EP0361224B1 - Détecteur d'intrusion à infrarouge - Google Patents

Détecteur d'intrusion à infrarouge Download PDF

Info

Publication number
EP0361224B1
EP0361224B1 EP89117077A EP89117077A EP0361224B1 EP 0361224 B1 EP0361224 B1 EP 0361224B1 EP 89117077 A EP89117077 A EP 89117077A EP 89117077 A EP89117077 A EP 89117077A EP 0361224 B1 EP0361224 B1 EP 0361224B1
Authority
EP
European Patent Office
Prior art keywords
radiation
focusing means
radiation receiving
infrared
receiving areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89117077A
Other languages
German (de)
English (en)
Other versions
EP0361224A1 (fr
Inventor
Kurt Albert Müller
Hansjürg Mahler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT89117077T priority Critical patent/ATE96928T1/de
Publication of EP0361224A1 publication Critical patent/EP0361224A1/fr
Application granted granted Critical
Publication of EP0361224B1 publication Critical patent/EP0361224B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to an infrared intrusion detector according to the preamble of claim 1.
  • Infrared intrusion detectors are generally known; they are used to detect the penetration of infrared radiation emitting objects into monitored rooms.
  • infrared intrusion detectors For the monitoring of elongated rooms and corridors, specially adapted infrared intrusion detectors are used, which in the vertical plane have a relatively large, i.e. have a far-reaching sensitivity range and a relatively narrow sensitivity range in the horizontal plane. This creates a curtain-like sensitivity area that an intruder must pass through to gain access to a protected area.
  • Such an infrared intrusion detector is described in GB-A-2'080'945, in which such a "curtain” is generated by placing a cylindrical mirror in front of the focusing mirror, which ensures the wide sensitivity range in the vertical plane.
  • a disadvantage of these infrared intrusion detectors is that they have different sensitivity to objects at different distances.
  • DE-A1-31'14'112 describes a detector system working with infrared radiation which avoids the disadvantage mentioned and approximately has a uniform behavior over all distance ranges which differ widely.
  • One tries to achieve this by arranging three vertically offset concave mirrors, which have a common focal point in which an infrared sensor is located, in such a way that a mirror is provided in each case for monitoring a working area of the infrared intrusion detector.
  • each mirror provides an image of the object emitting infrared radiation of essentially the same size within the assigned distance range. Therefore, an object of given size emitting infrared radiation is detected approximately in the same way regardless of the distance range in which it is located, and the detector sensitivity is approximately the same for all distance ranges.
  • a disadvantage of this known infrared intrusion detection arrangement is that the space to be monitored is not sufficiently covered. Because of the gaps in particular in the vicinity of the detector (cf. FIG. 2), such infrared intrusion detectors are not completely sabotage-proof.
  • the object of the present invention is to provide an infrared intrusion detector which avoids the disadvantages of the previously known infrared intrusion detectors and which is in particular able to continuously monitor an elongated space by means of a curtain-like sensitivity zone such that the penetration of an object emitting infrared radiation into the Sensitivity zone at any distance from the detector gives the same output from the infrared sensor.
  • the optical bundling means are constructed and arranged in such a way that the size of the solid angle formed by the infrared sensor as the vertex and the outer boundary line of the respective bundling means is a function of the distance of the effective area used for the radiation reception areas from the detector, the solid angle the bundling means, which belong to radiation reception areas with the most distant and closest used effective areas, are largest and the solid angles of the bundling means, which belong to radiation reception areas with used effective areas at medium distances from the detector, are smallest.
  • the reason for this different weighting of the solid angle is that a close one and a distant intruder crosses fewer individual zones than an intruder in a medium range (see FIG. 6).
  • the optical focusing means preferably consist of a large number of parabolic mirrors, in particular a number between seven and fifteen.
  • the optical focusing means consist of a large number of Fresnel lenses, preferably in a number between seven and fifteen, in particular in a number of eleven.
  • the infrared penetration detector has eleven concave mirrors as optical bundling means, wherein - if one sets the solid angle of the mirror corresponding to the radiation receiving area with the effective area most distant from the sensor used - the one belonging to the next closer radiation receiving area Mirror also has a solid angle of approx. 100% and the solid angles of the mirrors belonging to the two following closer radiation reception areas are approx. 48% and the solid angles of the mirrors which belong to the following closer radiation reception areas approx. 44% , approx. 44%, approx. 28%, approx. 30%, approx. 42% and approx. 49% and the solid angle of the mirror, which belongs to the closest radiation reception area, is approx. 143%.
  • the optical focusing means consist of a large number of concave mirrors in combination with a large number of Fresnel lenses, the Fresnel lenses preferably covering the more distant radiation reception areas and the concave mirrors covering the closer radiation reception areas.
  • FIGS. 1 and 2 The representation of the field pattern of a known infrared intrusion detector according to FIGS. 1 and 2 shows that the space to be monitored is not covered with sensitivity areas with sufficient density.
  • FIG. 3 shows a top view of the front of an embodiment of an infrared intrusion detector according to the invention
  • the optical bundling means J1 to J11 are individual concave mirrors, or concave mirror elements J1 to J11, which are arranged in a plurality of vertically offset rows and are constructed in such a way that they absorb the radiation falling on the detector from the individual radiation reception areas I1 to I11 focus the infrared sensor S (see FIG. 4).
  • its surface is preferably curved in the form of a paraboloid.
  • the outer boundary line of the surface of the mirror elements J1 to J11 which is effective for focusing the radiation is more or less regularly formed and, together with the sensor S arranged in the focal point, forms a solid angle.
  • the sensor S is located in the vicinity of the mirror elements J6, J9 and J11.
  • the most distant is the mirror element J1, which focuses on the detector the radiation reception area I1 that is most distant from the detector Radiation on the sensor (S) causes.
  • the mirror elements J8 to J11 which are responsible for the radiation reception areas I8 to I11 further away from the detector, are relatively small in area, their solid angles are very large because of the proximity of the sensor S.
  • the mirror elements J1 to J11 are dimensioned and arranged such that the radiation receiving areas I1 to I11 cover the space to be monitored in an overlapping manner in the vertical direction.
  • their size and their distance from and their angle to the sensor S are designed such that the sum of the radiation falling on the sensor S from different radiation receiving areas I1 to I11 from a moving object emitting infrared radiation in the shape of an upright person is constant.
  • the size of the mirror elements is dimensioned such that the solid angle formed by the infrared sensor S as the vertex and the outer boundary line of the respective bundling means J1 to J11 is a function of the distance of the effective area used for the radiation receiving areas I1 to I11 from The detector is the largest, and the solid angles of the bundling means J1, J2 and J11, which belong to radiation reception areas with the most distant used I1, I2 and closest I11 effective areas, and the solid angles of the bundling means J7, J8, the radiation receiving areas with used effective areas belong at medium I7, I8 distances from the detector, are smallest.
  • FIG. 4 shows a side view of the mirror arrangement J1 to J11 of an infrared intrusion detector according to the invention according to FIG. 3.
  • the mirror elements J8, J9 and J10, or J3 and J4 lie in a row one behind the other in the viewing direction and can therefore not be seen separately in FIG. It can be clearly seen that the sensor S is located in the immediate vicinity of the mirror element J11, which results in a very large solid angle despite the relative smallness of the mirror element J11.
  • the mirror element J1 has the largest effective mirror surface; Because of the large distance from the sensor S, the solid angle encompassed by this mirror element is smaller than the solid angle for the mirror element J11.
  • the focal lengths of the individual mirror elements J1 to J11 are adapted to the respective effective areas of the (corresponding) individual zones in such a way that the signal reaching sensor S in each case reaches a maximum depending on the distance within the effective area used.
  • Effective effective area used is to be understood within the radiation receiving area I1 to I11 as the area in which the infrared radiation of a person walking upright makes a geometrical contribution to the sensor signal.
  • the table below shows the effective areas used, which can also be referred to as “main active areas”, and the local focal lengths of the associated mirror elements J1 to J11 for the radiation receiving areas I1 to I11. I.
  • FIG. 5 and 6 the entirety of the radiation reception areas of an infrared penetration detector according to the invention according to FIGS. 3 and 4 is shown graphically, specifically in FIG. 5 viewed vertically from above and in FIG. 6 from the side. From the top view it can be seen that the radiation receiving areas I1 to I11 are narrow, from the side view it can be seen that the radiation receiving areas I1 and I2, however, extend extremely far.
  • FIG. 6 shows the individual radiation reception areas I1 to I11 for an infrared penetration detector mounted at a height of approximately 2.5 m. It can be seen that an object emitting infrared radiation, which has approximately the shape of an upright person, emits infrared radiation in several radiation receiving areas I2, I3, I4 in the middle distance range, while e.g. in the most distant radiation reception area I1 only emits infrared radiation in a single radiation reception area.
  • FIG. 7 shows the different sensitivity of infrared intrusion detectors to objects emitting infrared radiation as a function of the distance from the detector for two infrared intrusion detectors.
  • the sensor signal is in the ordinate axis [in relative units] and the distance of the infrared radiation is emitted on the abscissa axis Property in meters.
  • curve a) applies to an infrared penetration detector according to the present invention.
  • Curve c) indicates the detection threshold of the infrared intrusion detectors for an object emitting infrared radiation.
  • the curves apply to an object emitting infrared radiation, which has approximately the shape of an upright human being and which moves at different distances at a speed of 60 cm / sec across one or more of the radiation receiving areas I1 to I11.
  • the infrared intrusion detector according to the prior art the strong dependence of the infrared sensor signal on the distance.
  • the sensitivity of the infrared intrusion detector according to the invention is almost the same for all distances.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Burglar Alarm Systems (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (6)

  1. Détecteur d'intrusion à infrarouge pour détecter l'intrusion d'objets émettant un rayonnement infrarouge dans des pièces allongées, comportant un capteur à infrarouge (S) entouré par un boîtier et qui délivre un signal électrique en fonction de la variation dans le temps de l'intensité du rayonnement qui apparaît, une multiplicité de moyens optiques de focalisation (J1 à J11) servant à focaliser le rayonnement infrarouge émanant d'une multiplicité de zones (I1 à I11) de réception du rayonnement, sur le capteur à infrarouge commun, et un circuit d'évaluation qui délivre un signal d'alarme lors du dépassement d'une valeur de seuil prédéterminée du signal de sortie du capteur à infrarouge (S), caractérisé par le fait que les moyens optiques de focalisation (J1 à J11) sont constitués et disposés suivant une multiplicité de rangées décalées horizontalement et/ou verticalement de sorte que les zones (I1 à I11) de réception de rayonnement couvrent la pièce à contrôler en se chevauchant dans la direction verticale et que la grandeur de l'angle solide formé par le capteur à infrarouge (S) en tant que sommet et par la ligne limite extérieure du moyen respectif de focalisation (J1 à J11) est telle qu'à n'importe quelle distance du détecteur, la somme du rayonnement provenant des différentes zones (I1 à I11) de réception du rayonnement d'un objet mobile émettant un rayonnement infrarouge possédant la forme d'un homme debout et tombant sur le capteur infrarouge (S), est constante.
  2. Détecteur suivant la revendication 1, caractérisé par le fait que les moyens optiques de focalisation (J1 à J11) sont constitués de telle sorte que la grandeur de l'angle solide formé par le capteur à infrarouge (S) en tant que sommet et par la ligne limite extérieure du moyen respectif de focalisation (J1 à J11) est fonction de la distance entre la région active utilisée des zones (I1 à I11) de réception du rayonnement et le détecteur, les angles solides des moyens de focalisation (J1,J2), qui sont associés à des zones de réception de rayonnement comportant des régions actives utilisées les plus éloignées (I1,I2) et des régions actives utilisées les plus proches (I10,I11), sont maximum, et les angles solides des moyens de focalisation (J7,J8), qui sont associés aux zones de réception de rayonnement comportant des régions actives utilisées situées à des distances moyennes (I7,I8) du détecteur, sont minimum.
  3. Détecteur suivant l'une des revendications 1 et 2, caractérisé par le fait que les moyens optiques de focalisation (J1 à J11) sont constitués par une multiplicité de miroirs concaves, de préférence un nombre de tels miroirs compris entre sept et quinze.
  4. Détecteur suivant l'une des revendications 1 et 2, caractérisé par le fait que les moyens optiques de focalisation (J1 à J11) sont constitués par une multiplicité de lentilles de Fresnel, prévues de préférence en un nombre compris entre sept et quinze, et notamment prévues au nombre de onze.
  5. Détecteur suivant la revendication 3, caractérisé par le fait qu'il comporte onze miroirs concaves (J1 à J11) comme moyens optiques de focalisation, que, si on fixe à 100 la valeur de l'angle solide du miroir (J1), qui est associé à la zone (I1) de réception du rayonnement qui a la portée la plus grande, l'angle solide du miroir (J2), qui est associé à la zone (I2) de réception du rayonnement qui est plus proche en second, possède un angle solide égal aussi à environ 100 %, que les angles solides des miroirs (J3,J4), qui sont associés à des zones (I3,I4) de réception du rayonnement, qui sont les plus proches immédiatement suivantes, sont égaux à environ 48 % et que les angles solides des miroirs (J5 à J10), qui sont associés aux zones de réception de rayonnement plus proches suivantes, sont égaux à environ 44 % (pour I5), à environ 44 % (pour I6), à environ 28 % (pour I7), à environ 30 % (pour I8), à environ 42 % (pour I9), à environ 49 % (pour I10), et l'angle solide du miroir J11, qui est associé à la zone (I11) de réception du rayonnement, qui est la plus proche, est égal à environ 143 %.
  6. Détecteur suivant l'une des revendications 1 et 2, caractérisé par le fait que les moyens optiques de focalisation (J1 à J11) sont constitués par une multiplicité de miroirs concaves en combinaison avec une multiplicité de lentilles de Fresnel, les lentilles de Fresnel (J1 à J4) étant associées de préférence aux zones (I1 à I4) de réception du rayonnement comportant des régions actives utilisées qui sont plus éloignées, et les miroirs concaves (J5 à J11) étant associés aux zones (I5 à I11) de réception de rayonnement, qui comportent les régions actives utilisées qui sont les plus proches.
EP89117077A 1988-09-22 1989-09-15 Détecteur d'intrusion à infrarouge Expired - Lifetime EP0361224B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89117077T ATE96928T1 (de) 1988-09-22 1989-09-15 Infraroteindringdetektor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3508/88 1988-09-22
CH3508/88A CH676642A5 (fr) 1988-09-22 1988-09-22

Publications (2)

Publication Number Publication Date
EP0361224A1 EP0361224A1 (fr) 1990-04-04
EP0361224B1 true EP0361224B1 (fr) 1993-11-03

Family

ID=4257502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89117077A Expired - Lifetime EP0361224B1 (fr) 1988-09-22 1989-09-15 Détecteur d'intrusion à infrarouge

Country Status (7)

Country Link
US (1) US4990783A (fr)
EP (1) EP0361224B1 (fr)
AT (1) ATE96928T1 (fr)
CA (1) CA1313239C (fr)
CH (1) CH676642A5 (fr)
DE (1) DE58906096D1 (fr)
ES (1) ES2048253T3 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH681574A5 (fr) * 1991-03-01 1993-04-15 Cerberus Ag
US5311024A (en) * 1992-03-11 1994-05-10 Sentrol, Inc. Lens arrangement for intrusion detection device
EP0566852B1 (fr) * 1992-04-21 1998-08-26 Mitsubishi Denki Kabushiki Kaisha Disposition de détection du corps humain
US5955854A (en) 1992-09-29 1999-09-21 Prospects Corporation Power driven venting of a vehicle
DE4327229A1 (de) * 1993-08-13 1995-02-16 Abb Patent Gmbh Vorrichtung zum Einstellen mindestens eines auf eine bestimmte Stellgröße bezogenen Stellwertes bei einem Bewegungsmelder
EP0691531B1 (fr) * 1994-07-04 1998-10-28 Cerberus Ag Détecteur à infrarouge avec capteur pyroélectrique
EP0707294A1 (fr) 1994-10-10 1996-04-17 Cerberus Ag Miroir pour un détecteur d'intrusion à infrarouge et détecteur d'intrusion à infrarouge avec un agencement de miroirs
CA2196014C (fr) * 1997-01-27 2001-05-08 Reinhart Karl Pildner Detecteur de mouvement passif a infrarouge a deux elements permettant la discrimination de tailles
US6157024A (en) * 1999-06-03 2000-12-05 Prospects, Corp. Method and apparatus for improving the performance of an aperture monitoring system
ES2218927T3 (es) * 1999-10-01 2004-11-16 Siemens Building Technologies Ag Detector pasivo de infrarrojos.
EP1089244B1 (fr) * 1999-10-01 2004-03-31 Siemens Building Technologies AG Disposition de miroirs dans un capteur passif d'infrarouge
DE50012649D1 (de) * 2000-02-11 2006-06-01 Siemens Schweiz Ag Zuerich Präsenzmelder
CA2300644C (fr) * 2000-03-10 2009-07-14 Digital Security Controls Ltd. Detecteur de mouvement passif a infrarouge a l'epreuve des animaux de compagnie
US6693273B1 (en) 2000-05-02 2004-02-17 Prospects, Corp. Method and apparatus for monitoring a powered vent opening with a multifaceted sensor system
US6265972B1 (en) * 2000-05-15 2001-07-24 Digital Security Controls Ltd. Pet resistant pir detector
DE50103419D1 (de) 2001-11-05 2004-09-30 Siemens Building Tech Ag Passiv-Infrarotmelder
US7755052B2 (en) * 2003-03-14 2010-07-13 Suren Systems, Ltd. PIR motion sensor
DE502004008486D1 (de) * 2004-07-02 2009-01-02 Siemens Ag Passiv Infrarotmelder
CN101167110B (zh) * 2005-04-01 2010-05-19 西荣科技有限公司 改进的无源红外移动传感器
EP2450859B1 (fr) * 2010-11-05 2016-10-05 Vanderbilt International GmbH Optique multi-miroirs d'un détecteur de radiation passif
EP2752688A1 (fr) * 2013-01-04 2014-07-09 Samsung Electronics Co., Ltd Lentille de fresnel et un module de capteur pyroélectricité comprenant celle-ci
US10122847B2 (en) * 2014-07-20 2018-11-06 Google Technology Holdings LLC Electronic device and method for detecting presence and motion
US10539718B2 (en) 2017-08-17 2020-01-21 Honeywell International Inc. Fresnel lens array with improved off-axis optical efficiency

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339748A (en) * 1980-04-08 1982-07-13 American District Telegraph Company Multiple range passive infrared detection system
US4625115A (en) * 1984-12-11 1986-11-25 American District Telegraph Company Ceiling mountable passive infrared intrusion detection system
EP0191155B1 (fr) * 1985-01-24 1990-07-18 Cerberus Ag Détecteur infrarouge d'intrusion
EP0209385B1 (fr) * 1985-07-17 1990-10-17 Racal-Guardall (Scotland) Limited Détecteurs passifs infrarouges
EP0218055B1 (fr) * 1985-09-02 1989-11-08 Heimann GmbH Détecteur de mouvement à infrarouge
US4769545A (en) * 1986-11-26 1988-09-06 American Iris Corporation Motion detector
CH675316A5 (fr) * 1987-08-11 1990-09-14 Cerberus Ag
US4841284A (en) * 1987-10-19 1989-06-20 C & K Systems, Inc. Infrared intrusion detection system incorporating a fresnel lens and a mirror
DE3742031A1 (de) * 1987-12-11 1989-06-22 Asea Brown Boveri Bewegungsmelder mit einem infrarotdetektor
US4920268A (en) * 1989-01-31 1990-04-24 Detection Systems, Inc. Passive infrared detection system with substantially uniform sensitivity over multiple detection zones

Also Published As

Publication number Publication date
DE58906096D1 (de) 1993-12-09
US4990783A (en) 1991-02-05
ATE96928T1 (de) 1993-11-15
ES2048253T3 (es) 1994-03-16
EP0361224A1 (fr) 1990-04-04
CH676642A5 (fr) 1991-02-15
CA1313239C (fr) 1993-01-26

Similar Documents

Publication Publication Date Title
EP0361224B1 (fr) Détecteur d'intrusion à infrarouge
EP1089245B1 (fr) Détecteur infrarouge passif
DE3129753C2 (fr)
DE2537380A1 (de) Einbruchmeldeanlage
DE60109355T2 (de) Fern Infrarotstrahlung Thermosäule Detektionsvorrichtung zum Verbrechensschutz
EP0014825A2 (fr) Dispositif optique pour la détection passive à rayonnement infrarouge de mouvement
EP0020917B1 (fr) Arrangement optique pour détecteur de mouvement infrarouge passif
EP0191155B1 (fr) Détecteur infrarouge d'intrusion
EP0617389A1 (fr) Détecteur d'intrusion
DE3119720C2 (de) Auf elektromagnetische Strahlung ansprechender Bewegungsmelder
DE2103909A1 (de) Überwachungseinrichtung zur Fest stellung der Anwesenheit eines Eindring lings in einem Raum
EP0080114B2 (fr) Détecteur de rayonnement avec plusieurs éléments sensibles
EP0821330B1 (fr) Détecteur de fumée
EP0303913A1 (fr) Détecteur d'intrusion
DE19517517B4 (de) Passiv Infrarot Eindringdetektor
CH667744A5 (de) Infrarot-eindringdetektor.
DE3742031A1 (de) Bewegungsmelder mit einem infrarotdetektor
EP0421119B1 (fr) Indicateur passif de mouvement infrarouge
EP0050750B1 (fr) Détecteur d'intrusion à infrarouge
DE19540299A1 (de) Infrarotbewegungsmelder
EP1089244B1 (fr) Disposition de miroirs dans un capteur passif d'infrarouge
EP0262241A1 (fr) Détecteur d'intrusion à infrarouge
EP1612750B1 (fr) Détecteur passif d'infrarouges
DE4445197A1 (de) Passiv-Infrarot-Bewegungsmelder mit Sammellinsen zu einer Rundumerfassung von 360 DEG
EP0821331A1 (fr) Détecteur de fumée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19921211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 96928

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 58906096

Country of ref document: DE

Date of ref document: 19931209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931202

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2048253

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940930

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89117077.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000807

Year of fee payment: 12

Ref country code: AT

Payment date: 20000807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000811

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000814

Year of fee payment: 12

Ref country code: NL

Payment date: 20000814

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000823

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000908

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000911

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001213

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010915

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010916

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 20010930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

EUG Se: european patent has lapsed

Ref document number: 89117077.1

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050915