EP0361224B1 - Infraroteindringdetektor - Google Patents

Infraroteindringdetektor Download PDF

Info

Publication number
EP0361224B1
EP0361224B1 EP89117077A EP89117077A EP0361224B1 EP 0361224 B1 EP0361224 B1 EP 0361224B1 EP 89117077 A EP89117077 A EP 89117077A EP 89117077 A EP89117077 A EP 89117077A EP 0361224 B1 EP0361224 B1 EP 0361224B1
Authority
EP
European Patent Office
Prior art keywords
radiation
focusing means
radiation receiving
infrared
receiving areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89117077A
Other languages
English (en)
French (fr)
Other versions
EP0361224A1 (de
Inventor
Kurt Albert Müller
Hansjürg Mahler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT89117077T priority Critical patent/ATE96928T1/de
Publication of EP0361224A1 publication Critical patent/EP0361224A1/de
Application granted granted Critical
Publication of EP0361224B1 publication Critical patent/EP0361224B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to an infrared intrusion detector according to the preamble of claim 1.
  • Infrared intrusion detectors are generally known; they are used to detect the penetration of infrared radiation emitting objects into monitored rooms.
  • infrared intrusion detectors For the monitoring of elongated rooms and corridors, specially adapted infrared intrusion detectors are used, which in the vertical plane have a relatively large, i.e. have a far-reaching sensitivity range and a relatively narrow sensitivity range in the horizontal plane. This creates a curtain-like sensitivity area that an intruder must pass through to gain access to a protected area.
  • Such an infrared intrusion detector is described in GB-A-2'080'945, in which such a "curtain” is generated by placing a cylindrical mirror in front of the focusing mirror, which ensures the wide sensitivity range in the vertical plane.
  • a disadvantage of these infrared intrusion detectors is that they have different sensitivity to objects at different distances.
  • DE-A1-31'14'112 describes a detector system working with infrared radiation which avoids the disadvantage mentioned and approximately has a uniform behavior over all distance ranges which differ widely.
  • One tries to achieve this by arranging three vertically offset concave mirrors, which have a common focal point in which an infrared sensor is located, in such a way that a mirror is provided in each case for monitoring a working area of the infrared intrusion detector.
  • each mirror provides an image of the object emitting infrared radiation of essentially the same size within the assigned distance range. Therefore, an object of given size emitting infrared radiation is detected approximately in the same way regardless of the distance range in which it is located, and the detector sensitivity is approximately the same for all distance ranges.
  • a disadvantage of this known infrared intrusion detection arrangement is that the space to be monitored is not sufficiently covered. Because of the gaps in particular in the vicinity of the detector (cf. FIG. 2), such infrared intrusion detectors are not completely sabotage-proof.
  • the object of the present invention is to provide an infrared intrusion detector which avoids the disadvantages of the previously known infrared intrusion detectors and which is in particular able to continuously monitor an elongated space by means of a curtain-like sensitivity zone such that the penetration of an object emitting infrared radiation into the Sensitivity zone at any distance from the detector gives the same output from the infrared sensor.
  • the optical bundling means are constructed and arranged in such a way that the size of the solid angle formed by the infrared sensor as the vertex and the outer boundary line of the respective bundling means is a function of the distance of the effective area used for the radiation reception areas from the detector, the solid angle the bundling means, which belong to radiation reception areas with the most distant and closest used effective areas, are largest and the solid angles of the bundling means, which belong to radiation reception areas with used effective areas at medium distances from the detector, are smallest.
  • the reason for this different weighting of the solid angle is that a close one and a distant intruder crosses fewer individual zones than an intruder in a medium range (see FIG. 6).
  • the optical focusing means preferably consist of a large number of parabolic mirrors, in particular a number between seven and fifteen.
  • the optical focusing means consist of a large number of Fresnel lenses, preferably in a number between seven and fifteen, in particular in a number of eleven.
  • the infrared penetration detector has eleven concave mirrors as optical bundling means, wherein - if one sets the solid angle of the mirror corresponding to the radiation receiving area with the effective area most distant from the sensor used - the one belonging to the next closer radiation receiving area Mirror also has a solid angle of approx. 100% and the solid angles of the mirrors belonging to the two following closer radiation reception areas are approx. 48% and the solid angles of the mirrors which belong to the following closer radiation reception areas approx. 44% , approx. 44%, approx. 28%, approx. 30%, approx. 42% and approx. 49% and the solid angle of the mirror, which belongs to the closest radiation reception area, is approx. 143%.
  • the optical focusing means consist of a large number of concave mirrors in combination with a large number of Fresnel lenses, the Fresnel lenses preferably covering the more distant radiation reception areas and the concave mirrors covering the closer radiation reception areas.
  • FIGS. 1 and 2 The representation of the field pattern of a known infrared intrusion detector according to FIGS. 1 and 2 shows that the space to be monitored is not covered with sensitivity areas with sufficient density.
  • FIG. 3 shows a top view of the front of an embodiment of an infrared intrusion detector according to the invention
  • the optical bundling means J1 to J11 are individual concave mirrors, or concave mirror elements J1 to J11, which are arranged in a plurality of vertically offset rows and are constructed in such a way that they absorb the radiation falling on the detector from the individual radiation reception areas I1 to I11 focus the infrared sensor S (see FIG. 4).
  • its surface is preferably curved in the form of a paraboloid.
  • the outer boundary line of the surface of the mirror elements J1 to J11 which is effective for focusing the radiation is more or less regularly formed and, together with the sensor S arranged in the focal point, forms a solid angle.
  • the sensor S is located in the vicinity of the mirror elements J6, J9 and J11.
  • the most distant is the mirror element J1, which focuses on the detector the radiation reception area I1 that is most distant from the detector Radiation on the sensor (S) causes.
  • the mirror elements J8 to J11 which are responsible for the radiation reception areas I8 to I11 further away from the detector, are relatively small in area, their solid angles are very large because of the proximity of the sensor S.
  • the mirror elements J1 to J11 are dimensioned and arranged such that the radiation receiving areas I1 to I11 cover the space to be monitored in an overlapping manner in the vertical direction.
  • their size and their distance from and their angle to the sensor S are designed such that the sum of the radiation falling on the sensor S from different radiation receiving areas I1 to I11 from a moving object emitting infrared radiation in the shape of an upright person is constant.
  • the size of the mirror elements is dimensioned such that the solid angle formed by the infrared sensor S as the vertex and the outer boundary line of the respective bundling means J1 to J11 is a function of the distance of the effective area used for the radiation receiving areas I1 to I11 from The detector is the largest, and the solid angles of the bundling means J1, J2 and J11, which belong to radiation reception areas with the most distant used I1, I2 and closest I11 effective areas, and the solid angles of the bundling means J7, J8, the radiation receiving areas with used effective areas belong at medium I7, I8 distances from the detector, are smallest.
  • FIG. 4 shows a side view of the mirror arrangement J1 to J11 of an infrared intrusion detector according to the invention according to FIG. 3.
  • the mirror elements J8, J9 and J10, or J3 and J4 lie in a row one behind the other in the viewing direction and can therefore not be seen separately in FIG. It can be clearly seen that the sensor S is located in the immediate vicinity of the mirror element J11, which results in a very large solid angle despite the relative smallness of the mirror element J11.
  • the mirror element J1 has the largest effective mirror surface; Because of the large distance from the sensor S, the solid angle encompassed by this mirror element is smaller than the solid angle for the mirror element J11.
  • the focal lengths of the individual mirror elements J1 to J11 are adapted to the respective effective areas of the (corresponding) individual zones in such a way that the signal reaching sensor S in each case reaches a maximum depending on the distance within the effective area used.
  • Effective effective area used is to be understood within the radiation receiving area I1 to I11 as the area in which the infrared radiation of a person walking upright makes a geometrical contribution to the sensor signal.
  • the table below shows the effective areas used, which can also be referred to as “main active areas”, and the local focal lengths of the associated mirror elements J1 to J11 for the radiation receiving areas I1 to I11. I.
  • FIG. 5 and 6 the entirety of the radiation reception areas of an infrared penetration detector according to the invention according to FIGS. 3 and 4 is shown graphically, specifically in FIG. 5 viewed vertically from above and in FIG. 6 from the side. From the top view it can be seen that the radiation receiving areas I1 to I11 are narrow, from the side view it can be seen that the radiation receiving areas I1 and I2, however, extend extremely far.
  • FIG. 6 shows the individual radiation reception areas I1 to I11 for an infrared penetration detector mounted at a height of approximately 2.5 m. It can be seen that an object emitting infrared radiation, which has approximately the shape of an upright person, emits infrared radiation in several radiation receiving areas I2, I3, I4 in the middle distance range, while e.g. in the most distant radiation reception area I1 only emits infrared radiation in a single radiation reception area.
  • FIG. 7 shows the different sensitivity of infrared intrusion detectors to objects emitting infrared radiation as a function of the distance from the detector for two infrared intrusion detectors.
  • the sensor signal is in the ordinate axis [in relative units] and the distance of the infrared radiation is emitted on the abscissa axis Property in meters.
  • curve a) applies to an infrared penetration detector according to the present invention.
  • Curve c) indicates the detection threshold of the infrared intrusion detectors for an object emitting infrared radiation.
  • the curves apply to an object emitting infrared radiation, which has approximately the shape of an upright human being and which moves at different distances at a speed of 60 cm / sec across one or more of the radiation receiving areas I1 to I11.
  • the infrared intrusion detector according to the prior art the strong dependence of the infrared sensor signal on the distance.
  • the sensitivity of the infrared intrusion detector according to the invention is almost the same for all distances.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Burglar Alarm Systems (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

  • Die Erfindung betrifft einen Infraroteindringdetektor gemäß dem Oberbegriff des Patentanspruchs 1. Infraroteindringdetektoren sind allgemein bekannt; sie dienen dazu, das Eindringen Infrarotstrahlung aussendender Objekte in überwachte Räume zu detektieren.
  • Zur Überwachung von langgestreckten Räumen und Korridoren dienen speziell angepaßte Infraroteindringdetektoren, welche in vertikaler Ebene einen verhältnismäßig großen, d.h. weit reichenden Empfindlichkeitsbereich und in horizontaler Ebene einen verhältnismäßig schmalen Empfindlichkeitsbereich aufweisen. Dadurch entsteht ein vorhangartiger Empfindlichkeitsbereich, den ein Eindringling passieren muß, um Zugang zu einem geschützten Bereich zu erhalten. In der GB-A-2'080'945 ist ein solcher Infraroteindringdetektor beschrieben, bei welchem ein derartiger "Vorhang" dadurch erzeugt wird, daß vor dem fokussierenden Spiegel ein zylindrischer Spiegel angeordnet ist, welcher für den breiten Empfindlichkeitsbereich in vertikaler Ebene sorgt. Ein Nachteil dieser Infraroteindringdetektoren besteht darin, daß sie eine unterschiedliche Empfindlichkeit für verschieden weit entfernte Objekte aufweisen.
  • In der DE-A1-31'14'112 ist ein mit Infrarotstrahlung arbeitendes Detektorsystem beschrieben, welches den genannten Nachteil vermeidet und angenähert ein gleichförmiges Verhalten über alle Entfernungsbereiche, die weit differieren, aufweist. Dies versucht man dadurch zu erreichen, daß drei vertikal versetzte Hohlspiegel, die einen gemeinsamen Brennpunkt, in welchem sich ein Infrarotsensor befindet, aufweisen, so angeordnet sind, daß jeweils ein Spiegel zur Überwachung eines Arbeitsbereichs des Infraroteindringdetektors vorgesehen ist. Jeder Spiegel liefert bei gegebenem Ziel innerhalb des zugeordneten Entfernungsbereichs ein Bild des Infrarotstrahlung aussendenden Objekts von im wesentlichen gleicher Größe. Daher wird ein Infrarotstrahlung aussendendes Objekt gegebener Größe unabhängig von dem Entfernungsbereich, in welchem es sich befindet, ungefähr in gleicher Weise erfaßt, und die Detektorempfindlichkeit ist für alle Entfernungsbereiche etwa gleich.
  • Ein Nachteil dieser bekannten Infraroteindringdetektionsanordnung besteht darin, daß der zu überwachende Raum nicht hinreichend dicht abgedeckt ist. Wegen der insbesondere in der Nähe des Detektors vorhandenen Lücken (vgl. Figur 2) sind solche Infraroteindringdetektoren nicht völlig sabotagesicher.
  • In der EP-A1-0'262'241 (=̂US-PS-4,740,701) wurde vorgeschlagen, einen lükkenlosen streifenförmigen Strahlungsempfangsbereich dadurch zu schaffen, daß eine Fresnelzylinderlinse geringer Dicke in Längsrichtung in der Weise gebogen wird, daß der Krümmungsradius der Brennweite entspricht und daß der Infrarotsensor angenähert im Brennpunkt der Fresnelzylinderlinse angeordnet wird. Damit wird zwar ein lückenloser Vorhang erhalten, die Empfindlichkeit nimmt aber mit der Entfernung vom Detektor stark ab (Die Empfindlichkeit ist in etwa umgekehrt proportional dem Abstand vom Infrarotdetektor; vgl. Figur 7).
  • Die Aufgabe der vorliegenden Erfindung besteht darin, einen Infraroteindringdetektor zu schaffen, welcher die Nachteile der bisher bekannten Infraroteindringdetektoren vermeidet und welcher insbesondere in der Lage ist, einen langgestreckten Raum mittels einer vorhangartigen Empfindlichkeitszone lückenlos derart zu überwachen, daß das Eindringen eines Infrarotstrahlung aussendenden Objekts in die Empfindlichkeitszone in jedem Abstand von dem Detektor das gleiche Ausgangssignal des Infrarotsensors ergibt.
  • Diese Aufgabe wird bei einem Infraroteindringdetektor der eingangs genannten Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Bevorzugte Ausführungsformen der Erfindung sind in den abhängigen Patentansprüchen definiert.
  • Bei einer bevorzugten Ausgestaltung des erfindungsgemäßen Infraroteindringdetektors sind die optischen Bündelungsmittel so konstruiert und angeordnet, daß die Größe der durch den Infrarotsensor als Scheitelpunkt und die äußere Begrenzungslinie des jeweiligen Bündelungsmittels gebildeten Raumwinkel eine Funktion des Abstandes des genutzten Wirkbereichs der Strahlungsempfangsbereiche vom Detektor ist, wobei die Raumwinkel der Bündelungsmittel, welche zu Strahlungsempfangsbereichen mit am weitesten entfernten und am nächsten gelegenen genutzten Wirkbereichen gehören, am größten und die Raumwinkel der Bündelungsmittel, die zu Strahlungsempfangsbereichen mit genutzten Wirkbereichen in mittleren Abständen vom Detektor gehören, am kleinsten sind. Der Grund für diese unterschiedliche Gewichtung der Raumwinkel besteht darin, daß ein naher und ein entfernter Eindringling weniger individuelle Zonen durchschreitet, als ein Eindringling in einem mittleren Entfernungsbereich (vgl. Figur 6). Dabei bestehen die optischen Bündelungsmittel vorzugsweise aus einer Vielzahl von parabolischen Spiegeln, insbesondere in einer Anzahl zwischen sieben und fünfzehn.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Infraroteindringdetektors bestehen die optischen Bündelungsmittel aus einer Vielzahl von Fresnellinsen, vorzugsweise in einer Anzahl zwischen sieben und fünfzehn, insbesondere in einer Anzahl von elf.
  • Gemäß einer besonders bevorzugten Ausgestaltung des erfindungsgemäßen Infraroteindringdetektors weist dieser elf Hohlspiegel als optische Bündelungsmittel auf, wobei - wenn man den Raumwinkel des dem Strahlungsempfangsbereich mit dem am weitesten vom Sensor entfernten genutzten Wirkbereich entsprechenden Spiegels zu 100% festsetzt - der zu dem nächsten näher gelegenen Strahlungsempfangsbereich gehörende Spiegel einen Raumwinkel von ebenfalls ca. 100% aufweist und die Raumwinkel der Spiegel, welche zu den beiden folgenden näher gelegenen Strahlungsempfangsbereichen gehören, ca. 48% betragen und die Raumwinkel der Spiegel, welche zu den folgenden näher gelegenen Strahlungsempfangsbereichen gehören, ca. 44%, ca. 44%, ca. 28%, ca. 30%, ca. 42% und ca. 49% und der Raumwinkel des Spiegels, welcher zu dem am nächsten gelegenen Strahlungsempfangsbereich gehört, ca. 143% betragen.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Infraroteindringdetektors bestehen die optischen Bündelungsmittel aus einer Vielzahl von Hohlspiegeln in Kombination mit einer Vielzahl von Fresnellinsen, wobei vorzugsweise die Fresnellinsen die entfernteren Strahlungsempfangsbereiche und die Hohlspiegel die näher gelegenen Strahlungsempfangsbereiche abdecken.
  • Die Erfindung wird im folgenden an Hand des in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
  • Figur 1
    eine Darstellung des Feldmusters der Spiegelanordnung eines Infraroteindringdetektors des Standes der Technik in der Azimutebene,
    Figur 2
    eine Darstellung des Feldmusters der Spiegelanordnung eines Infraroteindringdetektors des Standes der Technik in der Elevationsebene,
    Figur 3
    eine Aufsicht auf die Spiegelanordnung eines erfindungsgemäßen Infraroteindringdetektors,
    Figur 4
    eine Seitenansicht der Spiegelanordnung eines erfindungsgemäßen Infraroteindringdetektors,
    Figur 5
    die Draufsicht auf die Strahlungsempfangsbereiche in Bodennähe eines in 2,5m Höhe montierten erfindungsgemäßen Infraroteindringdetektors,
    Figur 6
    die Seitenansicht der Strahlungsempfangsbereiche eines in 2,5m Höhe montierten erfindungsgemäßen Infraroteindringdetektors und
    Figur 7
    die graphische Darstellung der Empfindlichkeit eines erfindungsgemäßen Infraroteindringdetektors im Vergleich zu einem Infraroteindringdetektor des Standes der Technik.
  • Die Darstellung des Feldmusters eines bekannten Infraroteindringdetektors gemäß Figur 1 und 2 zeigt, daß der zu überwachende Raum nicht hinreichend dicht mit Empfindlichkeitsbereichen überdeckt ist.
  • In Figur 3 ist eine Aufsicht auf die Vorderseite einer Ausführungsform eines erfindungsgemäßen Infraroteindringdetektors dargestellt; die optischen Bündelungsmittel J1 bis J11 sind in diesem Spezialfall einzelne Hohlspiegel, bzw. Hohlspiegelelemente J1 bis J11, die in einer Vielzahl von vertikal versetzten Reihen angeordnet und so konstruiert sind, daß sie die aus den einzelnen Strahlungsempfangsbereichen I1 bis I11 auf den Detektor fallende Strahlung auf den Infrarotsensor S (vgl. Figur 4) fokussieren. Zu diesem Zweck ist ihre Oberfläche vorzugsweise in Form eines Paraboloids gekrümmt.
  • Die äußere Begrenzungslinie der für die Bündelung der Strahlung wirksamen Oberfläche der Spiegelelemente J1 bis J11 ist mehr oder weniger regelmäßig ausgebildet und bildet zusammen mit dem im Brennpunkt angeordneten Sensor S einen Raumwinkel. Wie aus der Figur 4 erkennbar ist, befindet sich der Sensor S in der Nähe der Spiegelelemente J6, J9 und J11. Am weitesten entfernt ist das Spiegelelement J1, das die Fokussierung der aus dem dem Detektor am entferntesten gelegenen Strahlungsempfangsbereich I1 auf den Detektor auftreffenden Strahlung auf den Sensor (S) bewirkt. Obwohl die für die vom Detektor weiter entfernt gelegenen Strahlungsempfangsbereiche I8 bis I11 zuständigen Spiegelelemente J8 bis J11 flächenmäßig verhältnismäßig klein sind, sind ihre Raumwinkel wegen der Nähe des Sensors S sehr groß.
  • Die Spiegelelemente J1 bis J11 sind so bemessen und angeordnet, daß die Strahlungsempfangsbereiche I1 bis I11 den zu überwachenden Raum in vertikaler Richtung überlappend abdecken. Außerdem ist ihre Grösse und ihr Abstand vom und ihr Winkel zum Sensor S so ausgebildet, daß die Summe der aus unterschiedlichen Strahlungsempfangsbereichen I1 bis I11 von einem sich bewegenden, Infrarotstrahlung aussendenden Objekt der Gestalt eines aufrecht gehenden Menschen auf den Sensor S fallenden Strahlung konstant ist.
  • Dies wird im angeführten Beispiel dadurch erreicht, daß die Größe der Spiegelelemente so bemessen ist, daß der durch den Infrarotsensor S als Scheitelpunkt und die äußere Begrenzungslinie des jeweiligen Bündelungsmittels J1 bis J11 gebildete Raumwinkel eine Funktion des Abstandes des genutzten Wirkbereichs der Strahlungsempfangsbereiche I1 bis I11 vom Detektor ist, wobei die Raumwinkel der Bündelungsmittel J1, J2 und J11, welche zu Strahlungsempfangsbereichen mit am weitesten entfernten I1, I2 und am nächsten I11 gelegenen genutzten Wirkbereichen gehören, am größten und die Raumwinkel der Bündelungsmittel J7, J8, die zu Strahlungsempfangsbereichen mit genutzten Wirkbereichen in mittleren I7, I8 Abständen vom Detektor gehören, am kleinsten sind.
  • Figur 4 zeigt eine Seitenansicht der Spiegelanordnung J1 bis J11 eines erfindungsgemäßen Infraroteindringdetektors gemäß Figur 3. Die Spiegelelemente J8, J9 und J10, bzw. J3 und J4 liegen in Blickrichtung in einer Reihe hintereinander und sind daher in der Figur 4 nicht getrennt erkennbar. Gut erkennbar ist, daß sich der Sensor S in unmittelbarer Nähe des Spiegelelementes J11 befindet, wodurch sich trotz der relativen Kleinheit des Spiegelelementes J11 ein sehr großer Raumwinkel ergibt. Umgekehrt weist das Spiegelelement J1 die größte effektive Spiegelfläche auf; wegen des großen Abstandes vom Sensor S ist der von diesem Spiegelelemente umfaßte Raumwinkel aber kleiner als der Raumwinkel für das Spiegelelement J11.
  • Die Größe der Raumwinkel, welche die Spiegelelemente J1 bis J11, vom Sensor S aus gesehen, aufspannen, d.h. die unterschiedliche Gewichtung, ergibt sich aus der folgenden Tabelle:
    J1 100 %
    J2 100 %
    J3 48 %
    J4 48 %
    J5 44 %
    J6 44 %
    J7 28 % (Minimum)
    J8 30 %
    J9 42 %
    J10 49 %
    J11 143 %
  • D.h. die Raumwinkel der Spiegelelemente J1, J2, die zu den Strahlungsempfangsbereichen I1, I2 gehören, welche die dem Detektor am entferntesten gelegenen Zonen überwachen, sind gleich 100 gesetzt.
  • Die Brennweiten der einzelnen Spiegelelemente J1 bis J11 werden den jeweiligen genutzten Wirkbereichen der (entsprechenden) individuellen Zonen in der Weise angepaßt, daß das jeweils auf den Sensor S gelangende Signal in Abhängigkeit von der Distanz innerhalb des genutzten Wirkbereichs ein Maximum erreicht. Unter "genutztem Wirkbereich" ist innerhalb des Strahlungsempfangsbereichs I1 bis I11 derjenige Bereich zu verstehen, in welchem die Infrarotstrahlung eines aufrecht gehenden Menschen geometrisch betrachtet einen wesentlichen Beitrag zum Sensorsignal liefert. In der folgenden Tabelle sind die genutzten Wirkbereiche, die man auch als "Hauptwirkbereiche" bezeichnen kann, sowie die lokalen Brennweiten der zugehörigen Spiegelelemente J1 bis J11 für die Strahlungsempfangsbereiche I1 bis I11 angegeben.
    I genutzter Wirkbereich [m] lokale Brennweite [mm]
    1 10 bis 25 40
    2 7 - 18 30
    3 4 - 11 27
    4 2 - 7 27
    5 1,5 - 5 15
    6 1 - 3 13
    7 0,5 - 2,5 12
    8 0,5 - 1,5 10,5
    9 0,5 - 1 10
    10 0 - 0,75 9,5
    11 0 - 0,5 7,8
  • In den Figuren 5 und 6 ist die Gesamtheit der Strahlungsempfangsbereiche eines erfindungsgemäßen Infraroteindringdetektors gemäß Figuren 3 und 4 graphisch dargestellt und zwar in Figur 5 senkrecht von oben und in Figur 6 von der Seite gesehen. Aus der Draufsicht ist erkennbar, daß die Strahlungsempfangsbereiche I1 bis I11 schmal sind, aus der Seitenansicht ist erkennbar, daß die Strahlungsempfangsbereiche I1 und I2 aber außerordentlich weit reichen. In Figur 6 sind die einzelnen Strahlungsempfangsbereiche I1 bis I11 für einen in ca 2,5m Höhe montierten Infraroteindringdetektor gezeigt. Es ist erkennbar, daß ein Infrarotstrahlung aussendendes Objekt, das in etwa die Gestalt eines aufrecht gehenden Menschen hat, im mittleren Entfernungsbereich Infrarotstrahlung in mehreren Strahlungsempfangsbereichen I2, I3, I4 aussendet, während es z.B. im entferntesten Strahlungsempfangsbereich I1 nur in einem einzigen Strahlungsempfangsbereich Infrarotstrahlung aussendet.
  • In Figur 7 ist die unterschiedliche Empfindlichkeit von Infraroteindringdetektoren gegenüber Infrarotstrahlung aussendenden Objekten in Abhängigkeit von der Entfernung vom Detektor für zwei Infraroteindringdetektoren graphisch dargestellt. Auf der Ordinatenachse ist das Sensorsignal [in relativen Einheiten] und auf der Abszissenachse die Entfernung des Infrarotstrahlung aussendenden Objektes in Metern angegeben. Die Kurve b) gilt für einen Infraroteindringdetektor gemäß EP-A1-0'262'241 (=̂US-PS-4,740,701), die Kurve a) für einen Infraroteindringdetektor gemäß vorliegender Erfindung. Die Kurve c) gibt die Detektionsschwelle der Infraroteindringdetektoren für ein Infrarotstrahlung aussendendes Objekt an. Die Kurven gelten für ein Infrarotstrahlung aussendendes Objekt, das annähernd die Gestalt eines aufrecht gehenden Menschen hat und das sich in verschiedenen Entfernungen mit einer Geschwindigkeit von 60cm/sec quer durch einen oder mehrere der Strahlungsempfangsbereiche I1 bis I11 bewegt. Man erkennt für den Infraroteindringdetektor gemäß Stand der Technik die starke Abhängigkeit des Infrarotsensorsignals von der Entfernung. Im Gegensatz dazu ist die Empfindlichkeit des erfindungsgemäßen Infraroteindringdetektors für alle Entfernungen nahezu gleich.
  • Abwandlungen der vorbeschriebenen Konstruktion für Infraroteindringdetektoren sind im Rahmen der Erfindung gemäß den Ansprüchen möglich und dem Fachmann geläufig.

Claims (6)

  1. Infraroteindringdetektor zur Detektion des Eindringens Infrarotstrahlung aussendender Objekte in langgestreckte Räume mit einem von einem Gehäuse umschlossenen Infrarotsensor (S), welcher in Abhängigkeit von der zeitlichen Änderung der Intensität der auftreffenden Strahlung ein elektrisches Signal abgibt, mit einer Vielzahl von optischen Bündelungsmitteln (J1 bis J11) zur Fokussierung der Infrarotstrahlung aus einer Vielzahl von Strahlungsempfangsbereichen (I1 bis I11) auf den gemeinsamen Infrarotsensor (S) und mit einer Auswerteschaltung, welche bei Überschreiten eines vorbestimmten Schwellenwertes des Ausgangssignals des Infrarotsensors (S) ein Alarmsignal abgibt, dadurch gekennzeichnet, daß die optischen Bündelungsmittel (J1 bis J11) in einer Vielzahl von horizontal und/oder vertikal versetzten Reihen so konstruiert und angeordnet sind, daß die Strahlungsempfangsbereiche (I1 bis I11) den zu überwachenden Raum in vertikaler Richtung überlappend abdecken und daß die Größe der durch den Infrarotsensor (S) als Scheitelpunkt und die äußere Begrenzungslinie des jeweiligen Bündelungsmittels (J1 bis J11) gebildeten Raumwinkel dergestalt ist, daß in jedem Abstand vom Detektor die Summe der aus unterschiedlichen Strahlungsempfangsbereichen (I1 bis I11) von einem sich bewegenden, Infrarotstrahlung aussendenden Objekt der Gestalt eines aufrecht gehenden Menschen auf den Infrarotsensor (S) fallenden Strahlung konstant ist.
  2. Detektor gemäß Patentanspruch 1, dadurch gekennzeichnet, daß die optischen Bündelungsmittel (J1 bis J11) so konstruiert sind, daß die Größe der durch den Infrarotsensor (S) als Scheitelpunkt und die äußere Begrenzungslinie des jeweiligen Bündelungsmittels (J1 bis J11) gebildeten Raumwinkel eine Funktion des Abstandes des genutzten Wirkbereichs der Strahlungsempfangsbereiche (I1 bis I11) vom Detektor ist, wobei die Raumwinkel der Bündelungsmittel (J1, J2), welche zu Strahlungsempfangsbereichen mit am weitesten entfernten (I1, I2) und am nächsten gelegenen (I10, I11) genutzten Wirkbereichen gehören, am größten und die Raumwinkel der Bündelungsmittel (J7, J8), die zu Strahlungsempfangsbereichen mit genutzten Wirkbereichen in mittleren Abständen (I7, I8) vom Detektor gehören, am kleinsten sind.
  3. Detektor gemäß einem der Patentansprüche 1 und 2, dadurch gekennzeichnet, daß die optischen Bündelungsmittel (J1 bis J11) aus einer Vielzahl von Hohlspiegeln, vorzugsweise in einer Anzahl zwischen sieben und fünfzehn, bestehen.
  4. Detektor gemäß einem der Patentansprüche 1 und 2, dadurch gekennzeichnet, daß die optischen Bündelungsmittel (J1 bis J11) aus einer Vielzahl von Fresnellinsen, vorzugsweise in einer Anzahl zwischen sieben und fünfzehn, insbesondere in einer Anzahl von elf, bestehen.
  5. Detektor gemäß Patentanspruch 3, dadurch gekennzeichnet, daß er elf Hohlspiegel (J1 bis J11) als optische Bündelungsmittel aufweist, daß, wenn der Raumwinkel des Spiegels (J1), welcher zu dem am weitesten reichenden Strahlungsempfangsbereich (I1) gehört, als 100 gesetzt wird, der Raumwinkel des Spiegels (J2), welcher zu dem nächsten näher gelegenen Strahlungsempfangsbereich (I2) gehört, einen Raumwinkel von ebenfalls ca. 100% aufweist, daß die Raumwinkel der Spiegel (J3, J4), welche zu den beiden nächsten näher gelegenen Strahlungsempfangsbereichen (I3, I4) gehören, ca. 48% betragen und daß die Raumwinkel der Spiegel (J5 bis J10), welche zu den folgenden näher gelegenen Strahlungsempfangsbereichen gehören, (I5) ca. 44%, (I6) ca. 44%, (I7) ca. 28%, (I8) ca. 30%, (I9) ca. 42%, (I10) ca. 49% und der Raumwinkel des Spiegels (J11), welcher zu dem am nächsten gelegenen Strahlungsempfangsbereich (I11) gehört, ca. 143% betragen.
  6. Detektor gemäß einem der Patentansprüche 1 und 2, dadurch gekennzeichnet, daß die optischen Bündelungsmittel (J1 bis J11) aus einer Vielzahl von Hohlspiegeln in Kombination mit einer Vielzahl von Fresnellinsen bestehen, wobei vorzugsweise die Fresnellinsen (J1 bis J4) zu den Strahlungsempfangsbereichen (I1 bis I4) mit entfernter gelegenen genutzten Wirkbereichen und die Hohlspiegel (J5 bis J11) zu den Strahlungsempfangsbereichen (I5 bis I11) mit näher gelegenen genutzten Wirkbereichen gehören.
EP89117077A 1988-09-22 1989-09-15 Infraroteindringdetektor Expired - Lifetime EP0361224B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89117077T ATE96928T1 (de) 1988-09-22 1989-09-15 Infraroteindringdetektor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3508/88A CH676642A5 (de) 1988-09-22 1988-09-22
CH3508/88 1988-09-22

Publications (2)

Publication Number Publication Date
EP0361224A1 EP0361224A1 (de) 1990-04-04
EP0361224B1 true EP0361224B1 (de) 1993-11-03

Family

ID=4257502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89117077A Expired - Lifetime EP0361224B1 (de) 1988-09-22 1989-09-15 Infraroteindringdetektor

Country Status (7)

Country Link
US (1) US4990783A (de)
EP (1) EP0361224B1 (de)
AT (1) ATE96928T1 (de)
CA (1) CA1313239C (de)
CH (1) CH676642A5 (de)
DE (1) DE58906096D1 (de)
ES (1) ES2048253T3 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH681574A5 (de) * 1991-03-01 1993-04-15 Cerberus Ag
US5311024A (en) * 1992-03-11 1994-05-10 Sentrol, Inc. Lens arrangement for intrusion detection device
EP0566852B1 (de) * 1992-04-21 1998-08-26 Mitsubishi Denki Kabushiki Kaisha Menschliche Körper-Detektionsanordnung
US5955854A (en) 1992-09-29 1999-09-21 Prospects Corporation Power driven venting of a vehicle
DE4327229A1 (de) * 1993-08-13 1995-02-16 Abb Patent Gmbh Vorrichtung zum Einstellen mindestens eines auf eine bestimmte Stellgröße bezogenen Stellwertes bei einem Bewegungsmelder
EP0691531B1 (de) * 1994-07-04 1998-10-28 Cerberus Ag Infrarotdetektor mit einem pyroelektrischen Sensor
EP0707294A1 (de) 1994-10-10 1996-04-17 Cerberus Ag Spiegel für einen Infraroteindringdetektor und Infraroteindringdetektor mit einer Spiegelanordnung
CA2196014C (en) * 1997-01-27 2001-05-08 Reinhart Karl Pildner Size discriminating dual element pir detector
US6157024A (en) * 1999-06-03 2000-12-05 Prospects, Corp. Method and apparatus for improving the performance of an aperture monitoring system
ATE263403T1 (de) * 1999-10-01 2004-04-15 Siemens Building Tech Ag Passiv-infrarotmelder
EP1089244B1 (de) * 1999-10-01 2004-03-31 Siemens Building Technologies AG Spiegelanordnung für Passiv-Infrarotmelder
EP1124209B1 (de) * 2000-02-11 2006-04-26 Siemens Schweiz AG Präsenzmelder
CA2300644C (en) 2000-03-10 2009-07-14 Digital Security Controls Ltd. Pet resistant pir detector
US6693273B1 (en) 2000-05-02 2004-02-17 Prospects, Corp. Method and apparatus for monitoring a powered vent opening with a multifaceted sensor system
US6265972B1 (en) * 2000-05-15 2001-07-24 Digital Security Controls Ltd. Pet resistant pir detector
ATE274732T1 (de) 2001-11-05 2004-09-15 Siemens Building Tech Ag Passiv-infrarotmelder
US7755052B2 (en) * 2003-03-14 2010-07-13 Suren Systems, Ltd. PIR motion sensor
DE502004008486D1 (de) * 2004-07-02 2009-01-02 Siemens Ag Passiv Infrarotmelder
CN101167110B (zh) * 2005-04-01 2010-05-19 西荣科技有限公司 改进的无源红外移动传感器
EP2450859B1 (de) * 2010-11-05 2016-10-05 Vanderbilt International GmbH Mehrfach Spiegelungsoptik für passiven Strahlendetektor
EP2752688A1 (de) * 2013-01-04 2014-07-09 Samsung Electronics Co., Ltd Fresnellinse und Pyroelektrizitäts-Sensormodul damit
US10122847B2 (en) * 2014-07-20 2018-11-06 Google Technology Holdings LLC Electronic device and method for detecting presence and motion
US10539718B2 (en) 2017-08-17 2020-01-21 Honeywell International Inc. Fresnel lens array with improved off-axis optical efficiency

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339748A (en) * 1980-04-08 1982-07-13 American District Telegraph Company Multiple range passive infrared detection system
US4625115A (en) * 1984-12-11 1986-11-25 American District Telegraph Company Ceiling mountable passive infrared intrusion detection system
ATE54768T1 (de) * 1985-01-24 1990-08-15 Cerberus Ag Infrarot-einbruchdetektor.
DE3674957D1 (de) * 1985-07-17 1990-11-22 Racal Guardall Scotland Passive infrarotfuehler.
DE3666887D1 (en) * 1985-09-02 1989-12-14 Heimann Gmbh Infrared movement detector
US4769545A (en) * 1986-11-26 1988-09-06 American Iris Corporation Motion detector
CH675316A5 (de) * 1987-08-11 1990-09-14 Cerberus Ag
US4841284A (en) * 1987-10-19 1989-06-20 C & K Systems, Inc. Infrared intrusion detection system incorporating a fresnel lens and a mirror
DE3742031A1 (de) * 1987-12-11 1989-06-22 Asea Brown Boveri Bewegungsmelder mit einem infrarotdetektor
US4920268A (en) * 1989-01-31 1990-04-24 Detection Systems, Inc. Passive infrared detection system with substantially uniform sensitivity over multiple detection zones

Also Published As

Publication number Publication date
ATE96928T1 (de) 1993-11-15
CH676642A5 (de) 1991-02-15
ES2048253T3 (es) 1994-03-16
DE58906096D1 (de) 1993-12-09
EP0361224A1 (de) 1990-04-04
US4990783A (en) 1991-02-05
CA1313239C (en) 1993-01-26

Similar Documents

Publication Publication Date Title
EP0361224B1 (de) Infraroteindringdetektor
EP1089245B1 (de) Passiv-Infrarotmelder
DE3129753C2 (de)
DE69510102T2 (de) Weitwinkel-Infrarot-Detektor
DE2537380A1 (de) Einbruchmeldeanlage
DE60109355T2 (de) Fern Infrarotstrahlung Thermosäule Detektionsvorrichtung zum Verbrechensschutz
EP0014825A2 (de) Optische Anordnung für einen passiven Infrarot-Bewegungsmelder
EP0191155B1 (de) Infrarot-Einbruchdetektor
EP0617389A1 (de) Intrusionsmelder
DE2916768C2 (de) Optische Anordnung für einen passiven Infrarot-Bewegungsmelder
DE3119720C2 (de) Auf elektromagnetische Strahlung ansprechender Bewegungsmelder
DE2103909A1 (de) Überwachungseinrichtung zur Fest stellung der Anwesenheit eines Eindring lings in einem Raum
EP0080114B2 (de) Strahlungsdetektor mit mehreren Sensorelementen
EP0821330B1 (de) Rauchmelder
EP0303913A1 (de) Eindringdetektor
DE19517517B4 (de) Passiv Infrarot Eindringdetektor
DE69806721T2 (de) Fühleranordnung mit facettenauge zur verbrechensbekämpfung
CH667744A5 (de) Infrarot-eindringdetektor.
DE3742031A1 (de) Bewegungsmelder mit einem infrarotdetektor
EP0421119B1 (de) Passiv-Infrarot-Bewegungsmelder
EP0050750B1 (de) Infrarot-Einbruchdetektor
DE19540299A1 (de) Infrarotbewegungsmelder
EP1089244B1 (de) Spiegelanordnung für Passiv-Infrarotmelder
EP0262241A1 (de) Infrarot-Eindringdetektor
EP1612750B1 (de) Passiv Infrarotmelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19921211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 96928

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 58906096

Country of ref document: DE

Date of ref document: 19931209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931202

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2048253

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940930

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89117077.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000807

Year of fee payment: 12

Ref country code: AT

Payment date: 20000807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000811

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000814

Year of fee payment: 12

Ref country code: NL

Payment date: 20000814

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000823

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000908

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000911

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001213

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010915

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010916

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 20010930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

EUG Se: european patent has lapsed

Ref document number: 89117077.1

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050915