EP0363861A2 - Verfahren zur Gewinnung von Rohargon - Google Patents

Verfahren zur Gewinnung von Rohargon Download PDF

Info

Publication number
EP0363861A2
EP0363861A2 EP89118671A EP89118671A EP0363861A2 EP 0363861 A2 EP0363861 A2 EP 0363861A2 EP 89118671 A EP89118671 A EP 89118671A EP 89118671 A EP89118671 A EP 89118671A EP 0363861 A2 EP0363861 A2 EP 0363861A2
Authority
EP
European Patent Office
Prior art keywords
post
crude argon
air
argon
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89118671A
Other languages
English (en)
French (fr)
Other versions
EP0363861A3 (en
EP0363861B1 (de
Inventor
Wilhelm Rohde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0363861A2 publication Critical patent/EP0363861A2/de
Publication of EP0363861A3 publication Critical patent/EP0363861A3/de
Application granted granted Critical
Publication of EP0363861B1 publication Critical patent/EP0363861B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the invention relates to a process for obtaining gaseous crude argon by low-temperature rectification of air, in which air is compressed, pre-cleaned, cooled and fed to the pressure stage of a two-stage rectification and in which crude argon is obtained in the liquid state after the two-stage rectification.
  • Such a method is known from DE-OS 34 28 968, in which crude argon is taken from the top of a crude argon column in liquid form or liquefied after being removed from a crude argon column.
  • the liquid raw argon experiences an increase in pressure using its hydrostatic potential in order to bring the raw argon, which is generally obtained approximately under atmospheric pressure, to the pressure of approximately 3.5 to 5 bar required for further processing.
  • This procedure offers the advantage that a machine for compressing the raw argon, which is required, for example, in the case of gaseous extraction of the raw argon, can be saved.
  • the raw argon which is under increased pressure, must be evaporated to obtain pure argon.
  • the evaporation cold is removed in the process of DE-OS 34 28 968 by heat exchange with nitrogen.
  • such a process stream is not available at such a high pressure in a low-pressure system in which the air is compressed to about 6 bar that it could be liquefied against the crude argon to be evaporated at elevated pressure, so that only the heat capacity of the gaseous one Nitrogen and not its latent heat is available to dissipate the evaporative cold of the raw argon.
  • the heat exchanger for crude argon evaporation must be made relatively large.
  • the rectification is supplied with an amount of liquid which is equivalent to the amount of crude argon removed, for which additional cold has to be generated elsewhere.
  • the object of the invention is to provide an improved process of the type mentioned at the outset for obtaining gaseous crude argons under increased pressure, in which in particular a high product yield is achieved with little expenditure on energy and apparatus.
  • This object is achieved in that a partial flow of the air is branched off before cooling, post-compressed, cooled and then partially relaxed to perform work and fed to the low-pressure stage of the rectification, and that part of the post-compressed air is branched off before the expansion and brought into heat exchange with crude argon obtained in liquid form becomes.
  • the post-compression of a partial flow of air is known per se from DE-PS 28 54 508.
  • the entire post-compressed air is relaxed while working.
  • the air under increased pressure is also used to give off heat to liquid raw argon and to evaporate it in the process. Since the post-compressed air is under increased pressure, it is liquefied during the heat exchange with the evaporating raw argon.
  • the latent heat of the air is thus also available for absorbing the evaporative cold of the crude argon, whereby on the one hand a relatively small process stream is sufficient for the evaporation and on the other hand liquid is generated which is required for the cold balance of the rectification.
  • the non-relaxed part of the post-compressed air is fed to the rectification after the heat exchange with the liquid crude argon.
  • the air largely liquefied during the evaporation of the raw argons can thus be used in the rectification as a return, preferably in the pressure stage.
  • the non-relaxed part of the post-compressed air can also be brought into heat exchange with gas in the head of a crude argon column, from which the crude argon is taken in order to use the top cold in a favorable way for the generation of liquid during rectification.
  • the air evaporated during the heat exchange can be introduced into the low pressure column.
  • the invention is explained in more detail below with reference to an exemplary embodiment schematically illustrated in the drawing.
  • the figure shows a form of the method according to the invention from sucking in the air to be broken down to evaporating and heating the crude argon, the less essential and known method steps being shown in a highly simplified manner.
  • the work steps following the crude argon evaporation for the fine cleaning of the crude argon are not shown.
  • Air is drawn in via line 1, compressed in an air compressor 2, pre-cleaned in a cleaning stage 3 - for example a molecular sieve system - and introduced through line 4 into a main heat exchanger 5, in which it is cooled in countercurrent to product flows.
  • the cold air becomes the Pressure stage 7 is fed to a two-stage rectification column 6, which is operated at a pressure of 5.0 to 7.0 bar and is in heat-exchanging connection with the low-pressure stage 8 via a condenser-evaporator 9.
  • liquid enriched with oxygen is removed via line 10 and throttled at a suitable point in the low pressure stage 8, which is under a pressure of 1.0 to 2.0 bar.
  • nitrogen (line 11) and oxygen (line 12) are led out as product streams and then warmed to almost ambient temperature in the main heat exchanger 5.
  • a further oxygen stream which has a relatively high argon concentration, is led out via line 13 and introduced into a crude argon column 14. Liquid also flows back from the crude argon column 14 into the low-pressure stage 8 via the same line 13.
  • the crude argon column 14 is taken as liquid crude argon product (line 15).
  • the crude argon could also be taken off in whole or in part in gaseous form and then liquefied, as is proposed in DE-OS 34 28 968.
  • the hydrostatic potential of approx. 30 to 40 m along the line 15 the liquid raw argon experiences a pressure increase to 3.0 to 5.0 bar, preferably approx. 4.0 bar, is evaporated in a raw argon evaporator 16, in the main heat exchanger 5 warmed to about ambient temperature and fed via line 17 to a further cleaning stage.
  • a portion of the air is branched off via line 18 after the preliminary cleaning (3), further compressed in a post-compressor 19 to a pressure of 7.0 to 11.0 bar, preferably 9.0 bar, in the main heat exchanger 5 to a medium one Cooled temperature and largely relaxed in a turbine 20 work and introduced into the low pressure stage 8 (line 21).
  • the turbine 20 is mechanically coupled to the post-compressor 19.
  • part of the post-compressed air is branched off via line 22 before decompression (20), passed in countercurrent to the evaporating crude argon through the crude argon evaporator 16 and thereby at least partially liquefied and then via line 23 and throttle valve 24 as a return to the pressure stage 7 initiated.

Abstract

Es wird ein Verfahren zur Gewinnung von gasförmigem Rohargon durch Tieftemperaturrektifikation von Luft beschrieben, bei dem ein Teil (18) der verdichteten Luft nachverdichtet wird (in 19). Die nachverdichtete Luft wird teilweise (Leitung 22) im Gegenstrom zu verdampfendem, flüssig gewonnenen Rohargon, das unter erhöhtem Druck steht, verflüssigt (in 16).

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung von gasförmigem Rohargon durch Tieftemperaturrektifikation von Luft, bei dem Luft verdichtet, vorgereinigt, abgekühlt und der Druckstufe einer zweistufigen Rektifikation zugeführt wird und bei dem im Anschluß an die zweistufige Rektifikation Rohargon in flüssigem Zustand gewonnen wird.
  • Ein derartiges Verfahren ist aus der DE-OS 34 28 968 bekannt, bei dem Rohargon flüssig aus dem Kopf einer Rohargonsäule entnommen oder nach der Entnahme aus einer Rohargonsäule verflüssigt wird. Das flüssige Rohargon erfährt eine Druckerhöhung unter Ausnützung seines hydrostatischen Potentials, um das im allgemeinen ungefähr unter Atmosphärendruck gewonnene Rohargon auf den zur Weiterverarbeitung notwendigen Druck von ungefähr 3,5 bis 5 bar zu bringen. Diese Verfahrensweise bietet den Vorteil, daß eine - beispielsweise bei gasförmiger Entnahme des Rohargons benötigte - eigene Maschine zur Verdichtung des Rohargons eingespart werden kann.
  • Das unter erhöhtem Druck stehende Rohargon muß für die Reinargongewinnung verdampft werden. Die Verdampfungskälte wird beim Verfahren der DE-OS 34 28 968 durch Wärmetausch mit Stickstoff abgeführt. Ein solcher Prozeßstrom steht jedoch bei einer Niederdruckanlage, bei der die Luft auf etwa 6 bar verdichtet wird, nicht unter einem solch hohen Druck zur Verfügung, daß er gegen das bei erhöhtem Druck zu verdampfende Rohargon verflüssigt werden könnte, so daß lediglich die Wärmekapazität des gasförmigen Stickstoffs und nicht seine latente Wärme zum Abführen der Verdampfungskälte des Rohargons zur Verfügung steht. Dadurch muß der Wärmetauscher zur Rohargonverdampfung relativ groß ausgeführt werden. Außerdem der Rektifikation eine zur flüssig entnommenen Rohargonmenge äquivalente Menge an Flüssigkeit zugeführt werden, für die an anderer Stelle zusätzlich Kälte erzeugt werden muß.
  • Aufgabe der Erfindung ist es, ein verbessertes Verfahren der eingangs genannten Art zur Gewinnung gasförmigen Rohargons unter erhöhtem Druck zur Verfügung zu stellen, bei dem insbesondere eine hohe Produktausbeute mit geringem Aufwand an Energie und Apparatur erreicht wird.
  • Diese Aufgabe wird dadurch gelöst, daß ein Teilstrom der Luft vor dem Abkühlen abgezweigt, nachverdichtet, abgekühlt und anschließend teilweise arbeitsleistend entspannt und der Niederdruckstufe der Rektifikation zugeführt wird und daß ein Teil der nachverdichteten Luft vor dem Entspannen abgezweigt und in Wärmetausch mit flüssig gewonnenem Rohargon gebracht wird.
  • Die Nachverdichtung eines Teilstromes der Luft ist an sich aus der DE-PS 28 54 508 bekannt. In dem dort beschriebenen Verfahren, bei dem keine Rohargongewinnung angeschlossen ist, wird die gesamte nachverdichtete Luft arbeitsleistend entspannt. Bei dem Verfahren gemäß der Erfindung wird die unter erhöhtem Druck stehende Luft auch dazu ausgenutzt, Wärme an flüssiges Rohargon abzugeben und dieses dabei zu verdampfen. Da die nachverdichtete Luft unter erhöhtem Druck steht, wird sie beim Wärmetausch mit dem verdampfenden Rohargon verflüssigt. Damit steht auch die latente Wärme der Luft für die Aufnahme der Verdampfungskälte des Rohargons zur Verfügung, wodurch einerseits ein relativ kleiner Prozeßstrom für die Verdampfung ausreicht und andererseits Flüssigkeit erzeugt wird, die für den Kältehaushalt der Rektifikation benötigt wird.
  • Dabei ist es vorteilhaft, wenn die beim Entspannen der nachverdichteten Luft gewonnene Arbeit zur Nachverdichtung eingesetzt wird. Somit kann die Druckerhöhung ohne Energiezufuhr von außen durchgeführt werden. Die Übertragung der Energie geschieht am effektivsten durch eine mechanische Kopplung von Nachverdichter und Entspannungsmaschine.
  • In günstiger Weiterbildung der Erfindung wird der nicht entspannte Teil der nachverdichteten Luft nach dem Wärmetausch mit dem flüssig gewonnenen Rohargon der Rektifikation zugeführt. Die bei der Verdampfung der Rohargons zum großen Teil verflüssigte Luft kann somit in der Rektifikation als Rücklauf, vorzugsweise in der Druckstufe, eingesetzt werden.
  • Der nicht entspannte Teil der nachverdichteten Luft kann nach dem Wärmetausch mit dem flüssig gewonnenen Rohargon auch in Wärmetausch mit Gas im Kopf einer Rohargonsäule gebracht wird, aus der das Rohargon entnommen wird, um die Spitzenkälte auf günstige Art zur Flüssigkeitserzeugung bei der Rektifikation auszunützen. Die bei dem Wärmetausch verdampfte Luft kann in die Niederdrucksäule eingeleitet werden.
  • Im folgenden wird die Erfindung anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. Die Figur zeigt eine Form des erfindungsgemäßen Verfahrens vom Ansaugen der zu zerlegenden Luft bis zum Verdampfen und Anwärmen des Rohargons, wobei die weniger wesentlichen und bekannten Verfahrensschritte stark vereinfacht dargestellt sind. Die nach der Rohargonverddampfung folgenden Arbeitsschritte zur Feinreinigung des Rohargons sind nicht gezeigt.
  • Luft wird über Leitung 1 angesaugt, in einem Luftverdichter 2 komprimiert, in einer Reinigungsstufe 3 - beispielsweise einer Molsiebanlage - vorgereinigt und durch Leitung 4 in einen Hauptwärmetauscher 5 eingeführt, in dem sie im Gegenstrom zu Produktströmen abgekühlt wird. Die kalte Luft wird der Druckstufe 7 einer zweistufigen Rektifiziersäule 6 zugeführt, die bei einem Druck von 5,0 bis 7,0 bar betrieben wird und über einen Kondensator-Verdampfer 9 mit der Niederdruckstufe 8 in wärmetauschender Verbindung steht.
  • Aus dem Sumpf der Druckstufe 7 wird mit Sauerstoff angereicherte Flüssigkeit über Leitung 10 entnommmen und an geeigneter Stelle in die Niederdruckstufe 8, die unter einem Druck von 1,0 bis 2,0 bar steht, eingedrosselt. Aus der Niederdruckstufe werden als Produktströme Stickstoff (Leitung 11) und Sauerstoff (Leitung 12) herausgeführt und anschließend im Hauptwärmetauscher 5 auf nahezu Umgebungstemperatur angewärmt. Außerdem wird ein weiterer Sauerstoffstrom, der eine relativ hohe Argonkonzentration aufweist, über Leitung 13 heraus- und in eine Rohargonsäule 14 eingeführt. Über dieselbe Leitung 13 fließt auch Flüssigkeit von der Rohargonsäule 14 in die Niederdruckstufe 8 zurück.
  • Der Rohargonsäule 14 wird als Produkt flüssiges Rohargon (Leitung 15) entnommen. Das Rohargon könnte auch ganz oder teilweise gasförmig entnommen und anschließend verflüssigt werden, wie es in der DE-OS 34 28 968 vorgeschlagen wird. Das flüssige Rohargon erfährt durch Ausnützung des hydrostatischen Potentials von ca. 30 bis 40 m entlang der Leitung 15 eine Druckerhöhung auf 3,0 bis 5,0 bar, vorzugsweise ca. 4,0 bar, wird in einem Rohargonverdampfer 16 verdampft, im Hauptwärmetauscher 5 auf etwa Umgebungstemperatur angewärmt und über Leitung 17 einer weiteren Reinigungsstufe zugeführt.
  • Erfindungsgemäß wird ein Teil der Luft nach der Vorreinigung (3) über Leitung 18 abgezweigt, in einem Nachverdichter 19 auf einen Druck von 7,0 bis 11,0 bar, vorzugsweise 9,0 bar weiter verdichtet, im Hauptwärmetauscher 5 auf eine mittlere Temperatur abgekühlt und zum größten Teil in einer Turbine 20 arbeitsleistend entspannt und in die Niederdruckstufe 8 eingeführt (Leitung 21). Die Turbine 20 ist mechanisch an den Nachverdichter 19 gekoppelt. Gemäß dem Hauptgedanken der Erfindung wird ein Teil der nachverdichteten Luft über Leitung 22 vor dem Entspannen (20) abgezweigt, im Gegenstrom zum verdampfenden Rohargon durch den Rohargonverdampfer 16 geführt und dabei mindestens teilweise verflüssigt und anschließend über Leitung 23 und Drosselventil 24 als Rücklauf in die Druckstufe 7 eingeleitet.

Claims (4)

1. Verfahren zur Gewinnung von gasförmigem Rohargon durch Tieftemperaturrektifikation von Luft, bei dem Luft (1) verdichtet (2), vorgereinigt (3), abgekühlt (5) und der Druckstufe (7) einer zweistufigen Rektifikation (6) zugeführt wird und bei dem im Anschluß an die zweistufige Rektifikation (6) Rohargon (15) in flüssigem Zustand gewonnen wird, dadurch gekennzeichnet, daß ein Teilstrom (18) der Luft vor dem Abkühlen abgezweigt, nachverdichtet (19), abgekühlt und anschließend teilweise arbeitsleistend entspannt (20) und der Niederdruckstufe (7) der Rektifikation zugeführt wird und daß ein Teil (22) der nachverdichteten Luft vor dem Entspannen (20) abgezweigt und in Wärmetausch (16) mit flüssig gewonnenem Rohargon (15) gebracht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die beim Entspannen (20) der nachverdichteten Luft gewonnene Arbeit zur Nachverdichtung (19) eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der nicht entspannte Teil (22) der nachverdichteten Luft nach dem Wärmetausch (16) mit dem flüssig gewonnenen Rohargon der Rektifikation zugeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der nicht entspannte Teil (22) der nachverdichteten Luft nach dem Wärmetausch (16) mit dem flüssig gewonnenen Rohargon in Wärmetausch mit Gas im Kopf einer Rohargonsäule (14) gebracht wird, aus der das Rohargon (15) entnommen wird.
EP89118671A 1988-10-12 1989-10-07 Verfahren zur Gewinnung von Rohargon Expired - Lifetime EP0363861B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3834793A DE3834793A1 (de) 1988-10-12 1988-10-12 Verfahren zur gewinnung von rohargon
DE3834793 1988-10-12

Publications (3)

Publication Number Publication Date
EP0363861A2 true EP0363861A2 (de) 1990-04-18
EP0363861A3 EP0363861A3 (en) 1990-06-20
EP0363861B1 EP0363861B1 (de) 1992-06-03

Family

ID=6364973

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118671A Expired - Lifetime EP0363861B1 (de) 1988-10-12 1989-10-07 Verfahren zur Gewinnung von Rohargon

Country Status (5)

Country Link
US (1) US4932212A (de)
EP (1) EP0363861B1 (de)
CN (1) CN1052940A (de)
CA (1) CA2000595A1 (de)
DE (2) DE3834793A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540900A1 (de) * 1991-10-10 1993-05-12 Praxair Technology, Inc. Kryogenisches Rektifikationssystem zur Herstellung von ultrahochreinem Sauerstoff
EP0628778B2 (de) 1993-06-07 2001-03-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Hochdruckgasversorgungseinheit für eine ein Luftbestandteil verbrauchende Anlage

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126945A1 (de) * 1991-08-14 1993-02-18 Linde Ag Verfahren zur luftzerlegung durch rektifikation
US5245831A (en) * 1992-02-13 1993-09-21 Air Products And Chemicals, Inc. Single heat pump cycle for increased argon recovery
US5255524A (en) * 1992-02-13 1993-10-26 Air Products & Chemicals, Inc. Dual heat pump cycles for increased argon recovery
US5255522A (en) * 1992-02-13 1993-10-26 Air Products And Chemicals, Inc. Vaporization of liquid oxygen for increased argon recovery
US5365741A (en) * 1993-05-13 1994-11-22 Praxair Technology, Inc. Cryogenic rectification system with liquid oxygen boiler
US5366239A (en) * 1993-09-27 1994-11-22 Trw Inc. Air bag inflator assembly
FR2787562B1 (fr) * 1998-12-22 2001-02-09 Air Liquide Procede et installation de distillation d'air avec production d'argon
EP0952415A1 (de) * 1998-04-21 1999-10-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Rektifikationsverfahren und -vorrichtung zur variablen Argon Herstellung
FR2777641B1 (fr) * 1998-04-21 2000-05-19 Air Liquide Procede et installation de distillation d'air avec production d'argon
US6397632B1 (en) 2001-07-11 2002-06-04 Praxair Technology, Inc. Gryogenic rectification method for increased argon production
DE102007051183A1 (de) * 2007-10-25 2009-04-30 Linde Aktiengesellschaft Verfahren zur Tieftemperatur-Luftzerlegung
FR2943773B1 (fr) * 2009-03-27 2012-07-20 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
CN113959179B (zh) * 2021-12-22 2022-05-03 杭州制氧机集团股份有限公司 一种用于液氩提纯的装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001037A1 (en) * 1986-08-01 1988-02-11 Erickson Donald C Air distillation improvements for high purity oxygen
DE3643359A1 (de) * 1986-12-18 1988-06-23 Linde Ag Verfahren und vorrichtung zur luftzerlegung durch zweistufige rektifikation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982107A (en) * 1957-12-16 1961-05-02 Air Reduction Separation of the elements of air
US3181306A (en) * 1961-01-11 1965-05-04 Air Prod & Chem Argon separation
DE1229561B (de) * 1962-12-21 1966-12-01 Linde Ag Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
DE1667639A1 (de) * 1968-03-15 1971-07-08 Messer Griesheim Gmbh Verfahren zum Gewinnen eines Krypton-Xenon-Gemisches aus Luft
DE1922956B1 (de) * 1969-05-06 1970-11-26 Hoechst Ag Verfahren zur Erzeugung von argonfreiem Sauerstoff durch Rektifikation von Luft
US4615716A (en) * 1985-08-27 1986-10-07 Air Products And Chemicals, Inc. Process for producing ultra high purity oxygen
US4705548A (en) * 1986-04-25 1987-11-10 Air Products And Chemicals, Inc. Liquid products using an air and a nitrogen recycle liquefier
DE3770772D1 (de) * 1986-11-24 1991-07-18 Boc Group Plc Luftverfluessigung.
US4817394A (en) * 1988-02-02 1989-04-04 Erickson Donald C Optimized intermediate height reflux for multipressure air distillation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001037A1 (en) * 1986-08-01 1988-02-11 Erickson Donald C Air distillation improvements for high purity oxygen
DE3643359A1 (de) * 1986-12-18 1988-06-23 Linde Ag Verfahren und vorrichtung zur luftzerlegung durch zweistufige rektifikation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540900A1 (de) * 1991-10-10 1993-05-12 Praxair Technology, Inc. Kryogenisches Rektifikationssystem zur Herstellung von ultrahochreinem Sauerstoff
EP0628778B2 (de) 1993-06-07 2001-03-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Hochdruckgasversorgungseinheit für eine ein Luftbestandteil verbrauchende Anlage

Also Published As

Publication number Publication date
DE3834793A1 (de) 1990-04-19
US4932212A (en) 1990-06-12
EP0363861A3 (en) 1990-06-20
CN1052940A (zh) 1991-07-10
CA2000595A1 (en) 1990-04-12
DE58901598D1 (de) 1992-07-09
EP0363861B1 (de) 1992-06-03

Similar Documents

Publication Publication Date Title
EP0093448B1 (de) Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
EP0505812B1 (de) Verfahren zur Tieftemperaturzerlegung von Luft
EP0316768B1 (de) Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE3146335C2 (de) Verfahren zum Erzeugen von Sauerstoff-Produktgas
EP0363861A2 (de) Verfahren zur Gewinnung von Rohargon
DE3840506A1 (de) Verfahren und vorrichtung zur luftzerlegung
DE1229561B (de) Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
EP0955509A1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
DE2646690A1 (de) Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
DE1263037B (de) Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
DE3817244A1 (de) Verfahren zur tieftemperaturzerlegung von luft
EP0948730A1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
DE3528374A1 (de) Verfahren und vorrichtung zur erzeugung von stickstoff mit ueberatmosphaerischem druck
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0241817A2 (de) Verfahren und Vorrichtung zur Erzeugung von Stickstoff
DE3216510A1 (de) Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
DE1159971B (de) Verfahren zur Gewinnung von gasfoermigem und unter Druck stehendem Sauerstoff durch Zerlegung von Luft
EP0795727A1 (de) Verfahren und Vorrichtung zur Verflüssigung eines tiefsiedenden Gases
EP0878677A1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung von Luft
DE3814187C2 (de) Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
DE4441920C1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung
DE19543953C1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff und Stickstoff unter überatmosphärischem Druck
DE4030750A1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19900824

17Q First examination report despatched

Effective date: 19910314

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19920603

Ref country code: BE

Effective date: 19920603

Ref country code: GB

Effective date: 19920603

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920603

Ref country code: SE

Effective date: 19920603

Ref country code: FR

Effective date: 19920603

Ref country code: NL

Effective date: 19920603

REF Corresponds to:

Ref document number: 58901598

Country of ref document: DE

Date of ref document: 19920709

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921205

Year of fee payment: 4

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701