EP0421119B1 - Passiv-Infrarot-Bewegungsmelder - Google Patents

Passiv-Infrarot-Bewegungsmelder Download PDF

Info

Publication number
EP0421119B1
EP0421119B1 EP90116453A EP90116453A EP0421119B1 EP 0421119 B1 EP0421119 B1 EP 0421119B1 EP 90116453 A EP90116453 A EP 90116453A EP 90116453 A EP90116453 A EP 90116453A EP 0421119 B1 EP0421119 B1 EP 0421119B1
Authority
EP
European Patent Office
Prior art keywords
infrared
incident
fresnel lens
detection
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90116453A
Other languages
English (en)
French (fr)
Other versions
EP0421119A1 (de
Inventor
Hans Jochem Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
ABB AB
Original Assignee
Asea Brown Boveri AG Germany
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri AG Germany, Asea Brown Boveri AB filed Critical Asea Brown Boveri AG Germany
Publication of EP0421119A1 publication Critical patent/EP0421119A1/de
Application granted granted Critical
Publication of EP0421119B1 publication Critical patent/EP0421119B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means

Definitions

  • the invention relates to a passive infrared motion detector according to the preamble of claim 1.
  • Passive infrared motion detectors are essentially devices which trigger a switching process as a function of the detected infrared radiation of an object emitting heat radiation. They are used to monitor a room area for moving objects, whereby the passive infrared motion detectors e.g. react to the change in heat radiation in the detection area to be monitored. Such an infrared radiation object is e.g. a person who moves in a room to be monitored.
  • a passive infrared motion detector only works as a receiver of infrared heat radiation, whereas other types of infrared motion detectors have an active infrared transmitter.
  • a passive infrared motion detector with an azimuthal detection angle of 180 ° which has an infrared sensitive sensor inside a housing.
  • a wide-angle collecting optic in particular a Fresnel plastic lens.
  • frontally incident infrared rays from the detection area to be monitored are bundled directly onto the infrared sensor, whereas laterally infrared rays incident from the detection area are focused on the infrared sensor only after intermediate reflection on a deflecting mirror system.
  • the largest possible detection range is aimed at with passive infrared motion detectors and at the same time high detection sensitivity. Due to the fact that in the passive infrared motion detector known from the prior art, the infrared rays incident laterally from the detection area are focused on the infrared sensor by means of intermediate reflection at a deflecting mirror system, the intensity of the incident on the infrared sensor is ultimately due to scattering losses Radiation is reduced compared to the radiation emitted directly by the object. This leads to a narrowing of the detection characteristic in the lateral area.
  • the passive infrared motion detector known in the prior art is highly sensitive, in particular to temperature changes occurring in the front detection area.
  • this fundamentally desirable fact is disadvantageous if switching operations are already triggered by objects which are not intentionally detected, in particular small animals, or by air currents passing by.
  • the measure known in the prior art has proven itself to be arranged on the sensor side, at a distance behind the plastic Fresnel lens, to arrange a plastic film which transmits infrared radiation. This has two effects.
  • the entire frontal and lateral incident infrared radiation is attenuated in intensity and secondly, a heat-insulating air cushion is generated between the plastic Fresnel lens and the plastic damping film, which creates the heat generated inside the passive infrared motion detector due to the evaluation electronics there does not let outside.
  • additional attenuation means are provided in the beam path of the infrared rays incident on the infrared sensor from the front detection area compared to the infrared rays incident from the lateral detection area.
  • This has the effect that the transmittance for the infrared rays incident from the front detection area is lower than the transmittance of the infrared rays incident on the infrared sensor from the lateral detection area.
  • the transmittance is defined as the ratio of the radiation intensity weakened after passing through a medium to the initial radiation intensity, in which case the initial radiation intensity in the beam path in front of the Fresnel lens and the weakened radiation intensity directly in front of the infrared sensor are measured.
  • An infrared-permeable plastic film is advantageously provided as a damping means in the beam path of the frontally incident infrared rays, the transmittance of which is known to be essentially a function of the infrared wavelength to be transmitted, the material and the film thickness.
  • films have proven their worth, the transmittance of which is between 58% and 68% at a wavelength of 10 »m.
  • the damping effect can also be achieved with other measures, e.g. by means of a varnish applied to the Fresnel plastic lens or by a different thickness of the Fresnel plastic lens.
  • the use of a plastic damping film offers the advantage that a heat insulation layer is present in the front detection area, in which the detection sensitivity is particularly high, because of the aforementioned air cushion, due to which undesired switching operations can be largely prevented.
  • the Fresnel lens system used as a wide-angle collecting optic is realized by a plastic Fresnel lens which is bent in a semicircular convex manner into the detection area.
  • strip-like segments covering the azimuthal detection area are semicircular arranged side by side, which have Fresnel lenses stamped into the plastic film.
  • At least two zones of segmented central Fresnel lenses are provided for the detection of the infrared rays incident from the front detection area. This makes it impossible to undermine the frontal detection area.
  • segments with acentric Fresnel lenses are arranged laterally next to the segments assigned to the frontally incident infrared rays.
  • the teaching according to the invention combined with the acentric Fresnel lenses described above thus offers the decisive advantage that the azimuthal detection range of the passive infrared motion detector extends beyond 180 ° to e.g. Can be extended by 220 °.
  • FIG. 1 shows a frontal view of the passive infrared motion detector 1 according to the invention with a window-like housing recess 3 in a housing 2.
  • a Fresnel lens film 4 made of plastic is clamped in a semicircular convex manner in the housing recess 3.
  • Infrared rays S I incident frontally from a first detection area I are bundled directly onto infrared sensors 9 by means of the Fresnel lens film 4.
  • Infrared rays S II incident laterally from a second detection area II are focused on the infrared sensors 9 with the help of the Fresnel lens film 4 only after intermediate reflection at two deflecting mirrors 8.
  • the Fresnel lens plastic film 4 is convex in a semicircular shape into the detection areas I, II to be monitored and is held in a Fresnel lens mount 5 of the housing 2.
  • I infrared rays S I-plastic film
  • Fresnel lens 4 is permeable to infrared damping plastic film 6 provided in the beam path behind the and supported film version cushion 7 in a.
  • An air cushion 10 is formed behind the Fresnel lens plastic film 4 and the damping plastic film 6, which is largely sealed off from the ambient air with the aid of end webs 11.
  • the infrared sensors 9 are arranged centrally on a circuit board 12, onto which the infrared rays S II incident laterally from the second detection area II are focused via two deflection mirrors 8. Frontal incident from the first detection area I I S infrared rays are bundled without intermediate reflection directly to the infrared sensors. 9
  • FIG. 3 shows a first detection characteristic 13, known in the prior art, of the passive infrared motion detector 1 without a damping plastic film 6.
  • An indented constriction 15 for the laterally incident infrared rays can be clearly seen. This is essentially due to the fact that, due to the intermediate reflection at the deflecting mirrors 8, the infrared rays S II are scattered on the material of the deflecting mirrors 8, which is associated with a loss of energy and thus an intensity.
  • a second detection characteristic 14 arises if both those incident from the front from the first detection area I and those incident laterally from the second detection area II Infrared rays S I , S II can be additionally damped with the damping plastic film 6. It can be seen that the shape of the detection characteristics 13, 14 is essentially retained, whereas a detection range r which is variable over an azimuth angle ⁇ is reduced in the detection characteristic 14 compared to the detection characteristic 13.
  • a fourth detection characteristic 17 results when the teaching according to the invention is used in combination with a Fresnel lens film 4 with laterally acentric Fresnel lens segments 18, which is described in more detail below. As a result, the azimuthal detection area can then be expanded by a third detection area III to a total of 220 ° (cf. also FIG. 2).
  • Fig. 5 shows a comparison of various laterally and frontally incident infrared useful signals at different noise levels and different arrangements of the damping foils 6.
  • a resulting noise level R2 is relatively high.
  • the damping by the Fresnel lens plastic film is not considered in this qualitative discussion.
  • a comparison of the curves a I, II shows that the signal / noise ratio of the frontally incident useful signal a I is greater than that of the laterally incident useful signal a II .
  • an increased signal / noise ratio means higher sensitivity.
  • a passive infrared motion detector in which both the frontal and the laterally incident infrared rays S I , S II are covered by a damping film 6, has a significantly reduced background noise R0.
  • laterally incident useful signals C II are not only attenuated by the already mentioned proportion ⁇ I d , which is due to the scattering at the deflection mirrors 8, but additionally attenuated by ⁇ I a by the damping plastic film 6.
  • a frontally incident useful signal represented by curve C I has an intensity which is only reduced by the damping measure ⁇ I a .
  • the laterally incident infrared rays S II have a more favorable signal-to-noise ratio than the frontally incident infrared rays S I. This results in the improved third detection characteristic 16 described above.
  • Fresnel lens plastic film 4 which is divided into individual strip-shaped Fresnel lens segments 18.
  • Each segment 18 represents a Fresnel lens, which bundles infrared rays S I , S II , S III incident from different spatial sectors.
  • the frontally incident infrared rays S I are assigned two zones of Fresnel lens segments 18 arranged one above the other. This has the advantage that it is no longer possible to undermine the frontal detection area I.
  • the Fresnel lens plastic film 4 is that the, preferably four, laterally arranged Fresnel lens segments 18 are designed as eccentric Fresnel lenses, the respective lens centers 19 of which lie outside the Fresnel lens segment 18.
  • the azimuthal detection area can be expanded to a total of 220 °, since incident areas from a third detection area III (FIG. 2) third infrared rays S III can still be detected because of the improved detection sensitivity according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Description

  • Die Erfindung betrifft einen Passiv-Infrarot-Bewegungsmelder nach dem Oberbegriff des Anspruches 1.
  • Passiv-Infrarot-Bewegungsmelder sind im wesentlichen Vorrichtungen, welche in Abhängigkeit von der detektierten Infrarotstrahlung eines Wärmestrahlung emittierenden Objekts einen Schaltvorgang auslösen. Sie dienen dazu, einen Raumbereich auf sich bewegende Objekte zu überwachen, wobei die Passiv-Infrarot-Bewegungsmelder z.B. auf die Änderung der Wärmestrahlung im zu überwachenden Erfassungsbereich reagieren. Ein derartiges Infrarot-Strahlungsobjekt ist z.B. ein Mensch, der sich in einem zu überwachenden Raum bewegt. Ein Passiv-Infrarot-Bewegungsmelder arbeitet lediglich als Empfänger infraroter Wärmestrahlung, wohingegen Infrarot-Bewegungsmelder anderer Art einen aktiven Infrarotsender aufweisen.
  • Aus der europäischen Patentschrift EP 0 113 468 ist ein Passiv-Infrarot-Bewegungsmelder mit einem azimutalen Erfassungswinkel von 180° bekannt, welcher im Inneren eines Gehäuses einen infrarotempfindlichen Sensor aufweist. Im Gehäuse sind fensterartige Durchbrüche vorhanden, in welchen sich eine Weitwinkelsammeloptik, insbesondere eine Fresnel-Kunststofflinse, befindet. Hierbei werden aus dem zu überwachenden Erfassungsbereich frontal einfallende Infrarotstrahlen direkt auf den Infrarotsensor gebündelt, wohingegen lateral aus dem Erfassungsbereich einfallende Infrarotstrahlen erst nach Zwischenreflexion an einem Umlenkspiegel-System auf den Infrarotsensor fokussiert werden.
  • Abgesehen von Fällen, in denen abhängig von den örtlichen Verhältnissen eine individuelle Anpassung der Erfassungscharakteristik an die örtlichen Gegebenheiten gewünscht ist, wird bei Passiv-Infrarot-Bewegungsmeldern grundsätzlich ein möglichst großräumiger Erfassungsbereich bei gleichzeitig hoher Erfassungsempfindlichkeit angestrebt. Aufgrund der Tatsache, daß bei dem aus dem Stand der Technik bekannten Passiv-Infrarot-Bewegungsmelder die aus dem Erfassungsbereich lateral einfallenden Infrarot-Strahlen mittels Zwischenreflexion an einem Umlenkspiegelsystem auf den Infrarotsensor fokussiert werden, ist aufgrund von Streuverlusten die Intensität der letztlich auf den Infrarotsensor einfallenden Strahlung gegenüber der unmittelbar vom Objekt emittierten Strahlung vermindert. Dies führt zu einer Einschnürung der Erfassungscharakteristik im lateralen Bereich.
  • Der im Stand der Technik bekannte Passiv-Infrarot-Bewegungsmelder ist hochempfindlich, insbesondere gegenüber im frontalen Erfassungsbereich vorkommenden Temperaturänderungen. Diese grundsätzlich wünschenswerte Tatsache ist jedoch dann nachteilig, wenn Schaltvorgänge bereits durch nicht gewollt detektierte Objekte, insbesondere kleine Tiere oder durch vorbeistreichende Luftströmungen ausgelöst werden. Als Abhilfe gegen die letztere, ungewollte Schaltvorgänge auslösende Ursache, hat sich die im Stand der Technik bekannte Maßnahme bewährt, sensorseitig beabstandet hinter der Kunststoff-Fresnellinse, eine Infrarotstrahlung durchlassende Kunststoff-Folie anzuordnen. Hierdurch werden zwei Wirkungen erzielt. Erstens wird die gesamte frontal und lateral einfallende Infrarotstrahlung in der Intensität gedämpft und zweitens wird zwischen der Kunststoff-Fresnellinse und der Kunststoff-Dämpfungs-Folie ein wärmeisolierendes Luftpolster erzeugt, welches die im Inneren des Passiv-Infrarot-Bewegungsmelders aufgrund der dort vorhandenen Auswerteelektronik erzeugte Wärme nicht nach draußen dringen läßt. Hierdurch wird ein Temperaturgradient von ungefähr +2°C gegenüber dem außenliegenden Erfassungsbereich stabilisiert. Ohne diese Maßnahme würde nämlich mittels Wärmeleitung die über die Fresnellinse nach außen abgeführte Wärmeenergie von vorbeistreichender Luft mitgenommen werden, was zur Auslösung unerwünschter Schaltvorgänge führen kann. Bei dieser Anordnung der insbesondere eine Wärmeisolierung bewirkenden Kunststoff-Folie ist jedoch nachteilig, daß die aus den lateralen Raumsektoren einfallenden und über das Umlenkspiegelsystem zwischenreflektierten Infrarotstrahlen ebenfalls gedämpft werden, was die Erfassungsempfindlichkeit im lateralen Bereich zusätzlich herabsetzt. Hier versucht die Erfindung Abhilfe zu schaffen.
  • Es ist Aufgabe der Erfindung, ausgehend vom gattungsgemäß vorbekannten Stand der Technik und unter Vermeidung der vorgenannten Nachteile, einen Passiv-Infrarot-Bewegungsmelder zu schaffen, der für lateral einfallende und über einen Umlenkspiegel zwischenreflektierte Infrarot-Strahlen eine Erhöhung der Erfassungsempfindlichkeit und eine Vergrößerung des Erfassungsbereichs gewährleistet.
  • Diese Aufgabe wird durch die im Kennzeichen des Anspruches 1 näher gekennzeichneten Merkmale gelöst. Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen näher gekennzeichnet.
  • Erfindungsgemäß ist vorgesehen, daß im Strahlengang der aus dem frontalen Erfassungsbereich auf den Infrarotsensor einfallenden Infrarotstrahlen zusätzliche Dämpfungsmittel gegenüber den aus dem lateralen Erfassungsbereich einfallenden Infrarotstrahlen vorgesehen sind. Hierdurch wird bewirkt, daß der Transmissionsgrad für die aus dem frontalen Erfassungsbereich einfallenden Infrarotstrahlen geringer ist als der Transmissionsgrad der aus dem lateralen Erfassungsbereich auf den Infrarotsensor einfallenden Infrarotstrahlen. Hierbei ist der Transmissionsgrad definiert als das Verhältnis der nach dem Durchlaufen eines Mediums geschwächten Strahlungsintensität zur anfänglichen Strahlungsintensität, wobei vorliegend die anfängliche Strahlungsintensität im Strahlengang vor der Fresnellinse und die geschwächte Strahlungsintensität unmittelbar vor dem Infrarotsensor gemessen wird. Durch die erfindungsgemäße Maßnahme, lediglich die frontal einfallenden Infrarotstrahlen, nicht aber die lateral einfallenden Infrarotstrahlen zusätzlich zu bedämpfen, wird der auf dem Infrarotsensor aufgrund der stets vorhandenen Wärme-Hintergrundstrahlung mitempfangene Rauschpegel entscheidend reduziert. Hierdurch verbessert sich das Signal/Rausch-Verhältnis der lateral einfallenden Infrarotstrahlen im Vergleich zu den frontal einfallenden Infrarotstrahlen, wodurch die Infrarotstrahlungsänderungen der ersteren besser detektiert werden können. Hierdurch werden nicht nur die im Stand der Technik vorhandenen Einschnürungen der Erfassungscharakteristik im Bereich der lateral einfallenden Infrarotstrahlen beseitigt, sondern es kann durch eine sinnvolle Anordnung der Fresnellinsen-Zentren für die lateral einfallenden Infrarotstrahlen der Erfassungsbereich über denjenigen Erfassungsbereich hinaus vergrößert werden, wie er bei Passiv-Infrarot-Bewegungsmeldern ohne oder vollständiger Abdeckung mittels Kunststoff-Folie bekannt ist.
  • Vorteilhafterweise wird als Dämpfungsmittel im Strahlengang der frontal einfallenden Infrarotstrahlen eine infrarotdurchlässige Kunststoff-Folie vorgesehen, deren Transmissionsgrad bekanntlich im wesentlichen eine Funktion der durchzulassenden Infrarotwellenlänge, des Materials und der Folien-Dicke ist. In der Praxis haben sich Folien bewährt, deren Transmissionsgrad bei einer Wellenlänge von 10 »m zwischen 58% und 68% liegt. Der Dämpfungseffekt kann jedoch auch mit anderen Maßnahmen, wie z.B. mittels eines auf die Fresnel-Kunststofflinse aufgetragenen Lackes oder durch eine unterschiedlich dicke Ausbildung der Fresnel-Kunststofflinse erreicht werden. Die Verwendung einer Kunststoff-Dämpfungsfolie bietet hierbei aber den Vorteil, daß im frontalen Erfassungsbereich, in welchem die Erfassungsempfindlichkeit besonders hoch ist, wegen des zuvor erwähnten Luftpolsters eine Wärmeisolationsschicht vorhanden ist, aufgrund derer unerwünschte Schalthandlungen weitgehend verhindert werden können.
  • Nach einer zweckmäßigen Ausführungsform wird das als Weitwinkelsammeloptik verwendete Fresnellinsen-System durch eine Kunststoff-Fresnellinse verwirklicht, die halbkreisförmig konvex in den Erfassungsbereich hineingebogen ist. Hierbei sind den azimutalen Erfassungsbereich abdeckende, streifenförmige Segmente halbkreisförmig nebeneinander angeordnet, welche in die Kunststoff-Folie eingeprägte Fresnel-Linsen aufweisen.
  • Nach einer weiteren Ausführungsform sind für die Erfassung der aus dem frontalen Erfassungsbereich einfallenden Infrarot-Strahlen mindestens zwei übereinander angeordnete Zonen von segmentierten zentrischen Fresnellinsen, vorzugsweise elf, vorgesehen. Hierdurch wird ein Unterlaufen des frontalen Erfassungsbereiches unmöglich.
  • Nach einer besonders bevorzugten Ausführungsform der Erfindung sind lateral neben den den frontal einfallenden Infrarotstrahlen zugeordneten Segmenten Segmente mit azentrischen Fresnellinsen angeordnet. Die erfindungsgemäße Lehre kombiniert mit den vorstehend beschriebenen azentrischen Fresnellinsen bietet somit den entscheidenden Vorteil, daß der azimutale Erfassungsbereich des Passiv-Infrarot-Bewegungsmelder über 180° hinaus auf z.B. 220° ausgedehnt werden kann.
  • Die Erfindung wird nachstehend anhand der schematischen Zeichnungen näher beschrieben und erläutert. Es zeigen:
  • Fig. 1
    eine Frontalansicht des erfindungsgemäßen Passiv-Infrarot-Bewegungsmelders durch einen Fensterdurchbruch in der Gehäusewandung mit Kunststoff-Fresnellinsen-Folie,
    Fig. 2
    eine mediane Schnittansicht durch den Passiv-Infrarot-Bewegungsmelder gemäß der Schnittlinie II-II in Fig. 1,
    Fig. 3
    die Erfassungscharakteristik eines im Stand der Technik bekannten Passiv-Infrarot-Bewegungsmelders mit bzw. ohne Dämpfungs-Folie
    Fig. 4
    die Erfassungscharakteristiken des erfindungsgemäßen Passiv-Infrarot-Bewegungsmelders gemäß zweier Ausführungsformen,
    Fig. 5
    eine Gegenüberstellung diverser aus dem Azimut lateral oder frontal einfallender sowie auf den Infrarotsensorflächen empfangener Infrarot-Nutzsignal mit gleicher Ausgangsintensität I₀ bei verschiedenen Dämpfungsanordnungen,
    Fig. 6
    eine segmentierte Fresnellinsen-Kunststoff-Folie mit azentrischen lateralen Fresnellinsen.
  • Fig. 1 zeigt eine Frontalansicht des erfindungsgemäßen Passiv-Infrarot-Bewegungsmelders 1 mit einer fensterartigen Gehäuseausnehmung 3 in einem Gehäuse 2. Eine Fresnellinsen-Folie 4 aus Kunststoff ist halbkreisförmig konvex in der Gehäuseausnehmung 3 eingeklemmt. Aus einem ersten Erfassungsbereich I frontal einfallende Infrarotstrahlen SI werden mittels der Fresnellinsen-Folie 4 unmittelbar auf Infrarotsensoren 9 gebündelt. Aus einem zweiten Erfassungsbereich II lateral einfallende Infrarotstrahlen SII werden mit Hilfe der Fresnellinsen-Folie 4 erst nach Zwischenreflexion an zwei Umlenkspiegeln 8 auf den Infrarotsensoren 9 fokussiert.
  • Fig. 2 zeigt eine mediane Seitenschnittansicht durch den Passiv-Infrarot-Bewegungsmelder 1 gemäß der Schnittlinie II-II in Figur 1. Die Fresnellinsen-Kunststoff-Folie 4 ist halbkreisförmig konvex in die zu überwachenden Erfassungsbereiche I,II hinein gewölbt und in einer Fresnellinsen-Fassung 5 des Gehäuses 2 gehaltert. Zur Dämpfung der frontal aus dem Erfassungsbereich I einfallenden Infrarotstrahlen SI ist im Strahlengang hinter der Fresnellinsen-Kunststoff-Folie 4 eine für Infrarot durchlässige Dämpfungs-Kunststoff-Folie 6 vorgesehen und in einer Dämpfungs-Folienfassung 7 gehaltert. Hinter der Fresnellinsen-Kunststoff-Folie 4 und der Dämpfungs-Kunststoff-Folie 6 ist ein Luftpolster 10 ausgebildet, welches mit Hilfe von Abschlußstegen 11 weitgehend gegenüber der Umgebungsluft abgeschlossen ist. Innerhalb des Passiv-Infrarot-Bewegungsmelders 1 sind zentral auf einer Platine 12 die Infrarotsensoren 9 angeordnet, auf welche die lateral aus dem zweiten Erfassungsbereich II einfallenden Infrarotstrahlen SII über zwei Umlenkspiegel 8 fokussiert werden. Frontal aus dem ersten Erfassungsbereich I einfallende Infrarotstrahlen SI werden ohne Zwischenreflexion direkt auf die Infrarotsensoren 9 gebündelt.
  • Fig. 3 zeigt eine im Stand der Technik bekannte erste Erfassungscharakteristik 13 des Passiv-Infrarot-Bewegungsmelders 1 ohne Dämpfungs-Kunststoff-Folie 6. Man erkennt deutlich eine eingebuchtete Einschnürung 15 für die lateral einfallenden Infrarotstrahlen. Dies ist im wesentlichen dadurch bedingt, daß aufgrund der Zwischenreflexion an den Umlenkspiegeln 8 eine Streuung der Infrarotstrahlen SII am Material der Umlenkspiegel 8 stattfindet, was mit einem Energie- und damit einem Intensitätsverlust verbunden ist. Eine zweite Erfassungscharakteristik 14 ergibt sich dann, wenn sowohl die frontal aus dem ersten Erfassungsbereich I als auch die lateral aus dem zweiten Erfassungsbereich II einfallenden Infrarotstrahlen SI,SII mit der Dämpfungs-Kunststoff-Folie 6 zusätzlich gedämpft werden. Man erkennt, daß die Form der Erfassungscharakteristiken 13,14 im wesentlichen erhaltenbleibt, wohingegen eine über einen Azimutwinkel φ variable Erfassungsreichweite r bei der Erfassungscharakteristik 14 gegenüber der Erfassungscharakteristik 13 verringert ist.
  • Fig. 4 zeigt eine erfindungsgemäß verbesserte dritte Erfassungcharakteristik 16. Sie ist dadurch ausgezeichnet, daß die einbuchtenden Einschnürungen 15 bei den Erfassungcharakteristiken 13,14 nicht nur kompensiert, sondern sogar überkompensiert sind. Eine vierte Erfassungscharakteristik 17 ergibt sich dann, wenn man die erfindungsgemäße Lehre in Kombination mit einer unten näher beschriebenen Fresnellinsen-Folie 4 mit lateral azentrischen Fresnellinsen-Segmenten 18 verwendet. Hierdurch läßt sich dann der azimutale Erfassungsbereich um einen dritten Erfassungsbereich III auf insgesamt 220° erweitern (vgl. auch Fig. 2).
  • Fig. 5 zeigt eine Gegenüberstellung verschiedener lateral und frontal einfallender Infrarot-Nutzsignale bei unterschiedlichen Rauschpegeln und unterschiedlichen Anordnungen der Dämpfungs-Folien 6. Betrachtet werden sollen zunächst die Verhältnisse bei einem Passiv-Infrarot-Bewegungsmelder 1 ohne jegliche Dämpfungsfolie 6. Ein hierdurch bedingter Rauschpegel R₂ ist relativ hoch. Ein aus lateraler Richtung emittiertes Nutzsignal mit der Intensität I₀ wird gemäß Signal aII auf der Infrarot-Sensorfläche 9 nur noch mit der um ΔId (d =dissipation = Streuung) verringerten Intensität empfangen, wohingegen das frontal einfallende und durch das Signal aI repräsentierte Infrarot-Nutzsignal im wesentlichen ungedämpft zur Infrarot-Sensorfläche gelangt. Die Dämpfung durch die Fresnellinsen-Kunststoff-Folie bleibt bei dieser lediglich qualitativen Erörterung außer Betracht. Im Vergleich der Kurven aI,II erkennt man, daß das Signal/Rausch-Verhältnis des frontal einfallenden Nutzsignals aI größer ist als das des lateral einfallenden Nutzsignals aII. Ein erhöhtes Signal/Rausch-Verhältnis bedeutet aber bekanntlich höhere Empfindlichkeit.
  • Ein Passiv-Infrarot-Bewegungsmelder, bei welchem sowohl die frontalen als auch die lateral einfallenden Infrarotstrahlen SI,SII mittels einer Dämpfungsfolie 6 abgedeckt sind, weist ein erheblich vermindertes Grundrauschen R₀ auf. In diesem Falle werden lateral einfallende Nutzsignale CII somit nicht nur um den bereits erwähnten Anteil ΔId, welcher auf die Streuung an den Umlenkspiegeln 8 zurückgeht, gedämpft, sondern zusätzlich durch die Dämpfungs-Kunststoff-Folie 6 um ΔIa gedämpft. Das Dämpfungsmaß ΔIa (a=attenuation = Dämpfung) hängt selbstverständlich von der durchgelassenen Infrarot-Wellenlänge sowie der Dicke und dem Material der verwendeten Dämpfungs-Kunststoff-Folie 6 ab.
    Demgegenüber weist ein frontal einfallendes, durch die Kurve CI repräsentiertes Nutzsignal eine lediglich um das Dämpfungsmaß ΔIa verringerte Intensität auf. Man erkennt beim Vergleich der Kurven CI,CII, daß das frontal einfallende Nutzsignal CI ein günstigeres Signal/Rausch-Verhältnis als das lateral einfallende Nutzsignal CII aufweist.
  • Durch die erfindungsgemäß vorgenommene Teilabdeckung der frontal aus dem Erfassungsbereich I einfallenden Infrarotstrahlen SI ergibt sich lediglich eine geringfügige Anhebung des aufgrund der Wärmehintergrundstrahlung stets vorhandenen Rauschpegels R₁ gegenüber dem zuvor erwähnten Rauschpegel R₀. Man erkennt, daß das lateral einfallende Nutzsignal bII lediglich um das Maß ΔId gedämpft wird, wohingegen das frontal einfallende Nutzsignal bI um das Dämpfungsmaß ΔIa gedämpft wird. Hierbei gilt ΔI d < ΔI a = I₀-I₂ = R₂-R₀
    Figure imgb0001
    . Es ist somit festzuhalten, daß aufgrund der zusätzlichen Dämpfung der frontal einfallenden Infrarotstrahlen S₁ die lateral einfallenden Infrarotstrahlen SII gegenüber den frontal einfallenden Infrarotstrahlen SI erstmals ein günstigeres Signal/Rausch-Verhältnis aufweisen. Hieraus resultiert die zuvor beschriebene verbesserte dritte Erfassungscharakteristik 16.
  • Fig. 6 zeigt eine Fresnellinsen-Kunststoff-Folie 4, welche in einzelne streifenförmige Fresnellinsen-Segmente 18 unterteilt ist. Jedes Segment 18 stellt eine Fresnellinse dar, welche aus verschiedenen Raumsektoren einfallende Infrarotstrahlen SI,SII,SIII bündelt. Im vorliegenden Fall sind den frontal einfallenden Infrarotstrahlen SI zwei Zonen von übereinander angeordneten Fresnellinsen-Segmenten 18 zugeordnet. Dies hat den Vorteil, daß ein Unterlaufen des frontalen Erfassungsbereiches I nicht mehr möglich ist. Entscheidend ist aber bei der vorliegenden Fresnellinsen-Kunststoff-Folie 4, daß die, - vorzugsweise jeweils vier - lateral angeordneten Fresnellinsen-Segmente 18 als azentrische Fresnellinsen ausgebildet sind, deren jeweilige Linsenzentren 19 außerhalb des Fresnellinsen-Segments 18 liegt. Bei Verwendung einer derartigen, an sich bekannten, Fresnellinsen-Kunststoff-Folie 4 in Kombination mit der erfindungsgemäßen Lehre läßt sich eine Ausweitung des azimutalen Erfassungsbereichs auf insgesamt 220° erzielen, da aus einem dritten Erfassungsbereich III (Fig. 2) einfallende dritte Infrarotstrahlen SIII wegen der erfindungsgemäß verbesserten Erfassungsempfindlichkeit noch detektiert werden können.

Claims (5)

  1. Passiv-Infrarot-Bewegungsmelder mit mindestens einem innerhalb eines Gehäuses angeordneten Infrarotsensor sowie mit mindestens einer im Gehäuse vorgesehenen Gehäuseausnehmung, die ein Fresnellinsen-System aufweist, wobei aus einem ersten Erfassungsbereich frontal einfallende und in zugeordneten Fresnellinsen des Fresnellinsen-Systems gebündelte erste Infrarot-Strahlen auf den Infrarotsensor fokussiert werden, und wobei aus einem zweiten Erfassungsbereich lateral einfallende und in zugeordneten Fresnellinsen des Fresnellinsen-Systems gebündelte zweite Infrarot-Strahlen nach Zwischenreflexion an einem Umlenkspiegel-System auf den Infrarotsensor geworfen werden, dadurch gekennzeichnet, daß Dämpfungsmittel (6) vorgesehen sind, aufgrund derer der Transmissionsgrad (TI) für die aus dem ersten Erfassungsbereich (I) auf den Infrarotsensor (9) einfallenden ersten Infrarotstrahlen (SI) geringer ist, als der Transmissionsgrad (TII) der aus dem zweiten Erfassungsbereich (II) auf den Infrarotsensor (9) einfallenden zweiten Infrarotstrahlen (SII).
  2. Passiv-Infrarot-Bewegungsmelder nach Anspruch 1, dadurch gekennzeichnet, daß als Dämpfungsmittel (6) eine infrarot-durchlässige Dämpfungs-Kunststoff-Folie vorgesehen ist.
  3. Passiv-Infrarot-Bewegungsmelder nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Fresnellinsen-System eine als Kunststoff-Fresnellinse ausgebildete Kunststoff-Fresnellinsen-Folie (4) vorgesehen ist, wobei deren den azimutalen Erfassungbereich (I,II) abdeckende sowie eingeprägte Fresnellinsen aufweisende streifenförmige Fresnellinsen-Segmente (18) halbkreisförmig nebeneinander angeordnet sind.
  4. Passiv-Infrarot-Bewegungsmelder nach Anspruch 3, dadurch gekennzeichnet, daß für die Erfassung der aus dem ersten Erfassungsbereich (I) einfallenden ersten Infrarotstrahlen (SI) mindestens zwei übereinanderangeordnete Zonen von segmentierten zentrischen Fresnellinsen, vorzugsweise jeweils 8, vorgesehen sind.
  5. Passiv-Infrarot-Bewegungsmelder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für die Erfassung der aus dem zweiten und dritten Erfassungsbereich (II,III) einfallenden Infrarot-Strahlen (SII,SIII) jeweils lateral angeordnete Fresnellinsen-Segmente (18) vorgesehen sind, die als azentrische Fresnellinsen mit außerhalb der Fresnellinsen-Segmente (18) liegenden Fresnellinsen-Zentren (19) ausgebildet sind.
EP90116453A 1989-10-03 1990-08-28 Passiv-Infrarot-Bewegungsmelder Expired - Lifetime EP0421119B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3932943A DE3932943A1 (de) 1989-10-03 1989-10-03 Passiv-infrarot-bewegungsmelder
DE3932943 1989-10-03

Publications (2)

Publication Number Publication Date
EP0421119A1 EP0421119A1 (de) 1991-04-10
EP0421119B1 true EP0421119B1 (de) 1994-06-22

Family

ID=6390724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90116453A Expired - Lifetime EP0421119B1 (de) 1989-10-03 1990-08-28 Passiv-Infrarot-Bewegungsmelder

Country Status (4)

Country Link
EP (1) EP0421119B1 (de)
AT (1) ATE107785T1 (de)
DE (2) DE3932943A1 (de)
DK (1) DK0421119T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011453A1 (de) * 1990-04-09 1991-10-10 Abb Patent Gmbh Passiv-infrarot-bewegungsmelder
GB9100791D0 (en) * 1991-01-15 1991-02-27 Smiths Industries Plc Detector assemblies
DE4137560C1 (de) * 1991-11-15 1993-02-25 Abb Patent Gmbh, 6800 Mannheim, De
DE4333707C2 (de) * 1993-10-02 1996-12-05 Insta Elektro Gmbh & Co Kg Passiv-Infrarot-Bewegungsmelder
DE4337953A1 (de) * 1993-11-06 1995-05-11 Abb Patent Gmbh Vorrichtung zur Erfassung von Lichtstrahlen
ATE188056T1 (de) * 1994-02-08 2000-01-15 Merten Gmbh & Co Kg Geb Infrarot-bewegungsmelder
DE4428628A1 (de) * 1994-08-12 1996-02-15 Merten Gmbh & Co Kg Geb Infrarot-Bewegungsmelder
JP2005241555A (ja) * 2004-02-27 2005-09-08 Optex Co Ltd 受動型赤外線感知器
GB2507818B (en) 2012-11-13 2015-09-09 Pyronix Ltd Infrared detection device and masking section

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476948A (en) * 1968-02-19 1969-11-04 Sylvania Electric Prod Optical intrusion detection system using reflected dual beam peripheral scanning
EP0113468B1 (de) * 1983-01-05 1990-07-11 Marcel Dipl.-Ing. ETH Züblin Optisches Bauelement zum Umlenken optischer Strahlen
US4703171A (en) * 1985-11-05 1987-10-27 Target Concepts Inc. Lighting control system with infrared occupancy detector
US4757204A (en) * 1986-01-28 1988-07-12 Cerberus Ag Ceiling mounted passive infrared intrusion detector with dome shaped lens
DE3710614A1 (de) * 1987-03-31 1988-10-20 Siedle & Soehne S Bewegungsmelder
DE8717763U1 (de) * 1987-12-24 1990-01-11 Asea Brown Boveri Ag, 68309 Mannheim Strahlungsdetektor

Also Published As

Publication number Publication date
ATE107785T1 (de) 1994-07-15
EP0421119A1 (de) 1991-04-10
DE3932943A1 (de) 1991-04-11
DK0421119T3 (da) 1994-10-24
DE59006207D1 (de) 1994-07-28

Similar Documents

Publication Publication Date Title
DE2653110C3 (de) Infrarotstrahlungs-Einbruchdetektor
DE68906839T2 (de) Photoelektrischer Fühler.
DE19628050C2 (de) Infrarotmeßgerät und Verfahren der Erfassung eines menschlichen Körpers durch dieses
DE60113316T3 (de) Sicherheitssensor mit Sabotage-Feststellungsfähigkeit
DE4341080C1 (de) Lichtelektrische Vorrichtung mit einem Testobjekt
EP0107042A1 (de) Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum
CH684717A5 (de) Infraroteindringdetektor.
DE69934662T2 (de) Ultraviolett-detektor
DE3119720A1 (de) Bewegungsmelder zur raumueberwachung
EP0421119B1 (de) Passiv-Infrarot-Bewegungsmelder
EP0821330B1 (de) Rauchmelder
DE69334181T2 (de) Verbesserter partikelsensor und vorrichtung zum nachweis eines teilchens
DE2951388A1 (de) Strahlungsdetektor
CH667744A5 (de) Infrarot-eindringdetektor.
EP1780559B1 (de) Optischer Sensor
EP2053428B1 (de) Optoelektronischer Sensor
DE202013008909U1 (de) Vorrichtung zum Vermessen von Scheiben, insbesondere von Windschutzscheiben von Fahrzeugen
DE202013008910U1 (de) Vorrichtung zum Vermessen von Scheiben, insbesondere von Windschutzscheiben von Fahrzeugen
DE19804059A1 (de) Vorrichtung zur optischen Distanzmessung
DE3424135C2 (de)
DE3346699A1 (de) Bewegungsmelder
WO1992010819A1 (de) Passiv-infrarot-bewegungsmelder
DE202008016946U1 (de) Lichtgitter oder Lichtschranke
DE2645040B2 (de) Strahlungsdetektor
EP0476397A1 (de) Intrusionsdetektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB LI NL SE

17P Request for examination filed

Effective date: 19910926

17Q First examination report despatched

Effective date: 19931115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB LI NL SE

REF Corresponds to:

Ref document number: 107785

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940711

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940712

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940713

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940725

Year of fee payment: 5

REF Corresponds to:

Ref document number: 59006207

Country of ref document: DE

Date of ref document: 19940728

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940701

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19940829

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940831

Year of fee payment: 5

Ref country code: NL

Payment date: 19940831

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

EAL Se: european patent in force in sweden

Ref document number: 90116453.3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950828

Ref country code: DK

Effective date: 19950828

Ref country code: AT

Effective date: 19950828

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

Ref country code: BE

Effective date: 19950831

BERE Be: lapsed

Owner name: ASEA BROWN BOVERI A.G.

Effective date: 19950831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960301

EUG Se: european patent has lapsed

Ref document number: 90116453.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000610

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501