EP0107042A1 - Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum - Google Patents

Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum Download PDF

Info

Publication number
EP0107042A1
EP0107042A1 EP83109377A EP83109377A EP0107042A1 EP 0107042 A1 EP0107042 A1 EP 0107042A1 EP 83109377 A EP83109377 A EP 83109377A EP 83109377 A EP83109377 A EP 83109377A EP 0107042 A1 EP0107042 A1 EP 0107042A1
Authority
EP
European Patent Office
Prior art keywords
signal
sensor element
detector
detector according
optics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83109377A
Other languages
English (en)
French (fr)
Other versions
EP0107042B1 (de
Inventor
Gustav Rolf Dr.Sc.Nat. Dipl.Phys. Pfister
Peter Dr. phil. Dipl.Phys. Wägli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Publication of EP0107042A1 publication Critical patent/EP0107042A1/de
Application granted granted Critical
Publication of EP0107042B1 publication Critical patent/EP0107042B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • G08B29/188Data fusion; cooperative systems, e.g. voting among different detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/04Monitoring of the detection circuits
    • G08B29/046Monitoring of the detection circuits prevention of tampering with detection circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to an IR detector for detecting a body which has a temperature which deviates from its ambient temperature, with at least one sensor element which serves to generate an electrical signal as a function of IR radiation incident thereon and at least one for focusing those emanating from the body IR radiation on the optics serving the sensor element, as well as an evaluation circuit used to monitor the electrical signal emitted by the sensor element.
  • IR detectors which respond to the IR radiation emanating from a body, in particular from people, so-called “passive IR detectors”, in monitoring devices for the detection of intruders in rooms to be monitored.
  • DE-AS 2 103 909 describes such a monitoring device in which adequate coverage of a particularly large overall area is in each case only one sensor element is reached, which then delivers a clearly distinguishable output signal when an intruder exceeds the limit of the coverage area; This is achieved in that a plurality of reflecting surfaces are arranged in such a way that the IR radiation coming from a plurality of separate fields of view is directed onto the sensing element.
  • the radiation entrance window of the IR detectors is covered with an optical filter with a pass range of 4 - 20 ⁇ m .
  • the signal emitted by the sensor is amplified by an AC amplifier, which is designed so that only signals in the frequency range are amplified, which corresponds to the passage of an intruder through the different zones of the room to be monitored.
  • This frequency range is preferably between 0.1 and 10 Hz.
  • a passive IR detector is known from US Pat. No. 3,480,473, in which the IR radiation falls onto the IR sensor via a fine grating arranged in a cylindrical manner around the JR sensor. This enables all-round monitoring and differentiation of background radiation, since a moving body emitting IR radiation generates an electrical alternating signal. To distinguish a moving body emitting IR radiation from background radiation, all together the space to be monitored is divided into fan-shaped monitoring areas, for example by zone optics.
  • thermocouples or thermistors or pyroelectric detectors
  • the IR detector has two optical systems with different focal lengths, for example a mirror arranged behind the IR detector and having a larger focal length than a germanium lens arranged in front of the IR detector, which covers the close range serves to increase the remote sensitivity.
  • an IR motion detector in which, in order to reduce the sensitivity to electromagnetic radiation penetrating glass, the optical filter located in front of the input of the IR detector is connected to a heat sink in the form of a solid metal body.
  • Differential elements are also used in IR detectors, ie the spatial zones are imaged on two closely adjacent sensor elements (for example two electrodes applied to the same element), which are then connected to a differential amplifier.
  • a sensor is described, for example, in US Pat. No. 3,839,640. At close range they are on the Zones shown overlapping individual elements, ie turbulence generate the same electrical signals on both elements, ie the differential amplifier output remains unchanged.
  • these differential elements it is possible to successfully suppress the turbulence, which is only disturbing if it occurs in the vicinity of the detector.
  • the sensitivity to objects moving in the vicinity is greatly reduced or not recognizable, as is the case with turbulence. In other words: burglars who are very close to the detector cannot be detected; acts of sabotage, such as masking, over-spraying or the like, cannot be recognized either.
  • a pyrodetector with two pyroelectric sensors is known, one of which is located in the focal point of an IR radiation reflecting concave mirror, while the other serves to compensate for the IR radiation originating in particular from the cover outside the focal point is arranged.
  • the various known measures to suppress false alarms are effective, but only include part of the problem of false alarms and especially the problem of sabotage.
  • the latter problem relates to the willful covering of the entry window by an object, e.g. Hat or board, or by spraying on a transparent lacquer, which absorbs the IR radiation necessary for detection or intrusion in the wavelength range of 4 - 20 ⁇ m. This blinds the detector and intruders can no longer be detected.
  • the invention has for its object to avoid the disadvantages of the known IR detectors and to create an IR detector with increased reliability, ie increased detection probability with reduced susceptibility to false alarms.
  • Another object of the invention is to provide an IR detector, the electrical circuit of which makes it possible to suppress false alarms which are generated by thermal turbulence and electronic noise and also to detect slowly moving objects with a small temperature difference from the background.
  • Another task is to create an IR detector in which acts of sabotage, such as covering the entrance optics with IR-impermeable materials (for example paper, glass or spray paints), are detected and in which signals distinguishable from hot air turbulence are obtained.
  • the output signal of an IR detector of the type mentioned at the outset is evaluated not only in terms of its amplitude but also in terms of its similarity with a reference signal.
  • reference signals are stored in a read-only memory which correspond to the signals which are generated by an object which moves through the monitoring area of the optics at different speeds.
  • Each signal of the IR detector is then correlated with the reference signals and an alarm is triggered if the resemblance to one or more reference signals exceeds a predetermined value and the amplitude is at the same time greater than a predetermined threshold value. Since there are still high similarities even with noisy input signals (SIN - 1), this greatly improves the probability of detection.
  • the reference signal is obtained from a second optical system, the monitoring range of which is different from the first optical system, in connection with a second detector;
  • the second optical system preferably monitors only the near area of the detector.
  • the second sensor element has an optical system, the focal length of which is set up in such a way that the close range (ie housing, window) is imaged on the sensor element, in contrast to the first optical system, which objects at far distances on the maps the first sensor element.
  • the second optical system consists of pinhole diaphragms or mirror segments which cause the Only overlap monitoring areas in the immediate vicinity of the detector.
  • the comparison is only carried out with permanently stored references in order to achieve an increase in the probability of detection, a differential sensor element being used for the turbulence suppression. In this case, a second sensor element is unnecessary.
  • the IR detector has a first sensor element 11 which is exposed to IR radiation from the room to be monitored by a first optical system 0 1 with a certain focal length. Depending on the level of the IR radiation impinging thereon, the first sensor element 11 emits an electrical signal which is amplified by a first amplifier 21.
  • the amplified signal is fed to a first analog / digital converter 31, which converts the analog signal present at the input into a digital signal S 1 and a correlator K, in which it is compared with reference signals, and a threshold value detector 42, in which the amplitude is determined is feeding.
  • the correlator K and the threshold detector 42 are followed by an alarm stage A, which emits an alarm / sabotage signal as a function of the correlation C determined by the correlator K and the amplitude of the signal S I.
  • the K orrelator K uses the signals R1 ... Rn, which are stored in a read-only memory FS and which correspond to different object speeds, or the signal S 2 , which is obtained from a second sensor element 12, which has a second optic 0 2 different from 0 1 .
  • an object moving through a surveillance area generates a sequence of positive and negative signal pulses, for example the positive pulse corresponding to the movement into the monitored zone, the negative going pulse corresponding to the movement out of the monitored zone.
  • the height and width of the pulses depend on the speed of movement and the temperature difference from the object to the background temperature.
  • pulse sequences can now be selected which correspond, for example, to different typical movement speeds.
  • idealized reference signals for example the following rectangular pulses or pulses, which have the known Gaussian shape.
  • the current signal S 1 is now continuously checked for similarity with the reference signals R 1 ... Rn stored in the read-only memory S 1 .
  • r is the stored reference signal, s the current signal generated by the moving object, and -T o / 2 , + To / 2 are integration limits that must be optimized based on experiments.
  • C (t) is a measure of the similarity of the two signals r and s, which is known as the correlation of r and s. (Compare e.g. Introduction to Radar Systems Mc Graw Hill 1962/1980 by MJ Skolnik).
  • the alarm is triggered when the correlation C (t) and the amplitude a (t) exceed a certain, predetermined value in the course of time.
  • an additional trigger is used ne threshold for the similarity of signals and their amplitudes.
  • the similarity comparison has the advantage that even with heavily noisy input signals (signal / noise ratio ⁇ 1), which can no longer be evaluated with the conventional method, a correlation C (t) can be clearly calculated and compared with the threshold value. This two-criteria evaluation can significantly increase the probability of detection for a given false alarm rate.
  • FIG. 2 shows the measured probability of occurrence W of a certain amplitude A (in relative units) for various current signals S 1 emitted by sensor element 11 in a logarithmic representation.
  • W was determined experimentally by measuring the signals of different nominally identical events again.
  • W A then denotes the probability that a given signal occurs for a given event.
  • R electronic noise
  • LE slow walking speed, small temperature contrast to the environment
  • T close-up turbulence
  • FIG. 3 shows the measured probability of occurrence W c of the maximum correlation C (similarity) of a signal S 1 with the stored reference signals R 1 ... Rn (the greater the value of C, the greater the resemblance of the current signal S 1 with the reference signal (R 1 ... Rn)
  • the signals caused by a real break-in are shifted to large similarity values and separated from the false alarms.
  • Differential sensors according to CH-PA 884/82 which are not balanced for high frequencies, are particularly suitable here.
  • a further reference signal S 2 which originates from a second sensor element 12, is equipped, for example, with an optical system 0 2 , which has a pinhole, which ensures that the monitoring range of the the two sensor elements only overlap in the immediate vicinity of the detector.
  • This signal is also first amplified by a second amplifier 22, then converted into digital form in a second analog / digital converter 23.
  • the signal S 2 is finally reference signal S 2 is supplied as the correlator K.
  • the correlator K is the correlation C of the obtained from the first sensor element 11, signal S 1 to the signal S l received by the sensor element. 11
  • the correlation C (schematic resemblance) of the signals S 1 and S 2 as a function of the distance Z from the detector 11, 12 for two different events, such as covering with non-IR-transparent material, so a tamper event S and W armluftturbulenz ( T) applied.
  • the correlation C (similarity) only reaches high values in the immediate vicinity of the detector and the values are different for the two events S and T.
  • FIG. 5 shows the probability of occurrence W for the correlation (similarity) of the two signals S1 and S 2 for different events.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Bei einem passiven Infrarotmelder wird zur Reduktion der Fehlalarmanfälligkeit und zur Erhöhung der Detektionswahrscheinlichkeit das aktuelle von einem ersten Sensorelement (11) erhaltene Signal (S1) in einem Korrelator (K) laufend mit Referenzsignalen (R1. . .Rn), die in einem Festwertspeicher (FS) gespeichert sind, und/oder mit dem aktuellen, von einem zweiten, den Nahbereich überwachenden Sensorelement (12) erhaltenen Signal (S2) verglichen. Der Korrelator (K) gibt ein Ausgangssignal ab, das der Korrelation (C) der beiden miteinander verglichenen Signale (R1. . .Rn bzw. S2) entspricht. Ein Alarmsignal wird ausgelöst, wenn die Korrelation (C) einen vorbestimmten Wert, z. B. 0,7, überschreitet und die Amplitude die Schwelle erreicht. Der IR-Detektor weist nicht nur bei stark verrauschten Signalen eine hohe Sicherheit gegen Fehlalarme und eine hohe Detektionswahrscheinlichkeit auf, sondern löst auch bei Sabotage, z. B. Abdecken der Eingangsoptik, ein Alarmsignal aus.

Description

  • Die Erfindung betrifft einen IR-Detektor zur Feststellung eines Körpers, der eine von seiner Umgebungstemperatur abweichende Temperatur besitzt, mit mindestens einem zur Erzeugung eines elektrischen Signals in Abhängigkeit von einer darauf auftreffenden IR-Strahlung dienenden Sensorelement und mindestens einer zur Fokussierung der von dem Körper ausgehenden IR-Strahlung auf das Sensorelement dienenden Optik, sowie einer zur Ueberwachung des von dem Sensorelement abgegebenen elektrischen Signals dienenden Auswerteschaltung.
  • Es ist bekannt, IR-Detektoren, welche auf die von einem Körper, insbesondere von Personen, ausgehende IR-Strahlung ansprechen, sogenannte "Passiv-IR-Detektoren", in Ueberwachungseinrichtungen zur Feststellung von Eindringlingen in zu überwachende Räume anzuwenden. Ein Nachteil dieser IR-Detektoren und der heutzutage verwendeten, breitbandig empfindlichen Sensorelementen, wie pyroelektrischen Kristallen oder Polymeren, Bolometern oder Thermoelementen, besteht darin, dass diese Elemente auf elektromagnetische Strahlung im gesamten Wellenlängenbereich ansprechen. Daraus ergibt sich, dass auch Signale erzeugt werden, die von IR-Strahlung herrühren, welche nicht von Eindringlingen erzeugt werden. Solche Fehlalarme müssen in einem guten Ueberwachungssystem möglichst verhindert werden.
  • Es wurde daher immer wieder nach Möglichkeiten gesucht, die passiven IR-Detektoren sicherer gegen Fehlalarme zu machen. In der DE-AS 2 103 909 ist beispielsweise eine solche Ueberwachunqseinrichtung beschrieben, bei der eine ausreichende Deckung eines besonders grossen Gesamtbereichs mittels jeweils nur eines Fühlerelementes erreicht wird, welches dann ein deutlich unterscheidbares Ausgangssignal liefert, wenn ein Eindringling die Grenze des Deckungsbereichs überschreitet; dies wird dadurch erreicht, dass mehrere reflektierende Flächen so angeordnet sind, dass durch sie die aus mehreren, voneinander getrennten Sichtfeldern kommende IR-Strahlung auf das Fühlerelement gerichtet wird.
  • Zur Vermeidung von Fehlalarmen durch elektromagnetische Strahlung, welche in einem Wellenlängenbereich liegt, der nicht demjenigen eines schwarzen Körpers (Eindringling) im Temperaturbereich 0 - 40 °C entspricht, wird das Strahlungseintrittsfenster der IR-Detektoren mit einem optischen Filter vom Durchlassbereich 4 - 20 um überdeckt. Dadurch wird insbesondere sichtbares Licht abgeblockt. Weiter wird das vom Sensor abgegebene Signal über einen Wechselstromverstärker verstärkt, welcher so ausgelegt ist, dass nur Signale in dem Frequenzbereich verstärkt werden, der dem Durchgang eines Eindringlings durch die verschiedenen Zonen des zu überwachenden Raumes entspricht. Dieser Frequenzbereich liegt vorzugsweise zwischen 0,1 und 10 Hz.
  • Zur Erfassung von Eindringlingen in einen zu überwachenden Raum ist es erforderlich, den ganzen Raum zu erfassen, d.h. sowohl den Nah- als auch den Fernbereich, um zu vermeiden, eine Vielzahl von Detektoren anbringen zu müssen. Aus der US-PS 3 480 473 ist ein passiver IR-Detektor bekannt, bei welchem die IR-Strahlung über ein zylinderförmig um den JR-Sensor angeordnetes feines Gitter auf den IR-Sensor fällt. Dadurch ist eine Rundumüberwachung möglich und eine Unterscheidung von Hintergrundstrahlung, da ein sich bewegender, IR-Strahlung aussendender Körper ein elektrisches Wechselsignal erzeugt. Zur Unterscheidung eines sich bewegenden, IR-Strahlung aussendenden Körpers von Hintergrundstrahlung wird allgemein der zu überwachende Raum, beispielsweise durch eine Zonenoptik, in fächerförmige Ueberwachungsbereiche aufgeteilt.
  • Bei dem IR-Detektor der US-PS 3 829 693 sind als IR-Sensoren Thermoelemente (oder Thermistoren oder pyroelektrische Detektoren) in verschiedenen Säulen so angeordnet, dass Elemente der gleichen Säule gleiche Polarität aufweisen, sich jedoch von der Polarität benachbarter Säulen unterscheiden, so dass ein bewegter, IR-Strahlung aussendender Körper ein Wechselstromsignal erzeugt. Der IR-Detektor weist zur Fokussierung der IR-Strahlung auf den IR-Sensor zwei optische Systeme mit unterschiedlicher Brennweite auf, wobei beispielsweise ein hinter dem IR-Detektor angeordneter Spiegel, der eine grössere Brennweite hat als eine vor dem IR-Detektor angeordnete Germaniumlinse, welche den Nahbereich abdeckt, zur Erhöhung der Fernempfindlichkeit dient.
  • Aus der EP-PA 25 983 ist ein IR-Bewegungsmelder bekannt, bei welchem zur Reduzierung der Empfindlichkeit gegenüber glasdurchdringender elektromagnetischer Strahlung das vor dem Eingang des IR-Detektors liegende optische Filter mit einer Wärmesenke in Gestalt eines massiven Metallköpers verbunden ist. Diese Anordnung bewirkt zwar eine Unterdrückung der sekundären IR-Strahlungsquelle, kann aber nicht Fehlalarme durch Wärmeturbulenzen im Raum verhindern, da diese Turbulenzen Strahlung im Bereich 4 bis 20 µm ausstrahlen, also auch derjenigen von Eindringlingen entsprechen.
  • In IR-Detektoren werden auch Differentialelemente angewendet, d.h. die Raumzonen werden auf zwei eng benachbarte Sensorelemente abgebildet (z.B. zwei auf demselben Element aufgebrachte Elektroden), welche dann mit einem Differenzverstärker verbunden sind. Ein solcher Sensor ist beispielsweise in der US-PS 3 839 640 beschrieben. Im Nahbereich sind die auf die einzelnen Elemente abgebildeten Zonen überlappend, d.h. Turbulenzen erzeugen auf beiden Elementen die gleichen elektrischen Signale, d.h. der Differenzverstärkerausgang bleibt unverändert. Mit diesen Differenzelementen gelingt es also, die Turbulenzen, welche nur störend sind, wenn sie im Nahbereich des Detektors auftreten, erfolgreich zu unterdrücken. Gleichzeitig ist damit aber auch die Empfindlichkeit auf sich im Nahbereich bewegende Objekte stark reduziert oder nicht erkennbar, wie das bei Turbulenzen der Fall ist. Mit anderen Worten: Einbrecher, die sich sehr nahe am Detektor befinden, können nicht erfasst werden; ebenso können Sabotageakte, wie z.B. Abdecken, Uebersprayen o.ä., nicht erkannt werden.
  • Aus der EP-PA 23 354 ist ein Pyrodetektor mit zwei pyroelektrischen Sensoren bekannt, von denen sich der eine im Brennpunkt eines IR-Strahlung reflektierenden Hohlspiegels befindet, während der andere zur Kompensation der insbesondere von der Abdeckung stammenden IR-Strahlung dienende Sensor ausserhalb des Brennpunktes angeordnet ist.
  • Die verschiedenen bekannten Massnahmen zur Unterdrückung von Fehlalarmen sind wohl wirksam, umfassen aber nur einen Teil des Fehlalarmproblems und ganz besonders auch des Sabotageproblems. Das letztere Problem bezieht sich auf das mutwillige Abdecken des Eintrittsfensters durch einen Gegenstand, z.B. Hut oder Brett, oder durch Aufsprühen eines durchsichtigen Lackes, welcher die für die Detektion oder Eindringlingen notwendige IR-Strahlung im Wellenlängenbereich von 4 - 20 um absorbiert. Dadurch wird der Detektor blind gemacht, und somit können Eindringlinge nicht mehr festgestellt werden.
  • Ein weiteres bis jetzt in der Literatur noch nicht beschriebenes Problem besteht darin, dass heutige IR-Detektoren ein Signal/Rausch-Verhältnis (S/N) von etwa 10 haben müssen, bevor der Detektor Alarm anzeigt. Dieses Verhältnis musste so hoch gewählt werden, um die Zahl der Fehlalarme zu reduzieren, die durch das Detektorrauschen verursacht werden. Ein Signal/ Rausch-Verhältnis S/N % 10 hat nun aber für das Erfassen von Eindringlingen ganz erhebliche Nachteile, da das durch das Objekt erzeugte Signal proportional zur Temperaturdifferenz zwischen Objekt und Hintergrund ist. Ausserdem ist das Signal bei den heutzutage verwendeten pyroelektrischen Sensorelementen proportional zur Geschwindigkeit, mit der sich das Objekt durch den zu überwachenden Raum bewegt. Wegen dieses zur Unterdrückung von Fehlalarmen erforderlichen hohen Signal/ Rausch-Verhältnises ist es schwierig, Eindringlinge, die sich sehr langsam bewegen oder/und die durch geeignete Kleidung die Temperaturdifferenz zur Umgebung verkleinern, zu erfassen.
  • Der Erfindung liegt die Aufgabe zugrunde, die Nachteile der bekannten IR-Detektoren zu vermeiden und einen IR-Detektor mit erhöhter Zuverlässigkeit, d.h. erhöhter Detektionswahrscheinlichkeit bei reduzierter Fehlalarmanfälligkeit zu schaffen. Eine weitere Aufgabe der Erfindung ist es, einen IR-Detektor zu schaffen, dessen elektrische Schaltung es ermöglicht, Fehlalarme, die durch Wärmeturbulenz und elektronisches Rauschen erzeugt werden, zu unterdrücken und auch langsam bewegte Objekte mit kleiner Temperaturdifferenz zum Hintergrund zu erfassen. Ferner ist es Aufgabe der Erfindung einen IR-Detektor zu schaffen, dessen Auswerteschaltung auswertbare Signale erzeugt, die es gestatten, die Alarmschwelle weit unterhalb des bisherigen Signal/Rausch-Verhältnis von 10 anzusetzen,ohne die Fehlalarmunterdrückung negativ zu beeinflussen. Eine weitere Aufgabe besteht darin, einen IR-Detektor zu schaffen, bei dem Sabotageakte, wie Abdecken der Eingangsoptik mit IR-undurchlässigen Materialien (z.B. Papier, Glas oder Spraylacks), erkannt werden und bei dem von Warmluftturbulenz unterscheidbare Signale erhalten werden.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass das Ausgangssignal eines IR-Detektors der eingangs erwähnten Art nicht nur nach seiner Amplitude sondern auch nach seiner Aehnlichkeit mit einem Referenzsignal ausgewertet wird. Dazu werden in einem Festwertspeicher Referenzsignale abgespeichert, welche den Signalen entsprechen, die von einem Objekt erzeugt werden, welches sich mit verschiedenen Geschwindigkeiten durch den Ueberwachungsbereich der Optik bewegt. Jedes Signal des IR-Detektors wird dann mit den Referenzsignalen korreliert und ein Alarm wird ausgelöst, wenn die Aehnlichkeit mit einer oder mehreren Referenzsignalen einen vorgegebenen Wert überschreitet und gleichzeitig die Amplitude grösser als ein festgesetzter Schwellwert ist. Da auch bei verrauschten Einqangssignalen (SIN - 1) noch hohe Aehnlichkeiten auftreten, wird dadurch eine starke Verbesserung der Detektions-Wahrscheinlichkeit erreicht.
  • Gemäss einer Ausgestaltung des erfindungsgemässen IR-Detektors wird das Referenzsignal von einer zweiten Optik, deren Ueberwachungsbereich von der ersten Optik verschieden ist, in Verbindung mit einem zweiten Detektor gewonnen; vozugsweise überwacht die zweite Optik dabei nur den Nahbereich des Melders.
  • Gemäss einer bevorzugten Ausführungsform des erfindungsgemässen IR-Detektors weist das zweite Sensorelement eine Optik auf, deren Brennweite so eingerichtet ist, dass der Nahbereich (d.h. Gehäuse, Fenster) auf das Sensorelement abgebildet wird im Gegensatz zu der ersten Optik, welche weit entfernte Objekte auf das erste Sensorelement abbildet.
  • Gemäss einer weiteren bevorzugten Ausführungsform des erfindungsgemässen IR-Detektors besteht die zweite Optik aus Lochblenden oder Spiegelsegmenten, welche bewirken, dass sich die Ueberwachungsbereiche nur in unmittelbarer Meldernähe überschneiden.
  • Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemässen IR-Detektors wird der Vergleich nur mit festgespeicherten Referenzen bewerkstelligt, um eine Steigerung der Detektionswahrscheinlichkeit zu erreichen, wobei für die Turbulenzunterdrückung ein differentielles Sensorelement verwendet wird. In diesem Fall ist ein zweites Sensorelement überflüssig.
  • Im folgenden wird die Erfindung anhand der Zeichnungen beispielsweise näher erläutert. Es zeigen:
    • Figur 1: Ein Blockschaltbild einer Ausführungsform eines erfindungsgemässen IR-Detektors.
    • Figur 2: Die Auftretenswahrscheinlichkeit einer bestimmten Amplitude für verschiedene Ereignisse.
    • Figur 3: Die Auftretenswahrscheinlichkeit einer bestimmten Aehnlichkeit eines am IR-Detektor auftretenden Signals mit einem der abgespeicherten Referenzsignale für verschiedene Ereignisse.
    • Figur 4: Die Auftretenswahrscheinlichkeit einer bestimmten Aehnlichkeit zwischen den beiden Signalen, welche von den beiden verschiedenen Optiken für verschiedene Ereignisse.
    • Figur 5: Die Aehnlichkeit zwischen den beiden Signalen als Funktion des Abstandes vom Melder für verschiedene Ereignisse.
  • In dem in Figur 1 dargestellten Blockschaltbild weist der IR-Detektor ein erstes Sensorelement 11 auf, das von einer ersten Optik 01 mit einer bestimmten Brennweite mit IR-Strahlung aus dem zu überwachenden Raum beaufschlagt wird. Das erste Sensorelement 11 gibt in Abhängigkeit vom Pegel der darauf auftreffenden IR-Strahlung ein elektrisches Signal ab, das von einem ersten Verstärker 21 verstärkt wird. Das verstärkte Signal wird einem ersten Analog/Digital-Wandler 31 zugeführt, welcher das am Eingang anliegende Analogsignal in ein Digitalsignal S1 umwandelt und einem Korrelator K, in welchem es mit Referenzsignalen verglichen wird und einem Schwellwertdetektor 42, in dem die Höhe der Amplitude ermittelt wird, zuführt. Dem Korrelator K und dem Schwellwertdetektor 42 ist eine Alarmstufe A nachgeordnet, die ein Alarm/ Sabotage-Signal in Abhängigkeit von der von dem Korrelator K ermittelten Korrelation C und der Amplitude des Signals SI abgibt.
  • Als Referenzsignale dienen dem Korrelator K die in einem Festwertspeicher FS abgespeicherten Signale R1... Rn, die verschiedenen Objektgeschwindigkeiten entsprechen oder das Signal S2, welches von einem zweiten Sensorelement 12 gewonnen wird, das eine zweite von 01 unterschiedliche Optik 02 aufweist.
  • Typischerweise erzeugt ein Objekt, welches sich durch einen Ueberwachungsbereich bewegt, eine Folge von positiven und negativen Signalpulsen, wobei beispielsweise der positive Puls der Bewegung in die überwachte Zone hinein, der negativ gehende Puls der Bewegung aus der überwachten Zone hinaus entspricht. Die Höhe und Breite der Pulse sind von der Bewegungsgeschwindigkeit und vom Temperaturunterschied vom Objekt zur Hintergrundtemperatur abhängig. Als Referenzsignale können nun Pulsfolgen gewählt werden, welche z.B. verschiedenen typischen Bewegungsgeschwindigkeiten entsprechen. Es genügt aber auch, idealisierte Referenzsignale zu verwenden, z.B. sich folgende Rechteckpulse oder Pulse, welche die bekannte Gaussform haben.
  • Das aktuelle Signal S1 wird nun laufend mit den im Festwertspeicher S1 abgespeicherten Referenzsignalen R1 ... Rn auf Aehnlichkeit geprüft. Das geschieht nach der zum Beispiel von der Radartechnik her bekannten Korrelationsmethode, nach welcher man das Integral
    Figure imgb0001
    berechnet. r ist das abgespeicherte Referenzsignal, s das aktuelle vom sich bewegenden Objekt erzeugte Signal, und -To/2, +To/2 sind Integrationsgrenzen, welche anhand von Experimenten optimiert werden müssen. C(t) ist ein Mass für die Aehnlichkeit der beiden Signale r und s, welche als Korrelation von r und s bekannt ist. (Vergleiche z.B. Introduction to Radar Systems Mc Graw Hill 1962/1980 von M.J. Skolnik). Alarm wird dann ausgelöst, wenn die Korrelation C(t) sowie die Amplitude a(t) im Laufe der Zeit einen bestimmten, vorgegebenen Wert überschreitet. Mit anderen Worten, man setzt in dem erfindungsgemässen Verfahren für die Alarmauslösung zusätzlich eine Schwelle für die Aehnlichkeit von Signalen nebst deren Amplituden. Der Aehnlichkeitsvergleich hat den Vorteil, dass auch bei stark verrauschten Eingangssignalen (Signal/Rausch-Verhältnis ~ 1), welche bei der konventionellen Methode nicht mehr ausgewertet werden können, eine Korrelation C(t) eindeutig berechnet und mit dem Schwellwert verglichen werden kann. Durch diese Zweikriterienauswertung kann bei vorgegebener Fehlalarmrate die Detektionswahrscheinlichkeit wesentlich vergrössert werden.
  • Die erhaltenen Resultate sind in den Figuren 2 und 3 veranschaulicht. In Figur 2 ist die gemessene Auftretenswahrscheinlichkeit W einer bestimmten Amplitude A (in relativen Einheiten) für verschiedene vom Sensorelement 11 abgegebene aktuelle Signale S1 in logarithmischer Darstellung aufgetragen. W wurde experimentell bestimmt, indem die Signale verschiedener nominell gleicher Ereignisse nochmals gemessen wurden. WA bezeichnet dann die Wahrscheinlichkeit, dass ein vorgegebenes Signal für ein vorgegebenes Ereignis auftritt. Es bedeuten in Fig. 2: R = elektronisches Rauschen; LE = langsame Schrittgeschwindigkeit, kleiner Temperaturkontrast zur Umgebung; T = Turbulenz im Nahbereich; SE = normale Schrittgeschwindigkeit, Temperaturkontrast ΔT zum Hintergrund = 2°.
  • Daraus ist ersichtlich, dass bei der bisher üblichen Alarmschwelle von S/N = 10 die Detektionswahrscheinlichkeit ungenügend ist und dass immer noch eine hohe Fehlalarmwahrscheinlichkeit durch Warmluftturbulenz existiert. Insbesondere aber werden auch Eindringlinge mit kleinen Schrittgeschwindigkeiten und kleiner Temperaturdifferenz zur Umgebung nicht erfasst.
  • In der Figur 3 ist die gemessene Auftretenswahrscheinlichkeit Wc der maximalen erzielten Korrelation C (Aehnlichkeit) eines Signals S1 mit den abgespeicherten Referenzsignalen R1 ... Rn aufgetragen (je grösser der Wert von C desto grösser ist die Aehnlichkeit des aktuellen Signals S1 mit dem Referenzsignal (R1 ... Rn). Wie aus der Figur 3 zu ersehen ist, werden die durch einen echten Einbruch hervorgerufenen Signale zu grossen Aehnlichkeitswerten verschoben und von den Fehlalarmen getrennt.
  • Soll die Turbulenz stärker unterdrückt werden, so kann ein differentieller Detektor angewendet werden, der die aus dem Nahbereich stammenden Signale unterdrückt. Auf diese Weise wird eine sehr hohe Fehlalarmunterdrückung bei stark erhöhter Detektionswahrscheinlichkeit (Eindringlinge mit kleinen Schrittgeschwindigkeiten und kleiner Temperaturdifferenz zur Umgebung werden nun erfasst) erreicht, wenn die Alarmschwelle in der Amplitude beispielsweise auf einen Wert von S/N = 2 und in der Aehnlichkeit beispielsweise auf einen Wert C = 0,7 gelegt wird. Hier eignen sich insbesondere auch Differentialsensoren gemäss CH-PA 884/82, die für hohe Frequenzen unbalanciert sind.
  • In den Figuren 4 und 5 ist die Funktionsweise erläutert, wenn ein weiteres Referenzssignal S2, das von einem zweiten Sensorelement 12 stammt, das z.B. mit einer Optik 02, die eine Lochblende aufweist, ausgerüstet ist, welche gewährleistet, dass sich der Ueberwachungsbereich der beiden Sensorelemente nur in unmittelbarer Meldernähe überlappt. Dieses Signal wird ebenfalls zuerst durch einen zweiten Verstärker 22 verstärkt, dann in einem zweiten Analog/Digital-Wandler 23 in digitale Form umgewandelt. Das Signal S2 wird schliesslich als Referenzsignal S2 dem Korrelator K zugeführt.
  • Der Korrelator K bildet die Korrelation C des vom ersten Sensorelementes 11 erhaltenen Signals S1, mit dem dem vom Sensorelement 11 erhaltenen Signal Sl.
  • In der Figur 4 ist die Korrelation C (schematische Aehnlichkeit) der Signale S1 und S2 als Funktion des Abstandes Z vom Detektor 11, 12 für zwei verschiedene Ereignisse wie Abdecken mit nicht IR-transparentem Material, also ein Sabotageereignis S und Warmluftturbulenz (T) aufgetragen. Wie aus der Figur 4 zu entnehmen ist, erreicht die Korrelation C (Aehnlichkeit) nur in unmittelbarer Meldernähe hohe Werte und die Werte sind für die beiden Ereignisse S und T verschieden.
  • In Figur 5 sind zur weiteren Erläuterung dieses Sachverhaltes die Auftretenswahrscheinlichkeit W für die Korrelation (Aehnlichkeit) der beiden Signale S1 und S2 für verschiedene Ereignisse aufgetragen. Es bedeuten: R = elektronisches Rauschen und/oder Durchschreiten des Ueberwachungsbereiches in grossem Abstand vom Melder; T = Warmluftturbulenz und S = Abdecken, Uebersprayen im Nahbereich (Sabotageereignis).
  • Wie aus der Figur 5 zu entnehmen ist, treten drei Aehnlichkeitsbereiche auf, die ein Unterscheiden der Ereignisse erlauben und so eine Identifikation von Sabotage ermöglichen.

Claims (12)

1. IR-Detektor zur Feststellung eines Eindringlings, der eine von seiner Umgebungstemperatur abweichende Temperatur aufweist, mit mindestens einem zur Erzeugung eines elektrischen Signals in Abhängigkeit von einer darauf auftreffenden IR-Strahlung dienenden Sensorelement und mindestens einer zur Fokussierung der von dem Eindringling ausgehenden IR-Strahlung auf das Sensorelement dienenden Optik, welche aus mehreren bestimmten, voneinander getrennten Sichtfeldern kommende IR-Strahlung auf das Sensorelement richtet, sowie einer zur Ueberwachung des von dem Sensorelement abgegebenen elektrischen Signals dienenden Auswerteschaltung, die ein von Bewegungen des Eindringlings verursachten Aenderungen der auftreffenden Strahlung abhängiges Ausgangssignal abgibt, dadurch gekennzeichnet, dass die Auswerteschaltung einen Korrelator (K), in welchem das aktuelle, vom Sensorelement (11) erhaltene Signal S1 laufend mit in einem Festwertspeicher (FS) gespeicherten Referenzsignalen (R1 ... Rn), welche typischen Bewegungsabläufen von Eindringlingen entsprechen, verglichen wird, und welcher ein Ausgangssignal abgibt, welches der Korrelation (C) von aktuellem Signal (S1) und Referenzsignal (R4 ... Rn) entspricht, und eine dem Korrelator (K) nachgeschaltete Alarmstufe (A) aufweist, welche so eingerichtet ist, dass sie ein Alarmsignal abgibt, wenn die Korrelation (C) und die Amplitude des Signals (S1) gleichzeitig einen vorbestimmten Wert überschreiten.
2. IR-Detektor gemäss Patentanspruch 1, dadurch gekennzeichnet, dass er ein erstes Sensorelement (11) mit einer ersten Optik (01) und ein zweites Sensorelement (12) mit einer zweiten Optik (02) aufweist, wobei die beiden Optiken (01, 02) so eingerichtet sind, dass sich ihre Ueberwachungsbereiche nur in unmittelbarer Meldernähe überlappen, dass der Korrelator (K) so eingerichtet ist, dass er das aktuelle, vom Sensorelement (11) erhaltene Signal (S1) laufend mit in dem Festwertspeicher (FS) gespeicherten Referenzsignalen (Ri ... Rn) und/oder dem aktuellen vom Sensorelement (12) erhaltenen Signal (S2) vergleicht.
3. IR-Detektor gemäss Patentanspruch 2, dadurch gekennzeichnet, dass die Alarmstufe (A) so eingerichtet ist, dass sie ein Störungssignal abgibt, wenn die Korrelation (C) zwischen dem vom ersten Sensorelement (11) erhaltenen Signal (SI) und dem vom zweiten Sensorelement (12) erhaltenen Signal (SZ) einen vorgegebenen, ersten Schwellenwert, vorzugsweise 0,35, überschreitet.
4. IR-Detektor gemäss Patentanspruch 3, dadurch gekennzeichnet, dass die Alarmstufe (A) so eingerichtet ist, dass sie ein Alarmsignal abgibt, wenn die Korrelation (C) zwischen dem vom ersten Sensorelement (11) erhaltenen Signal (S1) und dem vom zweiten Sensorelement (12) erhaltenen Signal (S2) einen vorgegenen, zweiten Schwellenwert, vorzugsweise 0,7, überschreitet.
5. IR-Detektor gemäss einem der Patentansprüche 1 und 2, dadurch gekennzeichnet, dass die Alarmstufe (A) so eingerichtet ist, dass sie ein Alarmsignal abgibt, wenn die Korrelation (C) zwischen dem vom ersten Sensorelement (11) erhaltenen Signal (S1) und mindestens einem Referenzsignal (R1 ... Rn) aus dem Festwertspeicher (FS) einen vorgegebenen Schwellenwert, vorzugsweise den Wert 0,7 und gleichzeitig die Amplitude des Signals (S1) einen vorgegebenen Schwellenwert, vorzugsweise zweimal den rms-Wert des Rauschens, überschreitet.
6. IR-Detektor gemäss einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass der Festwertspeicher (FS) Referenzsignale (R1 ... Rn) gespeichert enthält, die Eindringlingen mit unterschiedlichen Geschwindigkeiten entsprechen.
7. IR-Detektor gemäss einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass als Sensorelement (11, 12) ein Differentialelement vorgesehen ist.
8. IR-Detektor gemäss einem der Patentansprüche 2 bis 7, dadurch gekennzeichnet, dass die Optik 01 des ersten Sensorelementes (11) so eingerichtet ist, dass sie den zu überwachenden Raum in mehreren aktiven Zonen überwacht und dass die Optik 02 des zweiten Sensorelementes (12) so eingerichtet ist, dass sie den zu überwachenden Raum in mehreren aktiven Zonen überwacht und dass die Optik 02 des zweiten Sensorelementes (12) so eingerichtet ist, dass sie nur das Strahlungseintrittsfenster abbildet.
9. IR-Detektor gemäss Patentanspruch 8, dadurch gekennzeichnet, dass die Optik 02 des zweiten Sensorelementes (12) aus einer Lochblende besteht, so dass gewährleistet ist, dass sich die Ueberwachungsbereiche der beiden Sensorelemente (11, 12) nur in unmittelbarer Meldernähe überlappen.
10. IR-Detektor gemäss Patentanspruch 9, dadurch gekennzeichnet, dass die Optik o2 aus Spiegelelementen besteht.
11. IR-Detektor gemäss einem der Patentansprüche 9 und 10, dadurch gekennzeichnet, dass sich die beiden Sensorelemente (11, 12) auf einem Chip befinden.
12. IR-Detektor gemäss einem der Patentansprüche 2 bis 11, dadurch gekennzeichnet, dass sich die beiden Sensorelemente (11, 12) in einem Gehäuse befinden.
EP83109377A 1982-10-01 1983-09-21 Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum Expired EP0107042B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH579582 1982-10-01
CH5795/82 1982-10-01

Publications (2)

Publication Number Publication Date
EP0107042A1 true EP0107042A1 (de) 1984-05-02
EP0107042B1 EP0107042B1 (de) 1987-01-07

Family

ID=4299431

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83109377A Expired EP0107042B1 (de) 1982-10-01 1983-09-21 Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum

Country Status (7)

Country Link
US (1) US4746910A (de)
EP (1) EP0107042B1 (de)
JP (1) JPS5990196A (de)
CA (1) CA1205158A (de)
DE (1) DE3369019D1 (de)
ES (1) ES8406766A1 (de)
NO (1) NO158645C (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198551A2 (de) * 1985-04-15 1986-10-22 Philips Electronics Uk Limited Infraroteinbruchdetektoranlage
EP0250746A2 (de) * 1986-07-03 1988-01-07 Fritz Fuss GmbH & Co. Passiver Infrarot-Bewegungsmelder
DE3624195A1 (de) * 1986-07-17 1988-01-21 Fuss Fritz Gmbh & Co Detektionsverfahren fuer einen passiven infrarot-bewegungsmelder und anordnung zur durchfuehrung des verfahrens
EP0256651A2 (de) * 1986-07-04 1988-02-24 British Aerospace Public Limited Company Strahlungsempfindliche optische Vorrichtung
EP0259015A2 (de) * 1986-08-05 1988-03-09 C & K Systems, Inc. Eindringungserkennungsvorrichtung mit Fehlererkennung
EP0318039A2 (de) * 1987-11-26 1989-05-31 Fujitsu Limited Notüberwachungssystem mit Infrarotverarbeitung
GB2210453A (en) * 1987-09-26 1989-06-07 Matsushita Electric Works Ltd Personal body detecting device
DE4236618A1 (de) * 1992-10-29 1994-05-05 Hirschmann Richard Gmbh Co Anordnung zum Verhindern von Fehlalarmen bei Bewegungsmeldern mit einem Infrarot-Detektor
EP0646901A1 (de) * 1993-10-04 1995-04-05 Cerberus Ag Verfahren zur Verarbeitung der Signale eines passiven Infrarot-Detektors und Infrarot-Detektor zur Durchführung des Verfahrens
EP0849714A1 (de) * 1996-12-20 1998-06-24 Siemens Aktiengesellschaft Verfahren zum Auswerten eines Signals eines Bewegungsmelders und Bewegungsmelder
DE19548578C2 (de) * 1995-12-27 2001-02-08 Elbau Elektronik Bauelemente G Positionsselektiver passiver Infrarot-Intrusion-Sensor
DE19607608C2 (de) * 1996-02-29 2003-04-03 Abb Patent Gmbh Bewegungsmelder mit mindestens einem Dualsensor zur Detektion von Wärmestrahlung
EP2605034A1 (de) * 2011-12-14 2013-06-19 Riegl Laser Measurement Systems GmbH Vorrichtung und Verfahren zur Detektion eines optischen Impulses

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171513B (en) * 1985-02-19 1989-08-31 Atomic Energy Authority Uk Safety system for laser-utilising facilities
DE3623792C1 (de) * 1986-07-15 1987-12-10 Messerschmitt Boelkow Blohm Einrichtung zur Feststellung der Personenzahl und Richtung innerhalb eines zu ueberwachenden Raumes oder einer Durchgangsschleuse
JPH0196438A (ja) * 1987-10-09 1989-04-14 Mitsubishi Motors Corp ターボチャージャを備える内燃エンジンのo↓2センサ取付構造
DE58905587D1 (de) * 1988-03-30 1993-10-21 Cerberus Ag Verfahren zur Brandfrüherkennung.
CH676519A5 (de) * 1988-06-28 1991-01-31 Cerberus Ag
AU4522489A (en) * 1989-01-09 1990-08-01 Kabushikigaisha Shogakuikueisha Kyoikukenkyusho Apparatus for grasping tv viewing condition in household
US4902887A (en) * 1989-05-13 1990-02-20 The United States Of America As Represented By The Secretary Of The Navy Optical motion detector detecting visible and near infrared light
CA1302541C (en) * 1989-08-07 1992-06-02 Shmuel Hershkovitz Integrating passive infrared intrusion detector and method
US5444432A (en) * 1992-07-20 1995-08-22 Digital Security Controls Ltd. Detection signal evaluation at varying signal levels
US5493273A (en) * 1993-09-28 1996-02-20 The United States Of America As Represented By The Secretary Of The Navy System for detecting perturbations in an environment using temporal sensor data
US5428345A (en) * 1994-03-30 1995-06-27 Sentrol, Inc. Method of and apparatus for operating a security system to produce an alarm signal
US5772326A (en) * 1996-08-30 1998-06-30 Hubbell Incorporated Temperature and passive infrared sensor module
US5764146A (en) * 1995-03-29 1998-06-09 Hubbell Incorporated Multifunction occupancy sensor
US5570079A (en) * 1995-04-24 1996-10-29 Dockery; Devan Home security system for detecting an intrusion into a monitored area by an infrared detector
AUPN374495A0 (en) * 1995-06-23 1995-07-13 Vision Systems Limited Security sensor arrangement
AU709759B2 (en) * 1995-06-23 1999-09-09 Vfs Technologies Limited Security sensor arrangement
EP0762358B1 (de) * 1995-08-18 2001-10-31 Gsbs Development Corporation Feueralarmsystem
JP3086406B2 (ja) * 1995-10-04 2000-09-11 オプテックス株式会社 受動型赤外線式人体検知装置
US5825413A (en) * 1995-11-01 1998-10-20 Thomson Consumer Electronics, Inc. Infrared surveillance system with controlled video recording
DE19607607A1 (de) * 1996-02-29 1997-09-04 Abb Patent Gmbh Verfahren zur Bewegungsmeldung mit mindestens einem Infrarotsensor und Bewegungsmelder zur Durchführung des Verfahrens
NL1003500C2 (nl) * 1996-07-04 1998-01-07 Aritech Bv Bewakingssysteem met lichtgeleidende middelen.
US6166625A (en) * 1996-09-26 2000-12-26 Donnelly Corporation Pyroelectric intrusion detection in motor vehicles
CA2196014C (en) * 1997-01-27 2001-05-08 Reinhart Karl Pildner Size discriminating dual element pir detector
US5870022A (en) * 1997-09-30 1999-02-09 Interactive Technologies, Inc. Passive infrared detection system and method with adaptive threshold and adaptive sampling
US6086131A (en) 1999-03-24 2000-07-11 Donnelly Corporation Safety handle for trunk of vehicle
US6390529B1 (en) 1999-03-24 2002-05-21 Donnelly Corporation Safety release for a trunk of a vehicle
US6783167B2 (en) 1999-03-24 2004-08-31 Donnelly Corporation Safety system for a closed compartment of a vehicle
US6485081B1 (en) 1999-03-24 2002-11-26 Donnelly Corporation Safety system for a closed compartment of a vehicle
US6287328B1 (en) * 1999-04-08 2001-09-11 Agilent Technologies, Inc. Multivariable artifact assessment
EP1061489B1 (de) * 1999-06-07 2004-08-25 Siemens Building Technologies AG Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung
ATE282291T1 (de) 1999-10-14 2004-06-15 Siemens Building Tech Ag Passiv-infrarotmelder
US20050117018A1 (en) * 1999-11-05 2005-06-02 Wolf Peter H. Automated camera system
GB9929287D0 (en) * 1999-12-11 2000-02-02 Barker Charles H Infra-red monitoring system
GB0007634D0 (en) * 2000-03-29 2000-05-17 Ademco Microtech Ltd Improved detector
WO2002047942A2 (en) 2000-11-16 2002-06-20 Donnelly Corporation Vehicle compartment occupancy detection system
GB0028491D0 (en) * 2000-11-22 2001-01-10 Isis Innovation Detection of features in images
GB2375251B (en) * 2001-04-30 2003-03-05 Infrared Integrated Syst Ltd The location of events in a three dimensional space under surveillance
DE10157530C2 (de) * 2001-11-23 2003-09-18 Insta Elektro Gmbh Passiv-Infrarot-Bewegungsmelder
ATE429681T1 (de) * 2003-08-20 2009-05-15 Koninkl Philips Electronics Nv System und verfahren zur erkennung von signalartefakten
US7161152B2 (en) * 2003-12-16 2007-01-09 Robert Bosch Gmbh Method and apparatus for reducing false alarms due to white light in a motion detection system
US8258932B2 (en) 2004-11-22 2012-09-04 Donnelly Corporation Occupant detection system for vehicle
JP4289561B2 (ja) * 2004-12-24 2009-07-01 横浜ゴム株式会社 車両の異常検出方法及びその装置並びにそのセンサユニット
EP1859422A4 (de) * 2005-03-15 2009-12-23 Chubb Internat Holdings Ltd Kontextbewusstes alarmsystem
US7952474B2 (en) * 2005-03-15 2011-05-31 Chubb Protection Corporation Nuisance alarm filter
WO2006100672A2 (en) * 2005-03-21 2006-09-28 Visonic Ltd. Passive infra-red detectors
US20070229308A1 (en) * 2006-03-16 2007-10-04 Steven Robert Stalp Pedestrian alert apparatus and method
US7535351B2 (en) 2006-07-24 2009-05-19 Welles Reymond Acoustic intrusion detection system
US8017913B2 (en) * 2006-07-27 2011-09-13 Visonic Ltd. Passive infrared detectors
US7880603B2 (en) * 2006-10-09 2011-02-01 Robert Bosch Gmbh System and method for controlling an anti-masking system
JP5590762B2 (ja) * 2007-02-15 2014-09-17 アツミ電氣株式会社 熱線センサ
FR2940836A1 (fr) * 2009-01-06 2010-07-09 Michelin Soc Tech Procede et dispositif de determination de l'etat de deplacement d'un vehicule
WO2013072916A1 (en) 2011-11-16 2013-05-23 Visonic Ltd. Motion detection systems and methodologies
GB2506885B (en) * 2012-10-10 2017-04-12 Read Dale Occupancy sensor
US9867259B2 (en) * 2013-03-15 2018-01-09 The Watt Stopper, Inc. Side looking occupancy sensor
CN104627030A (zh) 2013-11-13 2015-05-20 光宝科技股份有限公司 载具安全系统及应用于其上的安全侦测与处理方法
EP3114657B1 (de) * 2014-03-07 2019-05-29 Carrier Corporation Tür- und fenstersensoren unter verwendung von umgebungsinfrarotstrahlung
US9405120B2 (en) 2014-11-19 2016-08-02 Magna Electronics Solutions Gmbh Head-up display and vehicle using the same
US9934672B2 (en) * 2015-09-24 2018-04-03 Honeywell International Inc. Systems and methods of conserving battery life in ambient condition detectors
US10055986B2 (en) 2015-11-03 2018-08-21 Rite-Hite Holding Corporation Dynamically configurable traffic controllers and methods of using the same
CN106878668B (zh) 2015-12-10 2020-07-17 微软技术许可有限责任公司 对物体的移动检测
US11125907B2 (en) * 2018-05-18 2021-09-21 Steelcase Inc. Occupancy sensing systems and methods
CN111784986B (zh) * 2020-07-13 2021-02-09 和宇健康科技股份有限公司 基于大数据的智能安防报警方法
USD970374S1 (en) 2020-10-28 2022-11-22 Rite-Hite Holding Corporation Traffic alert device
CN113612940A (zh) * 2021-07-08 2021-11-05 浙江焜腾红外科技有限公司 夜视红外热成像仪
EP4207118A1 (de) * 2021-12-29 2023-07-05 Oleksii Yulianovych Biliavskyi Verfahren zur detektion einer objektbewegung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803572A (en) * 1973-03-15 1974-04-09 Vidar Labor Inc Intrusion detecting apparatus
US4225786A (en) * 1978-09-15 1980-09-30 Detection Systems, Inc. Infrared detection system
GB2047886A (en) * 1979-04-23 1980-12-03 American District Telegraph Co Passive infrared intrusion detection system
GB2064108A (en) * 1979-11-13 1981-06-10 Arrowhead Ets Inc Passive infrared intrusion detector
GB2064910A (en) * 1980-01-11 1981-06-17 Zellweger Uster Ag Process for the surveyance of premises by means of directional pulse waves and installation for carrying out such process
US4342987A (en) * 1979-09-10 1982-08-03 Rossin Corporation Intruder detection system
FR2503427A1 (fr) * 1981-03-25 1982-10-08 Goldstein Pinchas Dispositif passif de protection optique a vue et ensemble de reflecteur stabilise utilise dans le dispositif

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6224680A (en) * 1980-08-20 1982-03-17 Secom Co., Ltd. Supersonic warning system
US4382291A (en) * 1980-10-17 1983-05-03 Secom Co., Ltd. Surveillance system in which a reflected signal pattern is compared to a reference pattern
US4512000A (en) * 1980-12-23 1985-04-16 Tokyo Shibaura Denki Kabushiki Kaisha Object detector which compares returned signals from successive transmissions
US4639902A (en) * 1985-06-24 1987-01-27 The United States Of America As Represented By The Secretary Of The Navy Near ultrasonic pattern comparison intrusion detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803572A (en) * 1973-03-15 1974-04-09 Vidar Labor Inc Intrusion detecting apparatus
US4225786A (en) * 1978-09-15 1980-09-30 Detection Systems, Inc. Infrared detection system
GB2047886A (en) * 1979-04-23 1980-12-03 American District Telegraph Co Passive infrared intrusion detection system
US4342987A (en) * 1979-09-10 1982-08-03 Rossin Corporation Intruder detection system
GB2064108A (en) * 1979-11-13 1981-06-10 Arrowhead Ets Inc Passive infrared intrusion detector
GB2064910A (en) * 1980-01-11 1981-06-17 Zellweger Uster Ag Process for the surveyance of premises by means of directional pulse waves and installation for carrying out such process
FR2503427A1 (fr) * 1981-03-25 1982-10-08 Goldstein Pinchas Dispositif passif de protection optique a vue et ensemble de reflecteur stabilise utilise dans le dispositif

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198551A2 (de) * 1985-04-15 1986-10-22 Philips Electronics Uk Limited Infraroteinbruchdetektoranlage
GB2174224A (en) * 1985-04-15 1986-10-29 Philips Electronic Associated Infra-red intruder detection system
EP0198551A3 (en) * 1985-04-15 1988-03-23 Philips Electronic And Associated Industries Limited Infra-red intruder detection system
EP0250746A2 (de) * 1986-07-03 1988-01-07 Fritz Fuss GmbH & Co. Passiver Infrarot-Bewegungsmelder
EP0250746A3 (en) * 1986-07-03 1988-10-19 Fritz Fuss Gmbh & Co. Method to detect an intruding object in the measuring field of a passive infrared motion detector and device for carrying out the method
DE3622371A1 (de) * 1986-07-03 1988-02-04 Fuss Fritz Gmbh & Co Verfahren zum detektieren eines in das messfeld eines passiven infrarot-bewegungsmelders eingedrungenen objektes und vorrichtung zur durchfuehrung des verfahrens
EP0256651A2 (de) * 1986-07-04 1988-02-24 British Aerospace Public Limited Company Strahlungsempfindliche optische Vorrichtung
EP0256651A3 (de) * 1986-07-04 1990-02-28 British Aerospace Public Limited Company Strahlungsempfindliche optische Vorrichtung
EP0254813A2 (de) * 1986-07-17 1988-02-03 Fritz Fuss GmbH & Co. Detektionsverfahren für einen passiven Infrarot-Bewegungsmelder und Anordnung zur Durchführung des Verfahrens
EP0254813A3 (en) * 1986-07-17 1988-09-28 Fritz Fuss Gmbh & Co. Detection method for a passive infrared motion detector and arrangement for carrying out the method
DE3624195A1 (de) * 1986-07-17 1988-01-21 Fuss Fritz Gmbh & Co Detektionsverfahren fuer einen passiven infrarot-bewegungsmelder und anordnung zur durchfuehrung des verfahrens
EP0259015A2 (de) * 1986-08-05 1988-03-09 C & K Systems, Inc. Eindringungserkennungsvorrichtung mit Fehlererkennung
EP0259015A3 (en) * 1986-08-05 1988-07-06 C & K Systems, Inc. Fault-detecting intrusion detection device
USRE33824E (en) * 1986-08-05 1992-02-18 Fault detecting intrusion detection device
GB2210453B (en) * 1987-09-26 1992-01-15 Matsushita Electric Works Ltd Infared intrusion detector
GB2210453A (en) * 1987-09-26 1989-06-07 Matsushita Electric Works Ltd Personal body detecting device
EP0318039A2 (de) * 1987-11-26 1989-05-31 Fujitsu Limited Notüberwachungssystem mit Infrarotverarbeitung
EP0318039A3 (en) * 1987-11-26 1990-12-05 Fujitsu Limited An emergency watching system using an infrared image processing
DE4236618A1 (de) * 1992-10-29 1994-05-05 Hirschmann Richard Gmbh Co Anordnung zum Verhindern von Fehlalarmen bei Bewegungsmeldern mit einem Infrarot-Detektor
EP0646901A1 (de) * 1993-10-04 1995-04-05 Cerberus Ag Verfahren zur Verarbeitung der Signale eines passiven Infrarot-Detektors und Infrarot-Detektor zur Durchführung des Verfahrens
DE19548578C2 (de) * 1995-12-27 2001-02-08 Elbau Elektronik Bauelemente G Positionsselektiver passiver Infrarot-Intrusion-Sensor
DE19607608C2 (de) * 1996-02-29 2003-04-03 Abb Patent Gmbh Bewegungsmelder mit mindestens einem Dualsensor zur Detektion von Wärmestrahlung
EP0849714A1 (de) * 1996-12-20 1998-06-24 Siemens Aktiengesellschaft Verfahren zum Auswerten eines Signals eines Bewegungsmelders und Bewegungsmelder
EP2605034A1 (de) * 2011-12-14 2013-06-19 Riegl Laser Measurement Systems GmbH Vorrichtung und Verfahren zur Detektion eines optischen Impulses

Also Published As

Publication number Publication date
NO833572L (no) 1984-04-02
NO158645B (no) 1988-07-04
EP0107042B1 (de) 1987-01-07
NO158645C (no) 1988-10-12
CA1205158A (en) 1986-05-27
ES526552A0 (es) 1984-08-01
US4746910A (en) 1988-05-24
JPS5990196A (ja) 1984-05-24
ES8406766A1 (es) 1984-08-01
DE3369019D1 (en) 1987-02-12

Similar Documents

Publication Publication Date Title
EP0107042B1 (de) Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum
DE19628050C2 (de) Infrarotmeßgerät und Verfahren der Erfassung eines menschlichen Körpers durch dieses
DE69413117T2 (de) Detektierungssystem des passiven Typs von sich bewegendem Objekt
DE3129753C2 (de)
EP1168269B1 (de) Optoelektronische Schutzeinrichtung
DE3831654C2 (de)
CH675921A5 (de)
EP2775465B1 (de) Gefahrenmelder mit einem kontaktlos arbeitenden Wärmestrahlungssensor zur Ermittlung einer Umgebungstemperatur
EP1061489B1 (de) Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung
EP0080114B2 (de) Strahlungsdetektor mit mehreren Sensorelementen
EP1093100B1 (de) Passiv-Infrarotmelder
DE60203752T2 (de) Brandmelder
EP1071931B1 (de) Sensorvorrichtung und verfahren zum betreiben einer sensorvorrichtung
DE19517517B4 (de) Passiv Infrarot Eindringdetektor
DE19548578C2 (de) Positionsselektiver passiver Infrarot-Intrusion-Sensor
DE60319346T2 (de) Sensor mit erkennung von verdeckungen
EP0402829A2 (de) Verfahren und Vorrichtung zum Detektieren eines Eindringlings mittels eines passiven Infrarot-Bewegungsmelders
EP0660282B1 (de) Brandmeldesystem zur Früherkennung von Bränden
DE3231025C2 (de) Einrichtung zur Identifizierung von gepulster Laserstrahlung
WO1992010819A1 (de) Passiv-infrarot-bewegungsmelder
EP0250746B1 (de) Passiver Infrarot-Bewegungsmelder
EP0772171A1 (de) Passiver Infrarot-Einbruchdetektor und dessen Verwendung
DE4306425C1 (de) Melder für Bewegungsvorgänge
EP0476397A1 (de) Intrusionsdetektor
DE60104755T2 (de) Detektion von Hindernissen in einem Überwachungssystem mit Nutzung einer pyroelektrischen Matrix

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830921

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3369019

Country of ref document: DE

Date of ref document: 19870212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900814

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910930

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940815

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941209

Year of fee payment: 12

EUG Se: european patent has lapsed

Ref document number: 83109377.8

Effective date: 19920408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950930

Ref country code: CH

Effective date: 19950930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST