EP0355661B1 - Verfahren zum Herstellen direktpositiver Bilder - Google Patents

Verfahren zum Herstellen direktpositiver Bilder Download PDF

Info

Publication number
EP0355661B1
EP0355661B1 EP89115022A EP89115022A EP0355661B1 EP 0355661 B1 EP0355661 B1 EP 0355661B1 EP 89115022 A EP89115022 A EP 89115022A EP 89115022 A EP89115022 A EP 89115022A EP 0355661 B1 EP0355661 B1 EP 0355661B1
Authority
EP
European Patent Office
Prior art keywords
group
direct positive
image forming
forming method
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89115022A
Other languages
English (en)
French (fr)
Other versions
EP0355661A2 (de
EP0355661A3 (de
Inventor
Noriyuki Fuji Photo Film Co. Ltd. Inoue
Morio Fuji Photo Film Co. Ltd. Yagihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Publication of EP0355661A2 publication Critical patent/EP0355661A2/de
Publication of EP0355661A3 publication Critical patent/EP0355661A3/de
Application granted granted Critical
Publication of EP0355661B1 publication Critical patent/EP0355661B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/485Direct positive emulsions
    • G03C1/48538Direct positive emulsions non-prefogged, i.e. fogged after imagewise exposure
    • G03C1/48546Direct positive emulsions non-prefogged, i.e. fogged after imagewise exposure characterised by the nucleating/fogging agent
    • G03C1/48561Direct positive emulsions non-prefogged, i.e. fogged after imagewise exposure characterised by the nucleating/fogging agent hydrazine compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/141Direct positive material

Definitions

  • the present invention relates to a direct positive image forming method comprising development processing a direct positive photographic light-sensitive material which comprises a support having thereon at least one layer containing internal latent image type silver halide grains not have been previously fogged after fogging treatment or while fogging treatment, and more particularly to a direct positive image forming method which can provide a sufficiently hign D max even upon development processing at a low pH.
  • internal latent image type silver halide photographic emulsion means a silver halide photographic emulsion of the type in which sensitivity specks are predominantly present in the interior of silver halide grains and a latent image is predominantly formed in the interior of the grains by exposure to light.
  • a direct positive image is formed through the following mechanism: First, imagewise exposure results in the formation of an internal latent image in the interior of silver halide grains, which leads to the formation of fog centers selectively on the surface of the unexposed silver halide grains by surface de- sensitization based on the internal latent image, and subsequent conventional surface development processing results in formation of a photographic image (a direct positive image) on the unexposed area.
  • Selective formation of fog centers described above can be generally effected by a "light fogging method” in which the entire surface of a light-sensitive layer is secondarily exposed to light as described, for example, in British Patent 1,151,363 or a "chemical fogging method” using a nucleating agent as described, for example, in Research Disclosure, Vol. 151, No. 15162 (November, 1976), pp. 76 to 78.
  • Hydrazine compounds are well known as nucleating agents which are employed in the above-described "chemical fogging method".
  • heterocyclic quaternary ammonium salts are known and described, for example, in U.S. Patents 3,615,615, 3,719,494, 3,734,738, 3,759,901, 3,854,956, 4,094,683 and 4,306,016, British Patent 1,283,835, JP-A-52-3426, and JP-A-52 69613 (the term "JP-A” as used herein means an "unexamined published Japanese patent application").
  • the above described hydrazine type nucleating agents are most excellent in view of discrimination since they provide a large difference between maximum density (Dmax) and minimum density (Dmin). However, they are disadvantageous because they require processing at a high pH (pH>12).
  • heterocyclic quaternary ammonium salts as described above are known.
  • propargyl- or butynyl-substituted heterocyclic quaternary ammonium salt compounds as described in U.S. Patent 4,115,122 are excellent nucleating agents in view of discrimination when used in direct positive silver halide emulsions.
  • sensitizing dyes are employed for the purpose of spectral sensitization.
  • competitive adsorption of the sensitizing dyes and the heterocyclic quaternary ammonium type nucleating agents onto silver halide grains takes place, and thus, it is necessary to add a large amount of the quaternary ammonium salt type nucleating agents which are of low adsorptivity.
  • unevenness of density and destroy of color balance may undesirably occur. Therefore, these compounds are still insufficient. Further, these tendencies become more remarkable upon preservation of the photographic material under high temperature and high humidity conditions.
  • the object of the present invention to provide a direct positive image forming method and a direct positive photographic light-sensitive material which provides a high maximum image density and a low minimum image density and which forms stable direct positive images even when they are preserved under high temperature and/or high humidity conditions.
  • This object of the present invention is accomplished with a direct positive image forming method comprising development processing an imagewise exposed direct positive photographic light-sensitive material which comprises a support having thereon at least one layer containing internal latent image type silver halide grains not having been previously fogged after fogging treatment or while fogging treatment, wherein the fogging treatment is conducted in the presence of a compound represented by the following general formula (I): wherein A 1 and A 2 both represent a hydrogen atom or one of A 1 and A 2 represents a hydrogen atom and the other represents a sulfonyl group or an acyl group; G 1 represents a carbonyl group, a sulfonyl group, a sulfoxy group, or an iminomethylene group; L 1 represents a divalent linkage group; X 1 represents -O- or (wherein R 4 represents a hydrogen atom, an alkyl group or an aryl group); Y 1 represents R 1 and R 2 each represents an aliphatic group, an aromatic group, a heterocyclic
  • the present invention also provides a direct positive photographic light-sensitive material comprising a support having thereon at least one internal latent image type silver halide emulsion layer not having been previously fogged wherein the photographic light-sensitive materia contains at least one compound represented by the above general formula (I).
  • the present invention is based on the fact that highly active hydrazines which can not be expected from the information hitherto known are obtained by introducing the -Y 1 -X 1 - group into their molecules as described in the general formula (I).
  • a 1 and A 2 both represent a hydrogen atom or one of them represents a hydrogen atom and the other represents an alkylsulfonyl group having not more than 20 carbon atoms, an arylsulfonyl group having not more than 20 carbon atoms (preferably a phenylsulfonyl group or a phenylsulfonyl group substituted so that the sum of the Hammett's substituent constants becomes at least -0.5), or an acyl group having not more than 20 carbon atoms (preferably a benzoyl group, a substituted benzoyl group so that the sum of the Hammett's substituent constants becomes at least -0.5), or a straight chain, branched chain or cyclic, unsubstituted or substituted aliphatic acyl group (wherein the substituent can be selected from, for example, a halogen atom, an ether group, a sulfonamido group,
  • the aliphatic group represented by R1 or R 2 includes a straight chain, branched chain or cyclic alkyl group, alkenyl group or alkynyl group and each containing preferably from 1 to 30 carbon atoms, particularly from 1 to 20 carbon atoms.
  • the branched chain alkyl group may contain one or more hetero atoms therein to form a saturated hetero ring.
  • the aliphatic group examples include a methyl group, a tert-butyl group, an n-octyl group, a tert-octyl group, a cyclohexyl group, a hexenyl group, a pyrrolidyl group, a tetrahydrofuryl group and an n-dodecyl group.
  • the aromatic group represented by R 1 or R 2 includes a monocyclic or dicyclic aryl group, for example, a phenyl group or a naphthyl group.
  • the heterocyclic group represented by R 1 or R 2 includes a 3-membered to 10-membered saturated or unsaturated heterocyclic group containing at least one of a nitrogen atom, an oxygen atom or a sulfur atom which may be a monocyclic ring or form a condensed ring together with an aromatic ring or a heterocyclic ring.
  • a 5- membered or 6-membered aromatic heterocyclic group is preferred.
  • heterocyclic group examples include a pyridyl group, an imidazolyl group, a quinolinyl group, a benzimidazolyl group, a pyrimidyl group, a pyrazolyl group, an isoquinolinyl group, a benzothiazolyl group and a thiazolyl group.
  • the aliphatic group, aromatic group and heterocyclic group represented by R 5 or R 6 in OR 5 or NR 5 R 6 are the same as those described for R 1 or R 2 respectively.
  • the group represented by R 1' R 2 , R 5 and R 6 may be substituted with one or more substituents.
  • substituents include an alkyl group, an aralkyl group, an alkoxy group, an aryl group, a substituted amino group, an acylamino group, a sulfonylamino group, a ureido group, a urethane group, an aryloxy group, a sulfamoyl group, a carbamoyl group, an alkylthio group, an arylthio group, a sulfonyl group, a sulfinyl group, a hydroxyl group, a halogen atom, a cyano group, a sulfo group and a carboxy group.
  • These groups may be further substituted. Also, these groups may combine with each other to form a ring.
  • R 1 or R 2 may combine with L 1 to form a ring. Further, R 1 and R 2 may combine with each other to form a ring including a hetero ring which contains one or more hetero atoms (for example, an oxygen atom, a sulfur atom or a nitrogen atom).
  • a hetero ring which contains one or more hetero atoms (for example, an oxygen atom, a sulfur atom or a nitrogen atom).
  • the divalent linkage group represented by L 1 is an atom or an atomic group including at least one of a carbon atom, a nitrogen atom, a sulfur atom and an oxygen atom. More specifically, it includes an alkylene group, an alkenylene group, an alkynylene group, an arylene group, a heteroarylene group (these groups may be substituted), singly or as a combination thereof. Among them, an arylene group is preferred.
  • the arylene group includes a phenylene group and a naphthylene group and these groups may be substituted.
  • Suitable examples of the substituent include an alkyl group, an aralkyl group, an alkoxy group, an aryl group, an aryloxy group, an alkenyl group, an alkylthio group, an arylthio group, a sulfonyl group, a sulfinyl group, a halogen atom, a cyano group, an acyl group, a nitro group and
  • R 3 is preferably a hydrogen atom, an alkyl group (for example, methyl, trifluoromethyl, 3-hydroxypropyl or 3-methanesulfonamidopropyl), an aralkyl group (for example, o-hydroxybenzyl), or an aryl group (for example, phenyl, 3,5-dichlorophenyl, o-methanesulfonamidophenyl or 4-methanesulfonylphenyl).
  • an alkyl group for example, methyl, trifluoromethyl, 3-hydroxypropyl or 3-methanesulfonamidopropyl
  • an aralkyl group for example, o-hydroxybenzyl
  • an aryl group for example, phenyl, 3,5-dichlorophenyl, o-methanesulfonamidophenyl or 4-methanesulfonylphenyl.
  • R 3 is preferably an alkyl group (for example, methyl), an aralkyl group (for example, o-hydroxyphenylmethyl), an aryl group (for example, phenyl), or a substituted amino group (for example, dimethylamino).
  • R 3 is preferably a cyanobenzyl group or a methylthiobenzyl group.
  • R 3 is preferably a methoxy group, an ethoxy group, a butoxy group, a phenoxy group or a phenyl group.
  • R 3 is preferably a methyl group, an ethyl group or a substituted or unsubstituted phenyl group.
  • Suitable examples of the substituent for R 3 include an alkyl group, an aralkyl group, an alkoxy group, an aryl group, a substituted amino group, an acylamino group, a sulfonylamino group, a ureido group, a urethane group, an aryloxy group, a sulfamoyl group, a carbamoyl group, an alkylthio group, an arylthio group, a sulfonyl group, a sulfinyl group, a hydroxyl group, a halogen atom, a cyano group, a sulfo group, a carboxy group, an acyloxy group, an acyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an alkenyl group, an alkynyl group and a nitro group. These groups may be further substituted. Also, these groups may combine with
  • G 1 is most preferably a carbonyl group
  • R 3 is preferably a hydrogen atom or a group represented by the following general formula (a): wherein Z 1 represents a group capable of cleaving the G 1 -L 2 -Z 1 moiety from the remainder molecule upon a nucleophilic attack on G 1 ; and L 2 is a divalent organic group capable of forming a G 1 , L 2 and Z 1 cyclic structure upon the nucleophilic attack of Z 1 on G 1 .
  • Z 1 is a group capable of easily making a nucleophilic attack on G 1 to cleave a group from G 1 , when the hydrazine compound represented by the general formula (I) is changed to form upon oxidation.
  • Z 1 may be a functional group which directly reacts with G 1 , for example, -OH, -SH, -NHR 7 (wherein R 7 represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, -COR 8 or-SO 2 R 8 ; and R 8 represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group) or -COOH (these groups may be temporarily protected so as to form these groups upon hydrolysis by an alkali), or a functional group which becomes possible to react with G 1 upon a reaction with a nucleophilic agent such as a hydroxy ion or a sulfite ion, for example, (wherein R 9 and R 10 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group).
  • a nucleophilic agent such as a hydroxy ion or a sulfite ion
  • the ring formed with G 1 , Z 1 and L 2 is a 5-membered or 6-membered ring.
  • R b 1 , R b 2 , R b 3 and R b 4 which may be the same or different, each represents a hydrogen atom, an alkyl group (preferably having from 1 to 12 carbon atoms), an alkenyl group (preferably having from 2 to 12 carbon atoms) or an aryl group (preferably having from 6 to 12 carbon atoms);
  • B represents an atomic group necessary to form a 5-membered or 6-membered ring which may be substituted;
  • m and n each represents 0 or 1, when Z 1 is -COOH, n+m is 0 or 1, and when Z 1 is -OH, -SH or -NHR 4 , n+m is 1 or 2: and Z 1 has the same meaning as defined in the general formula (a).
  • the 5-membered or 6-membered ring formed with B include a cyclohexene ring, a benzene ring, a naphthalene ring, a pyridine ring, and a quinoline ring.
  • Rc 1 and Rc 2 which may be the same or different, each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a halogen atom;
  • Rc 3 represents a hydrogen atom, an alkyl group, an alkenyl group or an aryl group;
  • p represents 0 or 1;
  • q represents 1, 2, 3 or 4;
  • Z 1 has the same meaning as defined in the general formula (a), or Rc 1 , Rc 2 and Rc 3 may combine with each other to form a ring as far as the resulting structure makes possible an intramolecular nucleophilic attack of Z 1 on G 1 ; and when q represents 2 or 3, two or three CRc 1 Rc 2 's may be the same or different.
  • Rc 1 and Rc 2 each preferably represents a hydrogen atom, a halogen atom or an alkyl group
  • Rc 3 preferably represents an alkyl group or an aryl group
  • g preferably represents 1, 2 or 3,and when q is 1,p is 0 or 1,when q is 2, p is 0 or 1,and when q is 3, p is 0 or 1.
  • X 1 in the general formula (I) represents -O- or -NR 4 - (wherein R 4 represents a hydrogen atom, an alkyl group (for example, methyl, ethyl, or methoxyethyl), or an aryl group (for example, phenyl).
  • R 4 represents a hydrogen atom, an alkyl group (for example, methyl, ethyl, or methoxyethyl), or an aryl group (for example, phenyl).
  • X 1 is preferably - NR 4 -, and R 4 is preferably a hydrogen atom.
  • Y 1 in the general formula (I) represents or Y 1 is preferably
  • R 1' R 2 , L 1 or R 3 , particularly R 1 or R 2 contains a diffusion resistant group, i.e., a so called ballast group, used for couplers.
  • a ballast group has eight or more carbon atoms and comprises an alkyl group, a phenyl group, an ethergroup, an amido group, a ureido group, a urethane group, a sulfonamido group, a thioether group or a combination thereof.
  • the compound represented by the general formula (I) has an adsorption accelerating group represented by the formula described below on the surface of silver halide in R 1' R 2 , L 1 or R 3 .
  • Y 2 represents an adsorption accelerating group for silver halide
  • L 3 represents a divalent linkage group
  • f represents 0 or 1.
  • Preferred examples of the adsorption accelerating group for silver halide represented by Y2 include a thioamido group, a mercapto group, a group having a disulfido bond, or a 5-membered or 6-membered nitrogen-containing heterocyclic group.
  • the thioamido adsorption accelerating group represented by Y 2 is a divalent group represented by which may be a part of a ring structure or an acylic thioamido group.
  • acyclic thioamido group examples include a thioureido group, a thiourethane group, and a dithiocarbamic acid ester group.
  • Specific examples of the cyclic thioamido group include 4-thiazoline-2-thione, 4-imidazoline-2-thione, 2-thiohydantoin, rhodanine, thiocarbituric acid, tetrazoline-5-thione, 1,2,4-triazoline-3-thione, 1,3,4-thiadiazoline-2-thione, 1,3,4-oxadiazoline-2-thione, benzimidazoline-2-thione, benzoxazoline-2-thione, and benzothiazoline-2-thione. They may be further substituted.
  • mercapto group represented by Y 2 there are an aliphatic mercapto group, an aromatic mercapto group, and a heterocyclic mercapto group (when the atom adjacent to the carbon atom bonded to -SH group is a nitrogen atom, the mercapto group has the same meaning as a cyclic thioamido group which is in a tautomeric relation therewith and specific examples thereof are same as illustrated above).
  • the 5-membered or 6-membered nitrogen-containing heterocyclic group represented by Y 2 there are 5-membered or 6-membered nitrogen-containing heterocyclic rings comprising a combination of nitrogen, oxygen, sulfur, and carbon.
  • Preferred examples thereof are benzotriazole, triazole, tetrazole, indazole, benzimidazole, imidazole, benzothiazole, thiazole, benzoxazole, oxazole, thiadiazole, oxadiazole, and triazine. They may be further substituted with an appropriate substituent.
  • the substituents can be selected from those described for R 1 or R 2 .
  • Y 2 is preferably a cyclic thioamido group (for example, a mercapto-substituted nitrogen-containing heterocyclic ring, such as a 2-mercaptothiadiazole group, a 3-mercapto-1,2,4-triazole group, a 5-mercaptotetrazole group, a 2-mercapto-1,3,4-oxadiazole group, or 2-mercaptobenzoxazole group) or a nitrogen-containing heterocyclic group (for example, a benzotriazole group, a benzimidazole group, or an indazole group).
  • a cyclic thioamido group for example, a mercapto-substituted nitrogen-containing heterocyclic ring, such as a 2-mercaptothiadiazole group, a 3-mercapto-1,2,4-triazole group, a 5-mercaptotetrazole group, a 2-mercapto-1,3,4-oxadiazole
  • Two or more Y 2 ( ⁇ L 3 groups may present in the compound and they may be the same or different.
  • These groups may be substituted with an appropriate substituent.
  • the substituents can be selected from those described for R 1 or R 2 .
  • the group is preferably present at the o- or p-position to the hydrazino group.
  • the compounds represented by the general formula (I) can be synthesized according to the methods as described, for example, in Gendai Yuki Gosei Series No. 5, Yuki Rin Kagobutsu (Organic Phosphorus Compounds) edited by Shadanhojin Yuki Gosei Kagaku Kyokai, P. Brigl, H. Muller, Ber., Vol. 72, p. 2121 (1939), V.V. Katyshkina, M. Ya. Kraft, Zh. Obshch. Vol. 26, p. 3060 (1956), C. A., Vol. 51, p. 8028a (1957), H.D. Orloff, C.J. Worrel, F.X. Markley, J. Am. Chem.
  • the nucleating agent used in the present invention can be incorporated into the photographic light-sensitive material or into a processing solution for the photographic light-sensitive material, and preferably is incorporated into the photographic light-sensitive material.
  • the nucleating agent used in the present invention is incorporated into the photographic light-sensitive material, although it is preferably that it is added to an internal latent image type silver halide emulsion layer, it can be added to other layers such as an intermediate layer, a subbing layer or a backing layer so long as the nucleating agent diffuses during coating or processing to be adsorbed onto silver halide.
  • the nucleating agent When the nucleating agent is added to a processing solution, it can be added to a developing solution or a prebath having a low pH as described in JP-A-58-178350.
  • the nucleating agent When the nucleating agent is incorporated into the photographic light-sensitive material, preferably the amount thereof is from 10- s to 10- 2 mol, more preferably from 10- 7 to 10- 3 , per mol of silver halide contained in an emulsion layer.
  • the amount of the nucleating agents is from 10- 5 to 10- 1 mol, more preferably from 10- 4 to 10- 2 mol, per liter thereof.
  • the internal latent image type silver halide emulsion not having been previously fogged which can be used in the present invention includes an emulsion containing silver halide grains whose surfaces have not been previously fogged, and which form latent images predominantly internally. More specifically, suitable emulsions have the characteristic that when coated on a transparent support in a predetermined amount ranging from 0.5 g/m 2 to 3 g/m 2 in terms of silver, exposed for a fixed time between 0.01 and 10 seconds, then developed at 18°C for 5 minutes in the following developing solution A (internal developer), a resulting maximum density (measured by a conventional photographic density measuring method) is at least about 5 times, more preferably at least about 10 times, as much as that obtained by coating and exposing the emulsion in the same manner as described above, but developing at 20°C for 6 minutes in the following developing solution B (surface developer):
  • the internal latent image type emulsions include conversion type silver halide emulsions as described, for example, in U.S. Patent 2,592,250, and core/shell type silver halide emulsions as described, for example, in U.S. Patents 3,761,276, 3,850,637, 3,923,513, 4,035,185, 4,395,478 and 4,504,570, JP-A-,2-156614, JP-A-55-127549, JP-A-53-60222, JP-A-56-22681, JP-A-59-208540, JP-A-60-107641, JP-A-61-3137, Japanese Patent Application No. 61-32462 (corresponding to JP-A-62-215272) and the patents cited in Research Disclosure, No. 23510 (November, 1983), p. 236.
  • the silver halide grains used in the present invention may be regular crystals such as cubic, octahedral, dodecahedral or tetradecahedral crystals, irregular crystals such as spherical crystals, or tabular grains whose length/thickness ratio is 5 or more.
  • regular crystals such as cubic, octahedral, dodecahedral or tetradecahedral crystals, irregular crystals such as spherical crystals, or tabular grains whose length/thickness ratio is 5 or more.
  • a composite form of these crystal forms may be used, and an emulsion made up of a mixture of these crystals may also be used.
  • the composition of the silver halide includes silver chloride, silver bromide or a mixed silver halide, and the silver halide preferably used in the present invention is either free from silver iodide, or if it contains silver iodide, it is silver chloro(iodo)bromide, silver (iodo)chloride or silver (iodo)bromide containing 3 mol% or less of silver iodide.
  • the average grain size of the silver halide grains is preferably from 0.1 f..lm up to 2 f..lm, more preferably from 0.15 ⁇ m to 1 ⁇ m.
  • the distribution of the grain size may be wide or narrow, in order to improve graininess and sharpness, it is preferred in the present invention to use a so-called "monodisperse" silver halide emulsion having a narrow grain size distribution such that 90% or more of all the grains fall within the average grain size of ⁇ 40%, preferably ⁇ 20%, in terms of grain number or weight.
  • two or more monodisperse silver halide emulsions different in grain size or a plurality of grains of the same size but different in sensitivity are mixed in the same layer or are applied as different layers that are superposed.
  • two or more polydisperse silver halide emulsions or a monodisperse silver halide emulsion and a polydisperse silver halide emulsion can be used in the form of a mixture or in superposed layers.
  • the interior or the surface of the grains may be chemically sensitized by sulfur sensitization, selenium sensitization, reduction sensitization or noble metal sensitization, that can be used alone or in combination.
  • sulfur sensitization selenium sensitization
  • reduction sensitization reduction sensitization
  • noble metal sensitization that can be used alone or in combination. Specific examples of useful chemical sensitization are described, for example, in the patents cited in Research Disclosure, No. 17643, Item III (December, 1978), page 23.
  • the photographic emulsion used in the present invention is spectrally sensitized with a photographic sensitizing dye in a conventional manner.
  • Particularly useful dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes, which may be used alone or in combination, and can also be used in combination with supersensitizers. Specific examples thereof are described, for example, in the patents cited in Research Disclosure, No. 17643, Item IV (December, 1978), pages 23 to 24.
  • the photographic emulsions used in the present invention can contain an antifoggant or a stabilizer for the purpose of stabilizing the photographic performance, or of preventing formation of fog during the production, storage or photographic processing of the photographic light-sensitive material.
  • an antifoggant or a stabilizer for the purpose of stabilizing the photographic performance, or of preventing formation of fog during the production, storage or photographic processing of the photographic light-sensitive material.
  • Specific examples of antifoggants and stabilizers are described, for example, in Research disclosure, No. 17643, Item IV (December, 1978), and E.J Birr, Stabilization of Photographic Silver Halide Emulsion, 1974 (Focal Press).
  • Useful color couplers are compounds that can undergo a coupling reaction with an oxidation product of an aromatic primary amine type color developing agent to produce or release a dye substantially non-diffusible and that themselves are preferably substantially non-diffusible.
  • Typical examples of useful color couplers include naphtholic or phenolic compounds, pyrazolone or pyrazoloazole compounds and open chain or heterocyclic ketomethylene compounds.
  • Specific examples of these cyan, magenta and yellow couplers which can be used in the present invention are compounds as described, for example, in Research Disclosure, No. 17643 (December, 1978), page 25, Item VII-D; ibid., No. 18717 (November, 1979) and Japanese Patent Application No. 61-32462 (corresponding to JP-A-62-215272), and compounds described in the patents cited therein.
  • Colored couplers for correcting undesired absorption in the short wavelength range of produced dyes can also be used.
  • cou- piers capable of forming dyes with appropriate diffusibility
  • colorless compound forming couplers can also be used.
  • DIR couplers that can release a development inhibitor as a result of the coupling reaction; and polymerized couplers can also be used.
  • binders or protective colloids which can be used in emulsion layers and intermediate layers of the photographic light-sensitive material of the present invention, it is advantageous to use gelatin, but other hydrophilic colloids than gelatin can also be used.
  • the photographic light-sensitive material in accordance with the present invention may contain a colorfog preventing agent or color stain preventing agent. Representative examples of these compounds are described in JP-A-62-215272, pages 185 to 193.
  • a color formation reinforcing agent can be employed for the purpose of increasing a color forming property of coupler.
  • Representative examples of such compounds are described in JP-A-62-215272, pages 121 to 125.
  • the photographic light-sensitive material of the present invention can contain dyes for preventing irradiation or halation, ultraviolet light absorbing agents, plasticizers, brightening agents, matting agents, aerial fog preventing agents, coating aids, hardening agents, antistatic agents, lubricants, etc. Typical examples of these additives are described in Research Disclosure, No. 17643, Items VIII to XIII (December, 1978), pages 25 to 27, ibid., No. 18716 (November, 1979), pages 647 to 651.
  • a multilayer natural color photographic material has at least one red-sensitive emulsion layer, at least one green-sensitive emulsion layer and at least one blue-sensitive emulsion layer on a support.
  • the order of these layers is appropriately selected as desired.
  • a red-sensitive emulsion layer, a green-sensitive emulsion layer and a blue-sensitive emulsion layer are coated in that order on a support or a green-sensitive emulsion layer, a red-sensitive emulsion layer and a blue-sensitive emulsion layer are coated in that order on a support.
  • Each of these emulsion layers may consist of two or more emulsion layers different in sensitivity, or may consist of two or more emulsion layers having the same sensitivity with a light-insensitive layer between them.
  • the red-sensitive emulsion layer contains a cyan forming coupler
  • the green-sensitive emulsion layer contains a magenta forming coupler
  • the blue-sensitive emulsion layer contains a yellow forming coupler, but in some cases the combination can be changed.
  • the photographic light-sensitive material according to the present invention is provided with suitable auxiliary layers such as a protective layer, an intermediate layer, a filter layer, an antihalation layer, a backing layer and a white reflective layer, in addition to the silver halide emulsion layers.
  • suitable auxiliary layers such as a protective layer, an intermediate layer, a filter layer, an antihalation layer, a backing layer and a white reflective layer, in addition to the silver halide emulsion layers.
  • the photographic emulsion layers and other layers are applied on a support as described in Research Disclosure, No. 17643, Item XVII (December, 1978), page 28, European Patent 0,102,253, and JP-A-61-97655.
  • the coating methods as described in Research Disclosure, No. 17643, Item XV, pages 28 to 29 can be employed.
  • the present invention may be applied to various types of color photographic light-sensitive materials.
  • color reversal films for slides and television, color reversal papers, instant color films, etc. are typical examples.
  • the present invention may be applied to color hard copies for preserving images of full color copiers or CRT.
  • the present invention is also applicable to black-and-white photographic light-sensitive materials utilizing mixing of three color couplers, as described, for example, in Research Disclosure, No. 17123 (July, 1978).
  • the present invention can be applied to black-and-white photographic light-sensitive materials.
  • black-and-white (B/W) photographic light-sensitive materials to which can be applied the present invention include B/W direct positive photographic light-sensitive materials (for example, photographic materials for X-ray, for duplication, for micrography, for photocomposing, and for printing) as described, for example, in JP-A-59-208540 and JP-A-60-260039.
  • nucleation accelerating agent it is preferred to employ a nucleation accelerating agent together with the above described nucleating agent in the present invention.
  • nucleation accelerating agent means a substance which does not substantially act as the nucleating agent but, rather, acts to accelerate the action of the nucleating agent to increase the maximum density of direct positive images and/or reduce the development time required to provide a predetermined direct positive image density.
  • a compound represented by the general formula (II) or (III) described below is preferably employed.
  • Q represents an atomic group necessary to form a 5-membered or 6-membered heterocyclic ring to which a carbocyclic aromatic ring or a heterocyclic aromatic ring may further be condensed
  • L represents a divalent linkage group comprising an atom or atomic group selected from the group consisting of a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom
  • R 18 represents an organic group containing at least one of a thioether group, an amino group, an ammonium group, an ether group, or a heterocyclic group
  • n represents 0 or 1
  • m represents 0, 1 or2
  • M represents a hydrogen atom, an alkali metal atom, an ammonium group or a group capable of being cleaved under an alkaline condition, wherein Q' represents an atomic group necessary to form
  • Q preferably represents an atomic group necessary to form a 5-membered or 6-membered heterocyclic ring comprising at least one atom selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom.
  • the heterocyclic ring may be condensed with a carbocyclic aromatic ring or heterocyclic aromatic ring.
  • heterocyclic ring examples include a tetrazole, a triazole, an imidazole, a thiadiazole, an oxadiazole, a selenadiazole, an oxazole, a thiazole, a benzoxazole, a benzothiazole, a benzimidazole, and a pyrimidine.
  • M represents a hydrogen atom, an alkali metal atom (for example, sodium, or potassium), an ammonium group (for example, trimethylammonium, or dimethylbenzylammonium) or a group which undergoes cleavage under an alkaline condition to become a hydrogen atom or an alkali metal atom for M (for example, acetyl, cyanoethyl, or methanesulfonylethyl).
  • an alkali metal atom for example, sodium, or potassium
  • an ammonium group for example, trimethylammonium, or dimethylbenzylammonium
  • a group which undergoes cleavage under an alkaline condition to become a hydrogen atom or an alkali metal atom for M for example, acetyl, cyanoethyl, or methanesulfonylethyl.
  • the above described heterocyclic ring may be substituted with a nitro group, a halogen atom (for example, chlorine, or bromine), a mercapto group, a cyano group, a substituted or unsubstituted alkyl group for example, methyl, ethyl, propyl, tert-butyl, cyanoethyl), a substituted or unsubstituted aryl group (for example, phenyl, 4-methanesulfonamidophenyl, 4-methylphenyl, 3,4-dichlorophenyl, naphthyl), a substituted or unsubstituted alkenyl group (for example, allyl), a substituted or unsubstituted aralkyl group (for example, benzyl, 4-methylbenzyl, phenethyl), a sulfonyl group (for example, methanesulfonyl, ethanesulf
  • Preferred examples of the heterocyclic ring represented by Q include a tetrazole, a triazole, an imidazole, a thiadiazole, and an oxadiazole.
  • L represents a divalent linkage group comprising an atom or atomic group selected from the group consisting of a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom.
  • Suitable examples of the divalent linkage group include -S-, -O-,
  • R 1 g, R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 each represents a hydrogen atom, a substituted or unsubstituted alkyl group (for example, methyl, ethyl, propyl, n-butyl), a substituted or unsubstituted aryl group (for example, phenyl, 2-methylphenyl), a substituted or unsubstituted alkenyl group (for example, propenyl, 1-methylvinyl), or a substituted or unsubstituted aralkyl group (for example, benzyl, phenethyl).
  • a substituted or unsubstituted alkyl group for example, methyl, ethyl, propyl, n-butyl
  • a substituted or unsubstituted aryl group for example, phenyl, 2-methylphenyl
  • linkage groups may be connected through a straight chain or branched chain alkylene group (for example, methylene, ethylene, propylene, butylene, hexylene, 1-methylethylene) or a substituted or unsubstituted arylene group (for example, phenylene, naphthylene) to a heterocyclic ring described below.
  • alkylene group for example, methylene, ethylene, propylene, butylene, hexylene, 1-methylethylene
  • arylene group for example, phenylene, naphthylene
  • R 18 in the general formula (II) or (III) represents an organic group containing at least one of a thioether group, an amino group (including a salt thereof), an ammonium group, an ether group or a heterocyclic group (including a salt thereof).
  • Suitable examples of the organic group include groups obtained by combining a group selected from a substituted or unsubstituted alkyl group a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, and a substituted or unsubstituted aryl group with a thioether group, an amino group, an ammonium group, an ether group, or a heterocyclic group above. Combinations of such organic groups may be used.
  • organic groups include a dimethylaminoethyl group, an aminoethyl group, a diethylaminoethyl group, a dibutylaminoethyl group, a dimethylaminopropyl hydrochloride group, a dimethy- laminoethylthioethyl group, a 4-dimethylaminophenyl group, a 4-dimethylaminobenzyl group, a methylthioethyl group, an ethylthiopropyl group, a 4-methylthio-3-cyanophenyl group, a methylthiomethyl group, a trime- thylammonioethyl group, a methoxyethyl group, a methoxyethoxyethoxyethyl group, a methoxyethylthioethyl group, a 3,4-dimethoxyphenyl group, a 3-chloro-4
  • n 0 or 1
  • m 0, 1 or 2.
  • L, R 18 , n and M each has the same meaning as defined in the general formula (II); m represents 1 or 2; and Q' represents an atomic group necessary to form a 5-membered or 6-membered heterocyclic ring which is capable of forming imino silver, preferably an atomic group necessary to form a 5- membered or 6-membered heterocyclic ring comprising at least one atom selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom.
  • the heterocyclic ring may be condensed with a carbocyclic aromatic ring or heterocyclic aromatic ring.
  • heterocyclic ring formed by Q' examples include an indazole, a benzimidazole, a benzotriazole, a benzoxazole, a benzothiazole, an imidazole, a thiazole, an oxazole, a triazole, a tetrazole, a tetraazaindene, a triazaindene, a diazaindene, a pyrazole, and an indole.
  • M, R 18 , L and n each has the same meaning as defined in the general formula (II); and X represents an oxygen atom, a sulfur atom or a selenium atom, preferably a sulfur atom, wherein R 29 represents a hydrogen atom, a halogen atom (for example, chlorine, bromine), a nitro group, a mercapto group, an unsubstituted amino group, a substituted orunsubstituted alkyl group (forexample, methyl, ethyl), a substituted or unsubstituted alkenyl group (for example, propenyl, 1-methylvinyl), a substituted or unsubstituted aralkyl group (for example, benzyl, phenethyl), a substituted or unsubstituted ary
  • the nucleation acclerating agent described above used in the present invention is incorporated into the photographic light-sensitive material ora processing solution, and preferably incorporated into an internal latent image type silver halide emulsion layer or other hydrophilic colloid layer (for example, an intermediate layer or a protective layer).
  • the nucleation accelerating agent is incorporated into a silver halide emulsion layer or an adjacent layer thereto.
  • the amount of the nucleation accelerating agent added is preferably from 10 -6 to 10- 2 mol, more preferably from 10- 5 to 10- 2 mol per mol of silver halide.
  • the amount added is preferably from 10- s to 10- 3 mol, more preferably from 10- 7 to 10-4 mol, per liter thereof.
  • a color developing solution which can be used in development processing of the photographic light-sensitive material according to the present invention is an alkaline aqueous solution containing preferably an aromatic primary amine type color developing agent as a main component.
  • an aromatic primary amine type color developing agent preferably an aminophenol type compound.
  • a p-phenylenediamine type compound is preferably employed.
  • Typical examples of the p-phenylenediamine type compounds include 3-methyl-4-amino-N,N-diethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -hydroxyethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -methanesulfonamidoethylani- line, 3-methyl-4-amino-N-ethyl-N- ⁇ -methoxyethylaniline, orsulfate, hydrochloride, p-toluenesulfonate thereof.
  • Two or more kinds of color developing agents may be employed in a combination thereof, depending on the purpose.
  • the pH of the color developing solution used is ordinarily in a range from 9.0 to 12.0, preferably in a range from 9.5 to 11.5, most preferably in a range from 9.8 to 11.0.
  • the photographic emulsion layers are usually subjected to a bleach processing.
  • the bleach processing can be performed simultaneously with a fix processing (bleach-fix processing), or it can be performed independently from the fix processing. Further, for the purpose of performing a rapid processing, a processing method wherein after a bleach processing a bleach-fix processing is conducted may be employed. Moreover, it may be appropriately practiced depending on the purpose to process using a continuous two tank bleach-fixing bath, to carry out fix processing before bleach-fix processing, or to conduct bleach processing after bleach-fix processing.
  • the silver halide color photographic material according to the present invention is generally subjected to a water washing step and/or a stabilizing step.
  • An amount of water required for the water washing step may be set in a wide range depending on characteristics of photographic light-sensitive materials (due to elements used therein, for example, couplers), uses thereof, temperature of washing water, a number of water washing tanks (stages), a replenishment system such as countercurrent or orderly current, or other various conditions.
  • a relationship between a number of water washing tanks and an amount of water in a multi-stage countercurrent system can be determined based on the method as described in Journal of the Society of Motion Picture and Television Engineers, Vol. 64, pages 248 to 253 (May, 1955).
  • a color developing agent may be incorporated into the silver halide color photographic material according to the present invention.
  • the color developing agent it is preferred to employ various precursors of color developing agents.
  • developing agents can be employed in the present invention.
  • polyhydroxybenzenes for example, hydroquinone, 2-chlorohydroquinone, 2-methylhydroquinone, catechol, and pyrogallol
  • aminophenols for example, p-aminophenol, N-methyl-p-aminophenol, and 2,4-diaminophenol
  • 3-pyrazolidones for example, 1-phenyl-3-pyrazolidone, 1-phenyl-4,4'-dimethyl-3-pyrazolidone, 1-phenyl-4-methyl-4-hydroxymethyl-3-pyrazolidone, and 5,5-dimethyl-1-phenyl-3-pyrazolidone; and ascorbic acids; are employed individually or in a combination.
  • a developing solution as described in JP-A-58-55928 may be employed.
  • Such developing agents may be incorporated into an alkaline processing composition (processing element) or an appropriate layer of a light-sensitive
  • the developing solution may contain sodium sulfite, potassium sulfite, ascorbic acid, or a reductone (for example, piperidinohexose reductone) as a preservative.
  • a reductone for example, piperidinohexose reductone
  • the photographic light-sensitive material according to the present invention can provide direct positive images upon development using a surface developing solution.
  • the surface developing solution has a property in that its development process is substantially invited by a latent image or a fog center positioned on the surface of silver halide grain.
  • the surface developing solution may contain a silver halide solvent such as sulfite, as far as an internal latent image does not substantially contribute until the development due to the development center positioned on the surface of silver halide grain is completed.
  • the developing solution may contain sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, trisodium phosphate, or sodium metaborate, as an alkali agent or a buffering agent.
  • the amount of these agents is selected so that the pH of the developing solution is adjusted to a range from 9.0 to 12.0, preferably from 9.5 to 11.5.
  • the developing solution may further contain a compound which is usually employed as an antifoggant, for example, a benzimidazole such as 5-nitrobenzimidazole, a benzotriazole such as benzotriazole, or 5-methylbenzotriazole, in order to reduce a minimum density of direct positive image.
  • a compound which is usually employed as an antifoggant for example, a benzimidazole such as 5-nitrobenzimidazole, a benzotriazole such as benzotriazole, or 5-methylbenzotriazole, in order to reduce a minimum density of direct positive image.
  • positive images having a high maximum image density and a low minimum image density can be formed by processing a direct positive photographic light-sensitive material.
  • the formation of image can be stably performed according to the image forming method of the present invention even if direct positive photographic light-sensitive materials are preserved under high temperature and high humidity conditions.
  • the following First layer to Fourteenth layer were coated on the front side of a paper support (having a thickness of 100 ⁇ m), both surfaces of which were laminated with polyethylene, and the following Fifteenth layer to Sixteenth layer were coated on the back side of the paper support to prepare a color photographic light-sensitive material.
  • the polyethylene laminated on the First layer side of the support contained titanium dioxide as a white pigment and a slight amount of ultramarine as a bluish dye (chromaticity of the surface of the support was 88.0, -0.20 and -0.75 in an L * , a * and b * system).
  • each layer is shown below.
  • the coating amounts of the components are described in the unit of g/m 2 . With respect to silver halide, the coating amount is indicated in terms of silver coating amount.
  • the emulsion used in each layer was prepared according to the method for preparation of Emulsion EM1.
  • the emulsion used in the Fourteenth layer was a Lippmann emulsion not being chemically sensitized on the surfaces of grains.
  • An aqueous solution of potassium bromide (0.12N, 900 ml) and an aqueous solution of silver nitrate 0.12N, 830 ml) were added simultaneously to an aqueous gelatin solution (3%, 700 ml) at 75°C over a period of 15 minutes while vigorously stirring, to obtain an octahedral silver bromide emulsion having an average grain diameter of 0.40 ⁇ m.
  • nucleating agent was added as shown in Table 1 below.
  • each layer as emulsifying dispersing aids, sodium alkylnaphthalenesulfonate and sodium alkyl- benzenesulfonate, and as coating aids, succinic acid ester and were added. Furthermore, to the layers containing silver halide or colloidal silver, Stabilizers (Cpd-23, 24, 25) were added.
  • the color photographic light-sensitive materials thus prepared were exposed to light through a wedge (3200°K, 1/10", 100 CMS) and then subjected to Processing Step A described below.
  • composition of the processing solutions used was as follows.
  • City water was passed through a mixed bed type column filled with an H type strong acidic cation exchange resin (Amberlite IR-120B manufactured by Rohm & Haas Co.) and an OH type anion exchange resin (Amberlite IR-400 manufactured by Rohm & Haas Co.) to prepare water containing not more than 3 mg/liter of calcium ion and magnesium ion.
  • H type strong acidic cation exchange resin Amberlite IR-120B manufactured by Rohm & Haas Co.
  • an OH type anion exchange resin Amberlite IR-400 manufactured by Rohm & Haas Co.
  • Color photographic light sensitive materials were prepared in the same manner as described in Example 1 except that a nucleating agent and a nucleation accelerating agent were added to each emulsion layer as shown in Table 2 below. Then, exposure to light and processing were conducted in the same manner as described in Example 1 except for changing the time for color development to 100 seconds.
  • aqueous solution of silver nitrate (0.9N, 111 ml, containing silver nitrate in an amount corresponding to about 1/8 of the total molar quantity of silver nitrate to be used) and an aqueous solution of potassium bromide (0.9N, 120 ml) were simultaneously added at constant addition rate to an aqueous gelatin solution (3%, 500 ml, pH: 5.5) of 75°C containing 20 mg per liter of thioether (1,8-dihydroxy-3,6-dithiaoctane) under thoroughly stirring for 5 minutes while maintaining a silver electrode potential constantly to obtain a spherical monodisperse silver bromide emulsion having an average grain diameter of about 0.14 ⁇ m.
  • silver bromide grains were used as cores, an aqueous solution of silver nitrate (1.2N, 583 ml, containing silver nitrate in an amount corresponding to about 7/8 of the total molar quantity of silver nitrate to be used) and an aqueous solution of potassium bromide (1.3N, 583 ml) were added simultaneously under thoroughly stirring at the same temperature as above over a period of 40 minutes while maintaining a silver electrode potential for growing regular octahedral grains in order to allow for the growth of shell thereby a cubic monodisperse core/shell type silver bromide emulsion having an average grain diameter of about 0.3 ⁇ m was obtained.
  • the pH of the emulsion was adjusted at 6.5 and 5 mg of sodium thiosulfate and 5 mg of chloroauric acid (4 hydrate) were added thereto per mol of silver halide, followed by ripening at 75°C for 60 minutes to effect chemical sensitization of the surface of shell to finally obtain an internal latent image type octahedral monodisperse core/shell silver bromide emulsion (Emulsion X).
  • Emulsion X an internal latent image type octahedral monodisperse core/shell silver bromide emulsion
  • Emulsion X described above was added, as a panchromatic sensitizing dye, 5 mg of 3,3'-diethyl-9-me- thylthiacarbocyanine per mol of silver halide, and then were added the nucleating agent as shown in Table 3 below and 5.6xl 0- 4 mol of Nucleation accelerating agent A-6 per mol of silver halide, respectively.
  • the coating solution thus-prepared was coated on a polyethylene terephthalate film support so as to be a silver coating amount of 2.8 g/m 2 simultaneously with a protective layer composed of gelatin and a hardening agent.
  • Sample Nos. 1 to 3 containing the nucleating agent according to the present invention are preferred since they provide high D max and low D min as compared with Sample No. 4 for comparison.
  • aqueous solution of potassium bromide (0.52N, 500 ml) and an aqueous solution of silver nitrate (0.50N, 500 ml) were simultaneously added at 75°C over a period of about 60 minutes with vigorous stirring to an aqueous gelatin solution (3%, 600 ml) to obtain a silver bromide emulsion.
  • 80 mg of 3,4-dimethyl-1,3-thiazoline-2-thione per mole of silver and 6 g of benzimidazole per mol of silver were added to the precipitation vessel. After the completion of the precipitation, silver bromide crystals having an average grain diameter of about 1.1 ⁇ m were formed.
  • Emulsion (EM-1) was prepared.
  • the above-described cover sheet was superposed on each of the above-described light-sensitive sheets, and image exposure was conducted through a continuous gradation wedge from the cover sheet side. Then, the above-described processing solution was spread in a thickness of 75 ⁇ m between these two sheets using pressure-applying rollers. The spread processing was conducted at 25°C. 100 Seconds after the processing, cyan color density of the image transferred on the mordanting layer (image-receiving layer) was measured through the transparent support of the light-sensitive sheet by a reflective densitometer. The results thus-obtained are shown in Table 4 below.
  • Sample Nos. 1 to 6 containing the nucleating agent according to the present invention are preferred since they provide high D max as compared with Sample Nos. 7 to 9 for comparison.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Claims (53)

1. Verfahren zum Herstellen eines direktpositiven Bildes, umfassend die Entwicklungsverarbeitung eines bildmäßig belichteten direktpositiven lichtempfindlichen photographischen Materials, welches einen Träger mit mindestens einer Schicht darauf umfaßt, die Silberhalogenidkörnervom innenlatenten Bildtyp enthält, welche nicht vorverschleiert worden sind, nach der Verschleierungsbehandlung oder während der Verschleierungsbehandlung, worin die Verschleierungsbehandlung in Gegenwart einer Verbindung durchgeführt wird, die durch die folgende allgemeine Formel (I) dargestellt ist:
Figure imgb0170
worin A1 und A2 beide ein Wasserstoffatom darstellen oder eines von A1 und A2 ein Wasserstoffatom darstellt und das andere eine Alkylsulfonylgruppe, eine Arylsulfonylgruppe oder eine Acylgruppe darstellt; G1 eine Carbonylgruppe, eine Sulfonylgruppe, eine Sulfoxygruppe,
Figure imgb0171
oder eine Iminomethylengruppe darstellt; L1 eine zweiwertige Verbindungsgruppe darstellt; X1 -O- oder
Figure imgb0172
darstellt (worin R4 ein Wasserstoffatom, eine Alkylgruppe oder eine Arylgruppe darstellt); Y1
Figure imgb0173
darstellt; R1 und R2 jeweils eine aliphatische Gruppe, eine aromatische Gruppe, eine heterocyclische Gruppe, -OR5 oder -NR5R6 darstellt (worin R5 eine aliphatische Gruppe, eine aromatische Gruppe oder eine heterocyclische Gruppe darstellt; und R6 ein Wasserstoffatom, eine aliphatische Gruppe, eine aromatische Gruppe oder eine heterocyclische Gruppe darstellt); und R3 ein Wasserstoffatom, eine Alkylgruppe, eine Arylgruppe, eine Alkoxygruppe, eine Aralkylgruppe, eine Aryloxygruppe oder eine Aminogruppe darstellt, wobei diese Gruppen substituiert sein können.
2. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin die Alkylsulfonyl- oder Arylsulfonylgruppe oder Acylgruppe, die durch A1 oder A2 dargestellt ist, bis zu 20 Kohlenstoffatome hat.
3. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin sowohl A1 als auch A2 ein Wasserstoffatom sind.
4. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin die aliphatische Gruppe, die durch R1' R2, R5 oder R6 dargestellt ist, eine geradkettige, verzweigtkettige oder cyclische Alkylgruppe, Alkenylgruppe oder Alkinylgruppe ist, die jeweils bis zu 30 Kohlenstoffatome enthält, und die verzweigtkettige Alkylgruppe ein oder mehrere Heteroatome darin enthalten kann, um einen gesättigten Heteroring zu bilden.
5. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin die durch R1' R2, R5 und R6 dargestellte aromatische Gruppe eine monocyclische oder bicyclische Arylgruppe ist.
6. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin die heterocyclische Gruppe, die durch R1' R2, R5 oder R6 dargestellt ist, eine 3-gliedrige bis 10-gliedrige gesättigte oder ungesättigte heterocyclische Gruppe ist, die mindestens eines von einem Stickstoffatom, einem Sauerstoffatom oder einem Schwefelatom enthält, welche ein monocyclischer Ring sein kann oder einen kondensierten Ring zusammen mit einem aromatischen Ring oder einem heterocyclischen Ring bilden kann.
7. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin ein Substituentfürdie aliphatische Gruppe, aromatische Gruppe oder heterocyclische Gruppe, die durch R1' R2, R5 oder R6 dargestellt ist, gewählt wird aus einerAlkylgruppe, einerAralkylgruppe, einerAlkoxygruppe, einerArylgruppe, einer substituierten Aminogruppe, einer Acylaminogruppe, einer Sulfonylaminogruppe, einer Ureidogruppe, einer Urethangruppe, einer Aryloxygruppe, einer Sulfamoylgruppe, einer Carbamoylgruppe, einer Alkylthiogruppe, einer Arylthiogruppe, einer Sulfonylgruppe, einer Sulfinylgruppe, einer Hydroxylgruppe, einem Halogenatom, einer Cyanogruppe, einer Sulfogruppe und einer Carboxygruppe.
8. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin R1 oder R2 sich mit L1 verbinden kann, um einen Ring zu bilden, oder R1 und R2 sich miteinander verbinden können, um einen Ring zu bilden.
9. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin die zweiwertige Verbindungsgruppe, die durch L1 dargestellt ist, ein Atom oder eine Atomgruppe ist, die mindestens eines von einem Kohlenstoffatom, einem Stickstoffatom, einem Schwefelatom und einem Sauerstoffatom einschließen.
10. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 9, worin die zweiwertige Verbindungsgruppe, die durch L1 dargestellt ist, eine Arylengruppe ist.
11. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 9, worin ein Substituentfürdie zweiwertige Verbindungsgruppe, die durch L1 dargestellt ist, gewählt wird aus einer Alkylgruppe, einer Aralkylgruppe, einerAlkoxygruppe, einerArylgruppe, einerAryloxygruppe, einerAlkenylgruppe, einerAlkylthiogruppe, einer Arylthiogruppe, einer Sulfonylgruppe, einer Sulfinylgruppe, einem Halogenatom, einer Cyanogruppe, einer Acylgruppe, einer Nitrogruppe und
Figure imgb0174
12. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin G1 eine Carbonylgruppe darstellt, und R3 ein Wasserstoffatom, eine Alkylgruppe, eine Aralkylgruppe oder eine Arylgruppe darstellt.
13. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin G1 eine Sulfonylgruppe darstellt, und R3 eine Alkylgruppe, eine Aralkylgruppe, eine Arylgruppe oder eine substituierte Aminogruppe darstellt.
14. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin G1 eine Sulfoxygruppe darstellt, und R3 eine Cyanobenzylgruppe oder eine Methylthiobenzylgruppe darstellt.
15. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1,
worin G1
Figure imgb0175
darstellt, und R3 eine Methoxygruppe, eine Ethoxygruppe, eine Butoxygruppe, eine Phenoxygruppe oder eine Phenylgruppe darstellt.
16. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin G1 eine N-substituierte oder unsubstituierte Iminomethylengruppe darstellt, und R3 eine Methylgruppe, eine Ethylgruppe oder eine substituierte oder unsubstituierte Phenylgruppe darstellt.
17. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin ein Substituent von der Gruppe, die durch R3 dargestellt ist, gewählt wird aus einer Alkylgruppe, einer Aralkylgruppe, einer Alkoxygruppe, einer Arylgruppe, einer substituierten Aminogruppe, einer Acylaminogruppe, einer Sulfonylaminogruppe, einer Ureidogruppe, einer Urethangruppe, einerAryloxygruppe, einer Sulfamoylgruppe, einer Carbamoylgruppe, einer Alkylthiogruppe, einer Arylthiogruppe, einer Sulfonylgruppe, einer Sulfinylgruppe, einer Hydroxylgruppe, einem Halogenatom, einer Cyanogruppe, einer Sulfogruppe, einer Carboxygruppe, einerAcyloxygruppe, einerAcylgruppe, einerAlkyloxycarbonylgruppe, einerAryloxycarbonylgruppe, einerAlkenylgruppe, einerAlkinylgruppe und einer Nitrogruppe, wobei diese Gruppen weiter substituiert sein können.
18. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin G1 eine Carbonylgruppe darstellt, und R3 ein Wasserstoffatom oder eine Gruppe darstellt, die durch die folgende allgemeine Formel (a) dargestellt ist:
Figure imgb0176
worin Z1 eine Gruppe darstellt, die den G1-L2-Z1-Bestandteil von dem restlichen Molekül bei einem nukleophilen Angriff auf G1 abspalten kann; und L2 eine zweiwertige organische Gruppe ist, die eine cyclische Struktur aus G1, L2 und Z1 bei dem nukleophilen Angriff von Z1 auf G1 bilden kann.
19. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 18, worin die durch Z1 dargestellte Gruppe eine funktionelle Gruppe, gewählt aus -OH, -SH, -NHR7 (worin R7 ein Wasserstoffatom, eine Alkylgruppe, eine Arylgruppe, eine heterocyclische Gruppe, -COR8 oder-SO2R8 darstellt; und R8 ein Wasserstoffatom, eine Alkylgruppe, eine Arylgruppe oder eine heterocyclische Gruppe darstellt) oder-COOH, oder eine funktionelle Gruppe, gewählt aus
Figure imgb0177
ist (worin R9 und R10jeweils ein Wasserstoffatom, eine Alkylgruppe, eine Alkenylgruppe, eine Arylgruppe oder eine heterocyclische Gruppe darstellt).
20. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 18, worin die zweiwertige organische Gruppe, die durch L2 dargestellt ist, ein Atom oder eine Atomgruppe ist, die mindestens eines von einem Kohlenstoffatom, einem Stickstoffatom, einem Schwefelatom und einem Sauerstoffatom einschließen.
21. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 18, worin die durch die allgemeine Formel (a) dargestellte Gruppe eine Gruppe ist, die durch die folgende allgemeine Formel (b) dargestellt ist:
Figure imgb0178
worin Rb 1, Rb 2, Rb 3 und Rb 4, welche gleich oder voneinander verschieden sein können, jeweils ein Wasserstoffatom, eine Alkylgruppe, eine Alkenylgruppe oder eine Arylgruppe darstellen; B eine Atomgruppe darstellt, die zum Bilden eines 5-gliedrigen oder 6-gliedrigen Rings, der substituiert sein kann, erforderlich ist; m und n jeweils 0 oder 1 darstellt, wenn Z1 -COOH ist, n+m 0 oder 1 ist, und wenn Z1 -OH, -SH oder -NHR4 ist, n+m 1 oder 2 ist; und Z1 die gleiche Bedeutung wie in der allgemeinen Formel (a) definiert hat.
22. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 21, worin m 0 ist und n 1 ist.
23. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 21, worin der mit B gebildete Ring ein Benzolring ist.
24. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 18, worin die durch die allgemeine Formel (a) dargestellte Gruppe eine Gruppe ist, die durch die folgende allgemeine Formel (c) dargestellt ist:
Figure imgb0179
worin Rc1 und Rc2, welche gleich oder voneinander verschieden sein können, jeweils ein Wasserstoffatom, eine Alkylgruppe, eine Alkenylgruppe, eine Arylgruppe oder ein Halogenatom darstellen; Rc3 ein Wasserstoffatom, eine Alkylgruppe, eine Alkenylgruppe odereine Arylgruppe darstellt; p 0 oder 1 darstellt; q 1, 2, 3 oder 4 darstellt; und Z1 die gleiche Bedeutung wie in der allgemeinen Formel (a) definiert hat, oder Rc1, Rc2 und Rc3 sich miteinander verbinden können, um einen Ring zu bilden, sofern die daraus hervorgehende Struktur einen intramolekularen nukleophilen Angriff von Z1 an G1 ermöglicht; und wenn q 2 oder 3 darstellt, können zwei oder drei CRc1 Rc2 gleich oder voneinander verschieden sein.
25. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 24, worin Rc1 und Rc2 jeweils ein Wasserstoffatom, ein Halogenatom oder eine Alkylgruppe darstellt, Rc3 eine Alkylgruppe oder eine Arylgruppe darstellt, und wenn q 1 ist, p 0 oder 1 ist, wenn q 2 ist, p 0 oder 1 ist, und wenn q 3 ist, p 0 oder 1 ist.
26. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin X1 -NR4- darstellt, worin R4 ein Wasserstoffatom darstellt.
27. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin Y1
Figure imgb0180
darstellt.
28. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin R1 oder R2 eine Ballastgruppe enthält.
29. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin R1' R2, L1 oder R3 eine adsorptionsbeschleunigende Gruppe auf der Oberfläche des Silberhalogenids enthält, die durch die folgende Formel dargestellt ist:
Figure imgb0181
worin Y2 eine adsorptionsbeschleunigende Gruppe für Silberhalogenid darstellt; L3 eine zweiwertige Verbindungsgruppe darstellt; und f 0 oder 1 darstellt.
30. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 29, worin die durch Y2 dargestellte adsorptionsbeschleunigende Gruppe eine Thioamidogruppe, eine Mercaptogruppe, eine Gruppe mit einer Disulfidbindung, oder eine 5-gliedrige oder 6-gliedrige stickstoffhaltige heterocyclische Gruppe ist.
31. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 30, worin die durch Y2 dargestellte adsorptionsbeschleunigende Thioamidogruppe eine zweiwertige Gruppe ist, die durch
Figure imgb0182
dargestellt ist, welche Teil einer Ringstruktur oder einer acyclischen Thioamidogruppe sein kann.
32. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 29, worin Y2 eine cyclische Thioamidogruppe oder eine stickstoffhaltige heterocyclische Gruppe ist.
33. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 29, worin die durch L3 dargestellte zweiwertige Verbindungsgruppe ein Atom oder eine Atomgruppe ist, die mindestens eines von einem Kohlenstoffatom, einem Stickstoffatom, einem Schwefelatom und einem Sauerstoffatom einschließen.
34. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin die Verbindung durch die folgende allgemeine Formel (la) dargestellt ist:
Figure imgb0183
worin R12 die gleiche Bedeutung wie R1 oder R2 in der allgemeinen Formel (I) hat; k 0, 1 oder 2 darstellt; und R1' R2, R3, R4, A1, A2 und G1 jeweils die gleiche Bedeutung wie in der allgemeinen Formel (I) definiert hat.
35. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 34, worin die
Figure imgb0184
-Gruppe sich an der o- oder p-Position zu der Hydrazinogruppe befindet.
36. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin die durch die allgemeine Formel (I) dargestellte Verbindung in dem direktpositiven lichtempfindlichen photographischen Material vorhanden ist.
37. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 1, worin der pH der Farbentwicklungslösung, die in dem Entwicklungsverfahren verwendet wird, in einem Bereich von 9,0 bis 12,0 liegt.
38. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 37, worin der pH in einem Bereich von 9,5 bis 11,5 liegt.
39. Verfahren zum Herstellen eines direktpositiven Bildes nach Anspruch 38, worin der pH in einem Bereich von 9,8 bis 11,0 liegt.
40. Direktpositives lichtempfindliches photographisches Material, umfassend einen Träger mit mindestens einer darauf befindlichen Silberhalogenidemulsionsschicht vom innenlatenten Bildtyp, die nicht vorverschleiert worden ist, worin das lichtempfindliche photographische Material mindestens eine Verbindung enthält, die durch die folgende allgemeine Formel (I) dargestellt ist:
Figure imgb0185
worin A1 und A2 beide ein Wasserstoffatom darstellen oder eines von A1 und A2 ein Wasserstoffatom darstellt und das andere eine Alkylsulfonylgruppe, eine Arylsulfonylgruppe oder eine Acylgruppe darstellt; G1 eine Carbonylgruppe, eine Sulfonylgruppe, eine Sulfoxygruppe
Figure imgb0186
oder eine Iminomethylengruppe darstellt; L1 eine zweiwertige Verbindungsgruppe darstellt; X1 -O- oder
Figure imgb0187
darstellt (worin R4 ein Wasserstoffatom, eine Alkylgruppe oder eine Arylgruppe darstellt; Y1
Figure imgb0188
darstellt; R1 und R2 jeweils eine aliphatische Gruppe, eine aromatische Gruppe, eine heterocyclische Gruppe, -OR5 oder -NR5R6 darstellt (worin R5 eine aliphatische Gruppe, eine aromatische Gruppe oder eine heterocyclische Gruppe darstellt; und R6 ein Wasserstoffatom, eine aliphatische Gruppe, eine aromatische Gruppe oder eine heterocyclische Gruppe darstellt); und R3 ein Wasserstoffatom, eine Alkylgruppe, eine Arylgruppe, eine Alkoxygruppe, eine Aralkylgruppe, eine Aryloxygruppe oder eine Aminogruppe darstellt, wobei diese Gruppen substituiert sein können.
41. Direktpositives lichtempfindliches photographisches Material nach Anspruch 40, worin die durch die allgemeine Formel (I) dargestellte Verbindung in einer Silberhalogenidemulsionsschicht vom innenlatenten Bildtyp, einer Zwischenschicht, einer Grundierungsschicht oder einer Rückschicht vorhanden ist.
42. Direktpositives lichtempfindliches photographisches Material nach Anspruch 41, worin die Verbindung in einer Silberhalogenidemulsionsschicht vom innenlatenten Bildtyp vorhanden ist.
43. Direktpositives lichtempfindliches photographisches Material nach Anspruch 41, worin die Silberhalogenidemulsionsschicht vom innenlatenten Bildtyp eine monodisperse Silberhalogenidemulsionsschicht ist.
44. Direktpositives lichtempfindliches photographisches Material nach Anspruch 41, worin das lichtempfindliche photographische Material weiterhin einen Farbkuppler enthält.
45. Direktpositives lichtempfindliches photographisches Material nach Anspruch 44, worin der Farbkuppler gewählt wird aus einem naphtholischen oder phenolischen Cyankuppler, einem Pyrazolon- oder Pyrazoloazol-Magentakuppler und einem offenkettigen oder heterocyclischen Ketomethylen-Gelbkuppler.
46. Direktpositives lichtempfindliches photographisches Material nach Anspruch 41, worin das lichtempfindliche photographische Material mindestens eine rotempfindliche Silberhalogenidemulsionsschicht, enthaltend mindestens einen cyanbildenden Kuppler, mindestens eine grünempfindliche Silberhalogenidemulsionsschicht, enthaltend mindestens einen magentabildenden Kuppler, und mindestens eine blauempfindliche Silberhalogenidemulsionsschicht, enthaltend mindestens einen gelbbildenden Kuppler, umfaßt.
47. Direktpositives lichtempfindliches photographisches Material nach Anspruch 41, worin das lichtempfindliche photographische Material weiterhin ein Keimbildungsbeschleunigungsmittel enthält.
48. Direktpositives lichtempfindliches photographisches Material nach Anspruch 47, worin das Keimbildungsbeschleunigungsmittel eine Verbindung ist, die durch die folgende allgemeine Formel (11) oder (111) dargestellt ist:
Figure imgb0189
worin Q eine Atomgruppe darstellt, die zum Bilden eines 5-gliedrigen oder 6-gliedrigen heterocyclischen Rings erforderlich ist, an den weiterhin ein carbocyclischer aromatischer Ring oder ein heterocyclischer aromatischer Ring kondensiert sein kann; Leine zweiwertige Verbindungsgruppe darstellt, umfassend ein Atom oder eine Atomgruppe, gewählt aus der Gruppe bestehend aus einem Wasserstoffatom, einem Kohlenstoffatom, einem Stickstoffatom, einem Sauerstoffatom und einem Schwefelatom; R18 eine organische Gruppe darstellt, die mindestens eine von einer Thioethergruppe, einer Aminogruppe, einer Ammoniumgruppe, einer Ethergruppe oder einer heterocyclischen Gruppe enthält; n 0 oder 1 darstellt; m 0, 1 oder 2 darstellt; und M ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe darstellt, die unter alkalischen Bedingungen abgespalten werden kann;
Figure imgb0190
worin Q' eine Atomgruppe darstellt, die zum Bilden eines 5-gliedrigen oder 6-gliedrigen heterocyclischen Rings erforderlich ist, welcher Iminosilber bilden kann; L, R18, n und M jeweils die gleiche Bedeutung wie in der allgemeinen Formel (11) oben definiert hat; und m 1 oder 2 darstellt.
49. Direktpositives lichtempfindliches photographisches Material nach Anspruch 48, worin der mit Q vervollständigte heterocyclische Ring substituiert ist mit einem Substituenten, gewählt aus einer Nitrogruppe, einem Halogenatom, einer Mercaptogruppe, einer Cyanogruppe, einer substituierten oder unsubstituierten Alkylgruppe, einer substituierten oder unsubstituierten Arylgruppe, einer substituierten oder unsubstituierten Alkenylgruppe, einer substituierten oder unsubstituierten Aralkylgruppe, einer Sulfonylgruppe, einer Carbamoylgruppe, einer Sulfamoylgruppe, einer Carbonamidogruppe, einer Sulfonamidogruppe, einer Acyloxygruppe, einer Sulfonyloxygruppe, einer Ureidogruppe, einer Thioureidogruppe, einer Acylgruppe, einer Oxycarbonylgruppe, und einer Oxycarbonylaminogruppe.
50. Direktpositives lichtempfindliches photographisches Material nach Anspruch 48, worin der mit Q vervollständigte heterocyclische Ring ein Tetrazol, ein Triazol, ein Imidazol, ein Thiadiazol oder ein Oxadiazol ist.
51. Direktpositives lichtempfindliches photographisches Material nach Anspruch 48, worin der durch Q' dargestellte heterocyclische Ring ein Indazol, ein Benzimidazol, ein Benzotriazol, ein Benzoxazol, ein Benzothiazol, ein Imidazol, ein Thiazol, ein Oxazol, ein Triazol, ein Tetrazol, ein Tetraazainden, ein Triazainden, ein Diazainden, ein Pyrazol oder ein Indol ist.
52. Direktpositives lichtempfindliches photographisches Material nach Anspruch 48, worin das Keimbildungsbeschleunigungsmittel eine Verbindung ist, die durch die folgende allgemeine Formel (IV), (V), (VI) oder (VII) dargestellt ist:
Figure imgb0191
worin M, R18, L und n jeweils die gleiche Bedeutung wie in der allgemeinen Formel (II) definiert hat; und X ein Sauerstoffatom, ein Schwefelatom oder ein Selenatom darstellt;
Figure imgb0192
worin R29 ein Wasserstoffatom, ein Halogenatom, eine Nitrogruppe, eine Mercaptogruppe, eine unsubstituierte Aminogruppe, eine substituierte oder unsubstituierte Alkylgruppe, eine substituierte oder unsubstituierte Alkenylgruppe, eine substituierte oder unsubstituierte Aralkylgruppe, eine substituierte oder unsubstituierte Arylgruppe oder (̵L
Figure imgb0064
R18 darstellt; R30 ein Wasserstoffatom, eine unsubstituierte Aminogruppe oder (̵L
Figure imgb0064
R18 darstellt, wenn sowohl R29 als auch R30 (̵L
Figure imgb0064
R18 darstellen, sie gleich oder voneinander verschieden sein können, vorausgesetzt, daß mindestens eines von R29 und R30 (̵L
Figure imgb0064
R18 darstellt, L und n jeweils die gleiche Bedeutung wie in der allgemeinen Formel (II) definiert hat;
Figure imgb0197
worin R31 (̵L
Figure imgb0064
R18 darstellt; und M, R18, L und n jeweils die gleiche Bedeutung wie in der allgemeinen Formel (II) definiert hat;
Figure imgb0199
worin R32 und R33, welche gleich odervoneinanderverschieden sein können, jeweils ein Wasserstoffatom, ein Halogenatom, eine substituierte oder unsubstituierte Aminogruppe, eine Nitrogruppe, eine substituierte oder unsubstituierte Alkylgruppe, eine substituierte oder unsubstituierte Alkenylgruppe, eine substituierte oder unsubstituierte Aralkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe darstellen; M und R31 jeweils die gleiche Bedeutung wie in der allgemeinen Formel (VI) definiert hat.
53. Direktpositives lichtempfindliches photographisches Material nach Anspruch 47, worin das Keimbildungsbeschleunigungsmittel in einer Silberhalogenidemulsionsschichtvom innenlatenten Bildtyp oder einer hydrophilen Kolloidschicht vorhanden ist.
EP89115022A 1988-08-16 1989-08-14 Verfahren zum Herstellen direktpositiver Bilder Expired - Lifetime EP0355661B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP202746/88 1988-08-16
JP63202746A JPH0833607B2 (ja) 1988-08-16 1988-08-16 直接ポジ画像形成方法

Publications (3)

Publication Number Publication Date
EP0355661A2 EP0355661A2 (de) 1990-02-28
EP0355661A3 EP0355661A3 (de) 1991-01-09
EP0355661B1 true EP0355661B1 (de) 1995-07-19

Family

ID=16462475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89115022A Expired - Lifetime EP0355661B1 (de) 1988-08-16 1989-08-14 Verfahren zum Herstellen direktpositiver Bilder

Country Status (4)

Country Link
US (1) US4994364A (de)
EP (1) EP0355661B1 (de)
JP (1) JPH0833607B2 (de)
DE (1) DE68923495T2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145637A (ja) * 1989-11-01 1991-06-20 Fuji Photo Film Co Ltd 直接ポジカラー画像形成方法
JP3079400B2 (ja) * 1992-11-16 2000-08-21 富士写真フイルム株式会社 ハロゲン化銀写真感光材料
US5496681A (en) * 1994-02-23 1996-03-05 Fuji Photo Film Co., Ltd. Silver halide photographic material and photographic image formation method using the same
US5939233A (en) * 1997-04-17 1999-08-17 Kodak Polychrome Graphics Llc Nucleating agents for graphic arts films
TWI682472B (zh) 2017-08-01 2020-01-11 日商新川股份有限公司 框架饋入器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310160A (ja) * 1986-07-02 1988-01-16 Fuji Photo Film Co Ltd 直接ポジカラ−画像形成方法
JPH0673005B2 (ja) * 1985-01-24 1994-09-14 富士写真フイルム株式会社 ハロゲン化銀写真感光材料
JPS62215269A (ja) * 1985-11-16 1987-09-21 Konishiroku Photo Ind Co Ltd 直接ポジ画像の形成方法
JPH0756565B2 (ja) * 1986-06-25 1995-06-14 富士写真フイルム株式会社 直接ポジ画像形成方法
JPS6315248A (ja) * 1986-07-08 1988-01-22 Fuji Photo Film Co Ltd 直接ポジ−カラ−画像の形成方法
JPS6334536A (ja) * 1986-07-30 1988-02-15 Fuji Photo Film Co Ltd ポジ画像形成方法
JPH0758389B2 (ja) * 1986-08-14 1995-06-21 富士写真フイルム株式会社 直接ポジカラ−画像形成方法

Also Published As

Publication number Publication date
DE68923495T2 (de) 1995-11-30
JPH0833607B2 (ja) 1996-03-29
EP0355661A2 (de) 1990-02-28
DE68923495D1 (de) 1995-08-24
JPH0252334A (ja) 1990-02-21
EP0355661A3 (de) 1991-01-09
US4994364A (en) 1991-02-19

Similar Documents

Publication Publication Date Title
EP0249239B1 (de) Verfahren zur Herstellung von direkt-positiven Bildern
US5601964A (en) Silver halide photographic materials
JPH07113744B2 (ja) ハロゲン化銀写真感光材料
US5100761A (en) Silver halide photographic materials
US4880729A (en) Method for forming direct positive image comprising developing with a combination of a nucleating agent and a hydrazine derivative
JPH0823679B2 (ja) 直接ポジ画像の形成方法
US4952483A (en) Direct positive silver halide photosensitive material and method for forming direct positive image
JP2515156B2 (ja) ハロゲン化銀写真感光材料
EP0318987A1 (de) Photographisches lichtempfindliches Direktpositiv-Material
EP0355661B1 (de) Verfahren zum Herstellen direktpositiver Bilder
EP0278986B1 (de) Direkt positives photographisches material und verfahren zur bildung direkt positiver bilder
US4968592A (en) Direct positive image forming method comprising developing with a combination of nucleating agents
US4996137A (en) Method for forming a direct positive image
JPH0734106B2 (ja) ハロゲン化銀写真感光材料
JPH0786666B2 (ja) ハロゲン化銀写真感光材料
EP0318988B1 (de) Photographisches lichtempfindliches Direktpositiv-Material
US5009993A (en) Direct positive photographic material
JPH0738071B2 (ja) ハロゲン化銀写真感光材料
JPH0816771B2 (ja) ハロゲン化銀写真感光材料
JPH0786665B2 (ja) ハロゲン化銀写真感光材料
JP2557690B2 (ja) 直接ポジ画像形成方法
JPH0778603B2 (ja) ハロゲン化銀写真感光材料
JPH0758390B2 (ja) 直接ポジカラ−画像形成方法
JPH02199449A (ja) 直接ポジ写真感光材料
EP0399460A2 (de) Photographisches Siberhalogenidmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19910618

17Q First examination report despatched

Effective date: 19940524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950719

Ref country code: FR

Effective date: 19950719

REF Corresponds to:

Ref document number: 68923495

Country of ref document: DE

Date of ref document: 19950824

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040811

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040826

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050814