldest" x3 / y3.
  • An xy value pair is updated until x has exceeded the DatFix value.
  • This pair of values is then standardized to the interval DatFix and made the pair of values x1 / y1.
  • the old value pairs x1 / y1 and x2 / y2 are shifted backwards, x3 / y3 is lost. After an update, it is tested whether an alarm has occurred, the alarm levels being defined.
  • Alarm level 1 is an immediate exceeding of a limit (y1 greater than max1 or less than min1)
  • alarm level 2 represents the moving average ((y1 + y2 + y3 greater than max2) or (y1 + y2 + y3 less than min2))
  • alarm level 3 represents determines whether there is a clearly wrong trend ((y1-y3 greater than max3) or (y3-y1 greater than min3)).
  • the threshold values of levels 1 and 3 must be specified by the user, the threshold values of alarm level 2 can be learned from experience.
  • the algorithm TP Code-Table 6 has three identical levels, whereby the number of levels has no overriding importance, but is due to the symmetry to RA, which by definition has three alarm levels. The three levels of TP differ only in one point, namely in the fixed value for x.
  • An xy pair is updated until x has exceeded the AlarmFixTab value of its level. If the x value of an alarm level has exceeded its AlarmFixTab value, the xy pair is standardized to this and compared with the threshold values. If the value is exceeded or undershot, an alarm is triggered. After comparing the normalized xy pair, this is multiplied by the past factor, no distinction being made as to whether an alarm condition has been determined or not.
  • the threshold values of each alarm level can be learned from experience.
  • An essential feature of the ACS is the self-learning mechanism, ie the possibility of forming threshold values from empirical values. A representative basic set with statistical material is available in the form of the reference bases.
  • each channel of each reference base is tested after each scan cycle to determine whether its x value has exceeded the fixed value of the acquisition. If so, then a new empirical value and a new threshold value are formed, the new empirical value being composed of a weighting of the new values and the old empirical value.
  • This algorithm calculates the minimum and maximum for the channel k in the reference table ref. x
  • the reason why the values of alarm level 2 in RA must be triple that of DatFix is due to the fact that with this algorithm only the threshold values of alarm level 2 can be learned from experience. Accordingly, all three y values are summed up for the test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • General Factory Administration (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Selective Calling Equipment (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Claims (11)

  1. Procédé pour surveiller une pluralité de postes de travail (x) de machines textiles, selon lequel des signaux de mesure sont produits aux postes de travail et exploités et des paramètres caractéristiques pour les différents postes de travail Sont obtenus lors de l'exploitation et sont analysés quant à leurs écarts significatifs de valeurs de consigne correspondantes, caractérisé en ce que :
    a) les valeurs de consigne sont formées par le comportement d'un ensemble statistique comparable ;
    b) au début de chaque processus de surveillance des grandeurs de départ généralisées pour les différentes valeurs de consigne sont utilisées ; et
    c) les grandeurs de départ généralisées sont converties au cours du déroulement de la surveillance, en valeurs absolues.
  2. Procédé selon la revendication 1, caractérisé en ce que les valeurs de consigne sont constamment mises à jour, par le traitement des données de tous les postes de travail (x), sous forme de valeurs moyennes des résultats individuels et des ensembles, et constituent des données de noyaux pour un processus automatique d'établissement de conclusions, ces valeurs de consigne étant complétées par des écarta de sécurité connus par l'expérience et introduits manuellement et qui fixe des limites d'avertissement, d'alarme ou d'arrêt pour les événements pouvant être observés aux différents postes de travail.
  3. Procédé selon la revendication 2, caractérisé en ce que la conversion des grandeurs de départ généralisées en valeurs absolues est effectuée sur la base d'un mécanisme d'apprentissage adaptif.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce qu'une mise à jour permanente des valeurs de consigne est effectuée par le traitement des données de tous les postes de travail (x) sous forme de valeurs moyennes des résultats individuels et des ensembles.
  5. Procédé selon la revendication 4, caractérisé en ce que plusieurs, de préférence trois seuils d'alarme sont fixés pour chaque genre de surveillance désigné dans la suite comme canal (k) d'une grandeur, en fonction d'un autre.
  6. Procédé selon la revendication 5, caractérisé en ce qu'une base de référence séparée est prévue pour l'établissement des valeurs de consigne pour les différents postes de travail (x) pour chaque canal dépendant de la machine, par machine, et pour chaque canal dépendant des fils, par partie de fils.
  7. Procédé selon la revendication 6, caractérisé en ce qu'à chaque poste de travail (x) est associé respectivement un tableau (AktTab) avec les valeurs de mesure actuelles pour chaque canal et respectivement un tableau (GarnRefTab ou MaschRefTab) avec les valeurs de la base de référence pour les canaux correspondants.
  8. Procédé selon la revendication 7, caractérisé en ce que, pour l'établissement des valeurs de consigne, un facteur du passé est fixé à l'aide duquel est effectuée l'appréciation du poids des valeurs de mesure passées.
  9. Procédé selon l'une des revendications 5 à 8, caractérisé en ce qu'aux trois seuils d'alarme sont associés les significations :
    - fort écart soudain ; écart net pour une durée de temps plus longue ; dépassement d'un seuil par le gradient -.
  10. Procédé selon la revendication 7 et 9, caractérisé en ce qu'à chaque canal (k) est associé une variable observable et une variable indépendante, qu'à chaque variable indépendante est associée une marque lors du dépassement de laquelle est déclenchée une action par la variable, et qu'après chaque mise à jour de tous les canaux à tous les postes de travail (x) est effectuée une analyse si une variable indépendante d'un canal d'une base de référence a dépassé sa marque.
  11. Procédé selon la revendication 10, caractérisé en ce que chaque dépassement de la marque susmentionnée par une variable indépendante déclenche la formation d'une nouvelle valeur de consigne, qui se compose de l'appréciation du poids de la nouvelle valeur de mesure et de la valeur de mesure ancienne.
EP89118688A 1988-10-25 1989-10-07 Système de contrÔle d'une pluralité de postes de travail des machines textiles Expired - Lifetime EP0365901B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3969/88A CH681077A5 (fr) 1988-10-25 1988-10-25
CH3969/88 1988-10-25

Publications (3)

Publication Number Publication Date
EP0365901A2 EP0365901A2 (fr) 1990-05-02
EP0365901A3 EP0365901A3 (en) 1990-06-13
EP0365901B1 true EP0365901B1 (fr) 1995-12-13

Family

ID=4267345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118688A Expired - Lifetime EP0365901B1 (fr) 1988-10-25 1989-10-07 Système de contrÔle d'une pluralité de postes de travail des machines textiles

Country Status (7)

Country Link
US (1) US5124928A (fr)
EP (1) EP0365901B1 (fr)
JP (1) JPH02163266A (fr)
AT (1) ATE131447T1 (fr)
CH (1) CH681077A5 (fr)
DE (1) DE58909536D1 (fr)
ES (1) ES2080059T3 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH681462A5 (fr) * 1989-08-31 1993-03-31 Zellweger Uster Ag
CH684952A5 (de) * 1991-04-05 1995-02-15 Rieter Ag Maschf Längsteilmaschine zur Verwendung in einer Maschinengruppe mit einem Prozessleitrechner.
JPH047269A (ja) * 1990-04-24 1992-01-10 Murata Mach Ltd 紡績工場における品質管理システム
US5509179A (en) * 1990-06-25 1996-04-23 Mondini; Giancarlo Autoleveller draw frame having process feed back control system
WO1992013121A1 (fr) * 1991-01-23 1992-08-06 Maschinenfabrik Rieter Ag Conduite de processus pour l'industrie textile
CH685125A5 (de) * 1991-11-08 1995-03-31 Rieter Ag Maschf Spinnereianlage mit einem Prozessleitrechner.
CH686378A5 (de) * 1992-10-12 1996-03-15 Rieter Ag Maschf Maschinenverwaltungssystem.
EP0568082A1 (fr) * 1992-04-30 1993-11-03 Olympus Optical Co., Ltd. Système de traitement et de gestion de couture utilisant un dispositif électronique de traitement de données
JP2611611B2 (ja) * 1992-10-16 1997-05-21 村田機械株式会社 糸ムラ情報解析装置
EP0644282B1 (fr) * 1993-09-21 1997-07-09 B a r m a g AG Procédé de réglage de la qualité pendant la fabrication d'une pluralité de fils
DE4335459C2 (de) * 1993-10-18 1999-12-02 Rieter Ingolstadt Spinnerei Spinnstellenstörmelder und -qualifizierer
JPH0881841A (ja) 1994-06-02 1996-03-26 Zellweger Luwa Ag 糸、ロービング、スライバ中の糸欠陥の原因を求めるための方法と装置
CH691687A5 (de) * 1995-12-20 2001-09-14 Schlafhorst & Co W Verfahren zum Ueberprüfen des Fadenprofils beim Anspinnen in einer Offenend-Spinnmaschine.
JP4756411B2 (ja) 1998-03-25 2011-08-24 ウステル・テヒノロジーズ・アクチエンゲゼルシヤフト 長手方向に運動するテスト品の特性を測定する装置
DE19907684B4 (de) * 1999-02-23 2007-04-12 Saurer Gmbh & Co. Kg Textilmaschine mit Prozessoren an den Arbeitsstellen
JP4049107B2 (ja) * 2004-03-01 2008-02-20 株式会社豊田自動織機 紡績機における繊維束の品質管理方法
JP4058038B2 (ja) * 2004-12-22 2008-03-05 株式会社日立製作所 負荷監視装置および負荷監視方法
CH699599A1 (de) 2008-09-29 2010-03-31 Uster Technologies Ag Verfahren und vorrichtung zur überwachung von spleissen in einem länglichen textilen prüfgut.
WO2010054497A1 (fr) * 2008-11-14 2010-05-20 Uster Technologies Ag Procédé de surveillance d’un procédé de fabrication dans une usine textile
US20140277663A1 (en) 2013-03-15 2014-09-18 Neil Rohin Gupta System and Method for Creating Custom-Fit Apparel Designs
WO2016016739A1 (fr) 2014-07-31 2016-02-04 MARZOLI MACHINES TEXTILE S.r.l. Système pour surveiller des paramètres physiques d'une machinerie textile et procédé d'entretien prédictif
US20200027339A1 (en) 2016-09-26 2020-01-23 Maschinenfabrik Rieter Ag Method and System of Predictive Maintenance of a Textile Machine
US11478033B2 (en) 2016-11-06 2022-10-25 Global Apparel Partners Inc. Knitted textile methods
DE102019116627A1 (de) 2019-06-19 2020-12-24 Saurer Spinning Solutions Gmbh & Co. Kg Textilmaschine mit mehreren Arbeitsstellen sowie Verfahren zur Überwachung einer Textilmaschine mit mehreren Arbeitsstellen
JP2021017337A (ja) * 2019-07-19 2021-02-15 村田機械株式会社 糸巻取設備、強力推定方法、及び強力推定プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758981A (fr) * 1969-11-14 1971-05-17 Westinghouse Electric Corp Systeme de controle des erreurs de fonctionnement d'un processus industriel
US3809870A (en) * 1972-06-08 1974-05-07 Gleason Works Method and apparatus for monitoring condition of cutting blades
US4298955A (en) * 1976-04-01 1981-11-03 The Insurance Technical Bureau Method of and apparatus for the detection and analysis of hazards
CH641422A5 (de) * 1979-03-16 1984-02-29 Zellweger Uster Ag Verfahren zur bewertung von garnfehlern.
WO1984002592A1 (fr) * 1982-12-23 1984-07-05 Digitale Steuerungssyst Dst Procede et installation pour la surveillance de processus
CH661913A5 (de) * 1983-08-19 1987-08-31 Zellweger Uster Ag Verfahren und vorrichtung zur gleichzeitigen ueberwachung der garnqualitaet an einer vielzahl gleichartiger ueberwachungsstellen einer textilmaschine.
GB8407466D0 (en) * 1984-03-22 1984-05-02 Rieter Ag Maschf Yarn quality monitoring system
US4736324A (en) * 1984-11-20 1988-04-05 Tsudakoma Corp. Centralized control method for loom and device thereof
US4835699A (en) * 1987-03-23 1989-05-30 Burlington Industries, Inc. Automated distributed control system for a weaving mill
US4916625A (en) * 1988-09-08 1990-04-10 E. I. Du Pont De Nemours And Company Inferential time-optimized operation of a fiber producing spinning machine by computerized knowledge based system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ellis, R., K. "PC Diagnostics Adapt to Limited Process Changes", Control Engeneering, Sept. 1982, Seiten 210 - 220 *

Also Published As

Publication number Publication date
DE58909536D1 (de) 1996-01-25
US5124928A (en) 1992-06-23
JPH02163266A (ja) 1990-06-22
EP0365901A2 (fr) 1990-05-02
CH681077A5 (fr) 1993-01-15
ES2080059T3 (es) 1996-02-01
EP0365901A3 (en) 1990-06-13
ATE131447T1 (de) 1995-12-15

Similar Documents

Publication Publication Date Title
EP0365901B1 (fr) Système de contrÔle d'une pluralité de postes de travail des machines textiles
EP0531894B1 (fr) Méthode et appareil pour la classification et le nettoyage des fils
DE69210399T2 (de) Rechnerueberwachungsverfahren und system
EP2483190B3 (fr) Procédé d'établissement d'une limite de nettoyage sur une installation de nettoyage de fil
EP0685580B1 (fr) Procédé et dispositif pour déterminer les causes de défauts des fils, mèches et rubans de fibres
EP3802927A1 (fr) Installation à filer à anneaux et procédé pour son fonctionnement
CH687110A5 (de) Verfahren zur Erstellung einer Stoerungsdiagnose an Produktionsmaschinen und Anwendung des Verfahrens an Textilmaschinen.
EP0025035B1 (fr) Procede pour la determination et l'evaluation de defauts dans les fils
DE3201768A1 (de) Job-verarbeitungsverfahren
EP1145088A1 (fr) Controle de la qualite dans une fabrication
DE69205691T2 (de) Verfahren und Vorrichtung zum Überwachen der Qualität eines falschdralltexturierten Garns.
CH681462A5 (fr)
CH635300A5 (de) Verfahren und vorrichtung zur erzielung vorbestimmbarer und genauer garnlaengen auf kreuzspulen.
DE4334472A1 (de) Maschinenüberwachungssystem
DE19649314B4 (de) Verfahren zum Überprüfen des Fadenprofils
CH691687A5 (de) Verfahren zum Ueberprüfen des Fadenprofils beim Anspinnen in einer Offenend-Spinnmaschine.
EP1685054A1 (fr) Nettoyeur de file
EP0105229A2 (fr) Procédé de contrôle de l'étanchéité d'un réseau de conduites
EP0770946B1 (fr) Procédé pour concevoir automatiquement la redondance optimale pour des mesures dans le système de controle des centrales électriques
CH692388A5 (de) Verfahren zur Beurteilung der Qualität eines Faserbandes in einer Textilmaschine.
DE2820097B2 (de) Verfahren zur Bestimmung der Häufigkeit von Garnfehlern
WO1998028599A1 (fr) Systeme de surveillance pour appareils a excitation par oscillations
DE19832002A1 (de) Verfahren zum Überwachen des Garnes auf einer Arbeitsstelle einer Spinnmaschine und Vorrichtung zur Durchführung des Verfahrens
WO2023011679A1 (fr) Installation industrielle et procédé de fonctionnement et de surveillance d'installation
DE1710127B2 (de) Vorrichtung zum ueberwachen der spulstellen einer automatischen spulmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB IT NL

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19901109

17Q First examination report despatched

Effective date: 19920804

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZELLWEGER LUWA AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 131447

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58909536

Country of ref document: DE

Date of ref document: 19960125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2080059

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960117

ITF It: translation for a ep patent filed
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961007

Ref country code: AT

Effective date: 19961007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19961008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961031

26N No opposition filed
BERE Be: lapsed

Owner name: ZELLWEGER LUWA A.G.

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001002

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051007