EP0350652A1 - Elektrodynamischer Lautsprecher - Google Patents

Elektrodynamischer Lautsprecher Download PDF

Info

Publication number
EP0350652A1
EP0350652A1 EP89110971A EP89110971A EP0350652A1 EP 0350652 A1 EP0350652 A1 EP 0350652A1 EP 89110971 A EP89110971 A EP 89110971A EP 89110971 A EP89110971 A EP 89110971A EP 0350652 A1 EP0350652 A1 EP 0350652A1
Authority
EP
European Patent Office
Prior art keywords
loudspeaker
filter
voice coil
crossover
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89110971A
Other languages
English (en)
French (fr)
Other versions
EP0350652B1 (de
Inventor
Paul Zwicky
Roger Schultheiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman International Industries Inc
Original Assignee
Willi Studer AG Fabrik fuer Elektronische Apparate
Studer Revox AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Willi Studer AG Fabrik fuer Elektronische Apparate, Studer Revox AG filed Critical Willi Studer AG Fabrik fuer Elektronische Apparate
Publication of EP0350652A1 publication Critical patent/EP0350652A1/de
Application granted granted Critical
Publication of EP0350652B1 publication Critical patent/EP0350652B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • H04R3/08Circuits for transducers, loudspeakers or microphones for correcting frequency response of electromagnetic transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks

Definitions

  • the invention relates to an electrodynamic loudspeaker.
  • an electrodynamic loudspeaker with an amplifier for feeding a voice coil is known.
  • the loudspeaker is designed as a woofer.
  • the amplifier's effective output impedance is equivalent to a negative resistance in series with a parallel resonant circuit.
  • the negative resistance has practically the same value as the resistance of the loudspeaker voice coil.
  • the loudspeakers are linear and nonlinear distortions much worse than the other links in such an electroacoustic chain such as microphone, amplifier, mixer, memory, etc.
  • the improvements achieved according to the above patent application and other known measures are still so small in effect that they often reduce the effort not worth it.
  • the invention as characterized in the claims solves the problem of creating an electrodynamic loudspeaker in which distortions in the movement of the membrane are substantially reduced over the entire audible frequency range.
  • the advantages achieved by the invention are essentially to be seen in the fact that the loudspeaker now has a straight frequency response which rises steadily over its entire frequency range. This creates a mathematically ideal situation which allows a straight horizontal frequency response to be generated with the aid of a compensation network containing an integrator which is connected upstream of the power amplifier. Another advantage is the fact that the frequency response obtained in this way is phase-linear, ie has a linear relationship between phase and frequency that can be easily predicted across all frequencies.
  • Figure 1 shows an electrodynamic loudspeaker 1 in a schematic representation with an input 2 for an electrical signal, with a crossover 3 with three outputs 4, 5 and 6, each via an integrator 7, 8 and 9, each with a power amplifier 10, 11 and 12 are connected, to each of which a loudspeaker unit 13, 14 and 15 is connected.
  • the integrators are to be considered as equalization networks which contain an integrator, since their characteristics should not correspond to that of an integrator over the entire frequency range, as is already known per se.
  • the power amplifiers 10, 11 and 12 consist, for example, of an operational amplifier 16 and a circuit for generating a negative source impedance -R i as they do for example, is known from U.S. Patent No. 4,720,665.
  • Such a power amplifier can also have a different structure, as long as it has a negative source impedance.
  • the crossover 3 can be designed in a manner known per se. For example, such is described in JEI Journal of the Electronics Industry, Vol 32, September 1985 pages 38 to 44 and is shown in Figures 3 and 4 of this article.
  • Such a crossover with one input and two outputs then consists at least of an addition circuit with a positive counting and a negative counting input and a filter.
  • the input of the filter is possibly connected via a time delay unit to the positive counting input and the output of the filter to the negative counting input of the addition circuit. If more than two outputs on the crossover are required, several such crossovers can be connected in series for two outputs.
  • Usual dynamic speakers are provided as speaker units.
  • Figure 2 shows a crossover with an input 17 and three outputs 18, 19 and 20.
  • This has an addition unit 21 with a positive counting input 22 and a negative counting input 23 and a filter 24 with an input 25 and an output 26.
  • the output 26 is connected via a line 27 to the negative counting input 23 of the addition circuit 21 and to the output 20.
  • the input 25 of the filter 24 is connected via a line 28 and via a time delay unit 29 to the positive counting input 22 of the addition circuit 21.
  • the addition circuit 21 also has an output 30.
  • the elements 17 and 21 to 30 thus form a first crossover with two outputs 20 and 30.
  • a second crossover is connected in series to the output 30 and has the same elements.
  • These are the addition circuit 31 with inputs 32 and 33, a filter 34 with an input 35 and an output 36 and lines 37 and 38.
  • a time delay circuit 39 is turned on in line 37.
  • FIG. 3 shows a crossover which largely has the same elements as the crossover according to FIG. 2. It also contains a phase correction circuit 40 which is connected upstream of the filter 34. This phase correction circuit 40 is designed as an all-pass filter.
  • FIG. 4 shows a further embodiment of a crossover with loudspeaker units 41, 42 and 43 connected to it, all of which end in a common baffle 44.
  • the crossover again has the same elements as are already known from FIGS. 2 and 3. These elements are therefore given the same reference numerals.
  • new elements have been added, namely a time delay circuit 48 which is connected to the output 30 of the addition circuit 21 and generates a time delay which depends on the distance ⁇ t 1 and a time delay circuit 50 connected to an output 49 of the addition circuit 31. This generates a time delay, which depends on the distance ⁇ t2.
  • Figure 5 shows two symmetrical magnet systems.
  • the magnet system 52 to the left of a center line 51 and the magnet system 53 to the right of it partly the same. Common elements can therefore be given the same reference numerals.
  • This includes a pole piece 54, a pole plate 55 and a magnet 56.
  • the magnet system 52 has a voice coil 57 which is connected and supplied in a manner known per se.
  • a short-circuit ring 59 made of copper is inserted between the pole plate 55 and the pole piece 54 or more precisely an associated base plate 58 in a manner known per se.
  • a short-circuit ring 93 made of copper is also used on the pole piece 54.
  • a voice coil 61 is arranged in the magnet system 53, which also has an annular air gap 60.
  • a further coil 62 is arranged on the pole piece 54 coaxially to the voice coil 61.
  • One possibility is to connect one end 65 of the voice coil 61 to the other end 66 of the further coil 62, as is indicated by the line 67.
  • the further coil 62 is connected to the same power amplifier as the voice coil 61, both coils 61 and 62 have the same number of turns and are wound in the opposite direction.
  • the aim of the further coil 62 is to generate a magnetic field which at all times counteracts that magnetic field which is generated by the current in the voice coil 61 and compensates for it, so that the sum of the two magnetic fields is zero and consequently only in the air gap 60 the uniform magnetic field occurs, which is generated by the magnet 56.
  • FIG. 6 shows a simplified electrical equivalent circuit diagram of a loudspeaker with its supply.
  • This contains a voltage source 68, a negative resistor 69, a resistor 70, which represents the ohmic resistance of the voice coil, an inductance 71, which represents the inductance of the voice coil, an inductance 72, the mechanical restoring forces as they produce the suspension of the membrane and the air cushion in the housing of the loudspeaker, and a capacitance 73, which represents the masses of the membrane, etc. All of these elements are connected to one another via lines 74, 91 and connected in series, with the exception of the inductance 72, which is connected in parallel to the capacitor 73 and is connected to the line 74, 91 via a line 75.
  • the elements 68 and 69 together form the power amplifier and the other elements together form a loudspeaker unit.
  • FIG. 7 shows an example of a power amplifier circuit with a negative source impedance, as can be substituted for the voltage source 68 and the negative resistor 69 in FIG. It consists of an operational amplifier 76 with an inverting input 77, a non-inverting input 78 and an output 79. An impedance Z s is connected to this. From the output 80 a feedback 81 with a resistor R2 is fed back to the input 77. This also includes a resistor R1, which is connected to the input 77. From the output 79 a further feedback 82 with a resistor R4 is fed back to the input 78 and is also connected to the earth via a resistor R3. A load 83 is connected to the output 80.
  • This load 83 represents in simplified form the resistances, capacitances and inductivities of the loudspeaker units. From FIG. 6 these are the elements 70, 71, 72, 73, 74, 75 and 91.
  • FIG. 8 shows a representation of different frequency courses.
  • the frequencies are plotted on the horizontal axis 84, and the acoustic output i0, on which the sound pressure, output powers etc. can be understood, is plotted on the vertical axis 85.
  • Line 86 shows the frequency response generated by the power amplifier 10, 11, 12 (FIG. 1) with the negative source impedance.
  • a line 87 shows the frequency response which the integrator 7, 8, 9 (FIG. 1) generates.
  • a line 88 shows the frequency response as it is generated by the series connection of the integrator with the power amplifier.
  • FIG. 9 shows a circuit as can be used for example for the magnet system 53 according to FIG. 5 together with the further coil 62.
  • the coil 62 is represented by an ohmic resistor 62a and an inductance 62b. Via a connection 63 it is connected to the output 95 of an amplifier 94 with a negative source impedance.
  • the input 96 of the amplifier 94 is connected to the ground, as is the other end 66 of the coil 62.
  • Figure 10 shows a frequency response as it can be provided for the filter 24.
  • the frequencies are plotted on the horizontal axis 100 and the acoustic output is plotted on the vertical axis 101.
  • a curve 102 represents a filter characteristic known per se for a low pass of at least 2nd order according to Bessel.
  • Another curve 103 above a point 104 represents a filter characteristic also known per se for a low pass filter 2nd order according to Butterworth (provided the good 1 / ⁇ 2 corresponds exactly) or Tchebycheff (if the quality is greater than 1 / ⁇ 2). According to the invention, this characteristic expires horizontally after the point 104 in an area 105 in which the damping is essentially constant.
  • the damping which corresponds to a distance 106, should only be so great that signal components that this filter passes through and that in the frequency range of the Loudspeaker unit 42 (mid-range) are located, the loudspeaker unit 41 (low tone) or its output signal is not noticeably disturbed.
  • the mode of operation of the loudspeaker according to the invention will be explained below.
  • the inductance 72 represents the properties of the suspension of the membrane and the capacitance 73 the inertia of the membrane of a loudspeaker unit.
  • a current flows in line 91 which corresponds to the acoustic output. This current should depend in a simple and precise manner on the voltage and the frequency at the voltage source 68. Ideally, the voltage at node 89 should correspond to the voltage at voltage source 68.
  • impedances 69, 70 and 71 are arranged in series between voltage source 68 and node 89 and a current flows through them. Voltage drops thus occur at these impedances, the sum of which indicate a voltage difference ⁇ U between the voltage source 68 and the node 89. This voltage difference ⁇ U can disappear if the voltage source 68 is connected directly to the node 89. This is true even if the sum of the impedances 69, 70 and 71 is zero. This is achieved in that the impedance or resistance 69 has a size which corresponds to the negative sum of the impedance or resistance 70 and the impedance or inductance 71. It is thus possible to completely eliminate the undesired influence of the resistor 70, the inductance 71 and also the inductance 72 on the current in the line 91. Their influence on the frequency response and the distortions is therefore eliminated.
  • Such an impedance or resistor 69 with negative impedance together with a power amplifier is represented more precisely by the circuit according to FIG.
  • Resistor 83 represents the connected loudspeaker unit.
  • the output 80 and the node 92 are indicated in both circuits (FIGS. 6 and 7) for better orientation.
  • the operation of the circuit according to Figure 7 can be given as follows:
  • the resistors R2 and R1 form the negative feedback 81 with the tendency to reduce the output signal at the output 79.
  • the resistors R3 and R4 form the positive feedback 82 with the tendency to increase the output signal at the output 79. If there is no current at outputs 79 and 80, both outputs 79 and 80 have the same voltage. This depends on the size of the resistors R1 to R4. If the load 83 is switched on, which means that the loudspeaker unit is in operation, a current flows in the impedance Z s .
  • the voltage at the output 80 is thus somewhat lower than at the output 79.
  • the positive feedback 82 is thus taken from a greater voltage than the negative feedback 81. This increases the effect of the positive versus the negative feedback and the signal at the outputs 79 and 80 is getting bigger. A larger load at output 80 results in an increase in signal. This corresponds to a negative source impedance.
  • an AC signal is applied to input 2. This is divided in the crossover so that, for example, signal parts with low frequencies pass through the output 6 into the integrator 9, signal parts with medium frequencies via the output 5 into the integrator 8 and signal parts with high frequencies via the output 4 into the integrator 7.
  • these signal parts are treated in a manner known per se so that their amplitudes decrease with increasing frequency, as indicated by line 87 in FIG. 8.
  • these signal parts reach the power amplifiers 10, 11 and 12, where these signal parts receive an amplitude / frequency characteristic according to line 86 from FIG. Together this results in a characteristic according to line 88 or just an even frequency response.
  • the integrators and the power amplifiers with the negative source impedance are to be designed so that the slopes of lines 86 and 87 are exactly the same in opposite directions.
  • the slope is preferably 6dß / octave. It would be conceivable to design the power amplifier 10 for the high-frequency loudspeaker unit 13 without a negative source impedance, but then the straight frequency response can no longer be generated into the high-frequency range. However, this compromise could at best be accepted and the disadvantages neglected.
  • an electrical signal is applied to the input 17 of the first crossover 21 to 30 according to FIG. 2, it reaches the input 25 of the filter 24 via the line 28, which is designed as a low-pass filter.
  • the unfiltered signal is also applied via line 28 to the positive counting input 22 of the addition circuit 21.
  • the low frequencies are subtracted from this signal in the addition circuit 21 and only the high frequencies appear at the output 30.
  • the low frequencies then reach the output 20.
  • the elements 31 and 34 of the second crossover 31 to 39 work exactly accordingly, so that the high frequencies occur at the output 18, the medium frequencies at the output 19 and the low frequencies at the output 20. This applies if the filter 34 is also designed as a low-pass filter.
  • time delay circuits 29 and 39 it can be achieved with such a crossover that the signals from the outputs 18, 19 and 20, which via the power amplifiers 10, 11 and 12 to the loudspeaker units 13, 14 and 15 are emitted, together emit an acoustic output signal which has a linear phase / frequency characteristic.
  • a significant improvement can be achieved if the time delay circuits 29 and 39 are designed to accommodate the time delays of the signal in the filters 24 and 34 exactly balance and if the filters 24 and 34 are designed as a low pass filter of at least fourth order according to Bessel. This gives rise to signals at the outputs 18, 19 and 20, which make the loudspeaker units 13, 14 and 14, 15 work in phase at the relevant takeover frequency. This means that the diaphragms of the loudspeaker units 14 and 15 operate synchronously and without a phase difference at any frequency of signals in the range of the upper limit frequency of the filter 24 designed as a low-pass filter. The radiation characteristics of these two loudspeaker units are thus stable. The same effect can be achieved for the crossover frequency of the loudspeaker units 13 and 14.
  • a simplification can be achieved if the filter 24 is designed as a low-pass filter with two poles and with a quality greater than or equal to 1 / ⁇ 2, and if the falling frequency response of the filter is designed so that it falls into a range with essentially passes constant attenuation, as shown in Figure 10. This is in contrast to a normal frequency response that drops to infinite attenuation. As a result, the group delay in the filter 24 is significantly shortened, which significantly reduces the circuit complexity in the time delay circuit 29. Under certain circumstances, the time delay circuit 29 can then be omitted entirely. This simplification has the consequence that the loudspeaker units 14 and 15 operating in the range of the cut-off frequency of the filter 24 no longer work in exactly the same phase.
  • the filter 34 can be preceded by a phase correction circuit 40. This results in an improvement and a phase-linear and in-phase acoustic output signal.
  • the filter 34 designed as a low-pass filter is preferably designed as a second-order Butterworth filter.
  • the phase correction circuit 40 must be designed in such a way that the phase up to sufficiently high frequencies. These sufficiently high frequencies also include, in particular, frequencies in the region of the falling frequency response of the filter 34.
  • the addition circuit 31 thus forms a high-pass filter with a steepness of a third-order filter.
  • the time delay circuit 48 delays the signal from the output 30 by an amount that is dimensioned such that time delays of all elements connected in series, such as time delay circuit 48, phase correction circuit 40 and filter 34, add up the Time difference ⁇ t1 correspond.
  • the signal that is fed to the input 2 17 is composed of two partial signals and that one partial signal is broadcast via the loudspeaker unit 41 and the other partial signal is broadcast via the loudspeaker unit 42.
  • the time delay circuit 48 compensates for exactly that time difference ⁇ t2 which corresponds to the transit time difference of the sound waves in the loudspeaker units 42 and 43 from the membrane to the baffle 44.
  • time delay circuits could also be provided at other locations in the crossover network.
  • the loudspeaker according to the invention can be further improved overall.
  • the part 98 of the voice coil 57 protruding into a cavity 97 brings about an additional excitation in the magnetic circuit as soon as the current flows through it.
  • the force that the voice coil experiences is given by the vector product of the magnetic field and current.
  • the magnetic field is again a function of the current through the voice coil, the vector product is not linear. It is therefore important to counteract the change in the magnetic field.
  • the short-circuit ring 59 offers a possibility for this. In this case, currents always form in such a way that the change in the magnetic flux is counteracted. There is also the possibility of providing a coil instead of the short-circuit ring 59.
  • the voice coil as a whole generates a magnetic field which influences the magnetic field in the air gap 60 (FIG. 5) such that, depending on the polarity of the fields, a field intensification occurs at one end of the air gap and a field weakening occurs at the other end. This does not seem to be bad at first, as the total flow in the air gap remains approximately constant. Only closer examinations show that this is not the case.
  • the permeability of the iron in the pole plate 55 and in the pole piece 54 is dependent on the magnetic modulation. This leads to the fact that the total magnetic flux is again dependent on the current in the voice coil 61.
  • a short circuit ring 93 in the area of the air gap can be used to combat the distortions that have arisen.
  • Another possibility is to replace the short-circuit ring 93 with a fixed further coil 62, which is arranged in such a way that it exactly cancels the field generated by the voice coil 61.
  • the voice coil current preferably also flows through it. It is connected in series or parallel to the voice coil. It is also possible to feed the coil 62 through a separate amplifier. It is also conceivable to connect the coil to an amplifier with a negative source impedance, as shown in FIG. 9.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Amplifiers (AREA)

Abstract

Bei einem solchen Lautsprecher mit mehreren Lautsprechereinheiten (13, 14, 15), die ueber je einen Leistungsverstaerker (10, 11, 12) an eine Frequenzweiche (3) angeschlossen sind, werden Leistungsverstaerker mit negativer Quellenimpedanz (-Ri) vorgeschlagen, die die linearen und nichtlinearen Verzerrungen soweit verringern, dass die Anwendung von modernen Weichen moeglich wird und weitere Massnahmen zur Verringerung von nicht linearen Verzerrungen sinnvoll werden.

Description

  • Die Erfindung betrifft einen elektrodynamischen Lautsprecher.
  • Aus der DE - A - 27 13 023 ist ein elektrodynamischer Lautsprecher mit einem Verstaerker zur Speisung einer Schwingspule bekannt. Der Lautsprecher ist als Tieftonlautsprecher ausgebildet. Dabei ist die effektive Ausgangsimpedanz des Verstaerkers einem negativen Widerstand aequivalent, der in Serie mit einem Parallelschwingkreis liegt. Der negative Widerstand hat praktisch den gleichen Wert wie der Widerstand der Schwingspule des Lautsprechers. Durch den Betrieb des Lautsprechers mit einem derartigen Verstaerker laest sich die Veraenderung der Basscharakteristik des Lautsprechers, die aequivalent ist zur Aenderung der mechanischen Parameter des Lautsprecherelements sowie dessen Bewegungsmasse, Daempfung und Aussteuerung, erreichen. Mit anderen Worten soll so die Eigenresonanzfrequenz des Lautsprechers bekaempft und gleichzeitig eine andere Resonanzfrequenz erzwungen werden, die besser auf das Gehaeuse des Lautsprechers abgestimmt ist.
  • Der Nachteil dieser Loesung besteht darin, dass sie zwar bei Tieftonlautsprechern oder bei der Wiedergabe von tiefen Toenen durch andere Lautsprecher Vorteile bringt, aber zur Verbesserung von Mittel- und Hochtonlautsprechern oder zur Verbesserung der Wiedergabe von Toenen mittlerer und hoher Frequenz nicht verwendet werden kann, da bei diesen diese Probleme mit der Eigenresonanzfrequenz gar nicht oder nur in sehr abgeschwaechter Form auftreten. Zudem ergibt diese Loesung keinen vorhersehbaren, eine klare Tendenz aufzeigenden Frequenzgang, wie das fuer andere Glieder (z.B. Verstaerker, Aufzeichnungsgeraet usw.) einer elektroakustischen Kette ueblicherweise gefordert wird. Damit bleibt der Lautsprecher das schlechteste Glied einer solchen Kette, die mit dem Mikrophon beginnt und mit dem Lautsprecher endet. Beim Lautsprecher sind die linearen und die nichtlinearen Verzerrungen wesentlich schlechter als bei den uebrigen Gliedern einer solchen elektroakustischen Kette wie z.B. Mikrophon, Verstaerker, Mischer, Speicher usw. Die gemaess der obengenannten Patentanmeldung sowie mit anderen bekannten Massnahmen erreichten Verbesserungen sind immer noch derart klein in der Wirkung, dass sie den Aufwand oft nicht lohnen.
  • Aus Audio-Engineering, August 1951, W. Clements:"A new approach to loudspeaker damping" ist eine Verstaerkerschaltung mit negativer Impedanz bekannt, die so ausgelegt ist, dass dadurch die Impedanz der Schwingspule eines nachgeschalteten Lautsprechers beinahe verschwindet. Der Vorteil der sich dadurch ergeben soll, besteht darin, dass damit eine sehr hohe Daempfung des Lautsprechers erreicht wird.
  • Damit ist es klar, dass eine solche Verstaerkerschaltung, wie sie dort beschrieben wird, insbesondere zur Daempfung von Resonanzen des Lautsprechers bei tiefen Frequenzen Verwendung findet. Bei Mehrweglautsprechern liegt nur beim Tieftoener die Resonanzfrequenz im Uebertragungsbereich. Beim Mitteltoener und beim Hochtoener liegt diese Resonanzfrequenz ausserhalb des Uebertragungsbereiches. Bei Mehrwegsystemen wird eine solche Verstaerkerschaltung deshalb ausschliesslich als Antrieb von Tieftoenern mit Erfolg verwendet. Beim Mitteltoener und beim Hochtoener wird der Frequenzgang nicht mit einer solchen Verstaerkerschaltung verbessert, weil andere Mittel dies anzustreben eingesetzt werden.
  • Die Erfindung wie sie in den Patentanspruechen gekennzeichnet ist, loest die Aufgabe, einen elektrodynamischen Lautsprecher zu schaffen, bei dem Verzerrungen bei der Bewegung der Membran ueber den gesamten hoerbaren Frequenzbereich wesentlich vermindert werden.
  • Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass der Lautsprecher nun einen ueber seinen gesamten Frequenzbereich stetig ansteigenden geraden Frequenzgang aufweist. Damit ist eine mathematisch ideale Situation geschaffen, die es erlaubt mit Hilfe eines, einen Integrator enthaltenden, Ausgleichsnetzwerkes, das dem Leistungsverstaerker vorgeschaltet ist, einen geraden horizontalen Frequenzgang zu erzeugen. Vorteilhaft ist weiter der Umstand, dass der so erhaltene Frequenzgang phasenlinear ist, d.h. eine lineare Beziehung zwischen Phase und Frequenz hat, die ueber alle Frequenzen einfach voraussehbar ist. Obwohl gemaess der genannten DE-A-27 13 023 Leistungsverstaerker mit negativer Impedanz fuer Tieftonlautsprecher bekannt sind, tritt ein ueberraschender und bisher nicht genutzter Effekt auf, wenn man solche Leistungsverstaerker mehrfach in einem Mehrweglautsprecher zusammen mit einer Frequenzweiche kombiniert. Dieser Effekt besteht im bereits genannten vorhersehbaren und konstante Eigenschaften aufweisenden Frequenz- und Phasengang ueber den gesamten Uebertragungsbereich. Ist es einmal gelungen gemaess der Erfindung den Frequenzgang ueber den gesamten Frequenzbereich gerade und phasenlinear zu machen, so eroeffnen sich weitere Moeglichkeiten mit denen Mehrwegsysteme wesentlich verbessert werden koennen. Diese Verbesserungen wirken sich aber erst voll aus, wenn Frequenz- und Phasengang genuegend gut und verlaesslich bekannt sind. Solche Verbesserungen sind bei den Magnetsystemen der Lautsprechereinheiten und bei den Frequenzweichen erreichbar. Beispielsweise kommen weitere vorgeschlagene Massnahmen zur Linearisierung der Antriebskraft der Schwingspule im Magnetfeld des Magnetsystems erst dann zur Geltung, wenn die Nichtlinearitaeten der Rueckstellkraefte auf die erfindungsgemaesse Weise schon bekaempft sind. Obwohl gewisse der genannten Verbesserungen an sich bereits bekannt sind, so wird deren Wirkung ueberraschend gesteigert, wenn sie an Lautsprechern vorgenommen werden, die durch Leistungsverstaerker mit negativer Quellenimpedanz angetrieben werden.
  • Im folgenden wird die Erfindung anhand von lediglich einen Ausfuehrungsweg darstellenden Zeichnungen naeher erlaeutert. Es zeigt
    • Figur 1 eine schematische Darstellung eines erfindungsgemaessen elektrodynamischen Lautsprechers,
    • Figur 2, 3 und 4 je eine Ausfuehrungsform einer im Lautsprecher verwendeten Frequenzweiche in schematischer Darstellung,
    • Figur 5 einen Schnitt durch eine Lautsprechereinheit,
    • Figur 6 ein elektrisches Ersatzschaltbild,
    • Figur 7 eine Schaltung zur Erzeugung einer negativen Quellenimpedanz,
    • Figur 8 eine Darstellung verschiedener Charakteristiken,
    • Figur 9 eine Schaltung fuer einen Teil des Lautsprechers und
    • Figur 10 eine Filtercharakteristik.
  • Figur 1 zeigt einen elektrodynamischen Lautsprecher 1 in schematischer Darstellung mit einem Eingang 2 fuer ein elektrisches Signal, mit einer Frequenzweiche 3 mit drei Ausgaengen 4, 5 und 6, die ueber je einen Integrator 7, 8 und 9 mit je einem Leistungsverstaerker 10, 11 und 12 verbunden sind, an die je eine Lautsprechereinheit 13, 14 und 15 angeschlossen ist. Dabei sind die Integratoren genau besehen als Ausgleichsnetzwerke die einen Integrator enthalten zu betrachten, da deren Charakteristik nicht ueber den ganzen Frequenzbereich derjenigen eines Integrators entsprechen soll wie dies aber an sich bereits bekannt ist. Die Leistungsverstaerker 10, 11 und 12 bestehen beispielsweise aus einem Operationsverstaerker 16 und einer Schaltung zur Erzeugung einer negativen Quellenimpedanz -Ri wie sie beispielsweise aus dem US-Patent Nr. 4,720,665 bekannt ist. Ein solcher Leistungsverstaerker kann aber auch einen anderen Aufbau haben, solange er eine negative Quellenimpedanz aufweist. Die Frequenzweiche 3 kann in an sich bekannter Weise ausgefuehrt sein. Beispielsweise ist eine solche in JEI Journal of the Electronics Industry, Vol 32, September 1985 Seiten 38 bis 44 beschrieben und in den Figuren 3 und 4 dieses Artikels dargestellt. Eine solche Frequenzweiche mit einem Eingang und zwei Ausgaengen besteht dann mindestens aus einer Additionsschaltung mit einem positiv zaehlenden und einem negativ zaehlenden Eingang und aus einem Filter. Der Eingang des Filters ist moeglicherweise ueber eine Zeitverzoegerungseinheit mit dem positiv zaehlenden Eingang und der Ausgang des Filters mit dem negativ zaehlenden Eingang der Additionsschaltung verbunden. Werden mehr als zwei Ausgaenge an der Frequenzweiche verlangt, so koennen mehrere solcher Frequenzweichen fuer zwei Ausgaenge in Serie geschaltet werden. Als Lautsprechereinheiten sind uebliche dynamische Lautsprecher vorgesehen.
  • Figur 2 zeigt eine Frequenzweiche mit einem Eingang 17 und drei Ausgaengen 18, 19 und 20. Diese weist eine Additionseinheit 21 mit einem positiv zaehlenden Eingang 22 und einem negativ zaehlenden Eingang 23 sowie ein Filter 24 mit einem Eingang 25 und einem Ausgang 26 auf. Dabei ist der Ausgang 26 ueber eine Leitung 27 mit dem negativ zaehlenden Eingang 23 der Additionsschaltung 21 und mit dem Ausgang 20 verbunden. Der Eingang 25 des Filters 24 ist ueber eine Leitung 28 und ueber eine Zeitverzoegerungseinheit 29 an den positiv zaehlenden Eingang 22 der Additionsschaltung 21 angeschlossen. Die Additionsschaltung 21 hat auch einen Ausgang 30. Die Elemente 17 und 21 bis 30 bilden somit eine erste Frequenzweiche mit zwei Ausgaengen 20 und 30. An den Ausgang 30 ist eine zweite Frequenzweiche in Serie angeschlossen, die die selben Elemente aufweist. Dies sind die Additionsschaltung 31 mit Eingaengen 32 und 33, ein Filter 34 mit einem Eingaeng 35 und einem Ausgang 36 und Leitungen 37 und 38. Eine Zeitverzoegerungsschaltung 39 ist in die Leitung 37 eingeschaltet.
  • Figur 3 zeigt eine Frequenzweiche die weitgehend die selben Elemente aufweist wie die Frequenzweiche gemaess Figur 2. Sie enthaelt zusaetzlich eine Phasenkorrekturschaltung 40, die dem Filter 34 vorgeschaltet ist. Diese Phasenkorrekturschaltung 40 ist als Allpassfilter ausgebildet.
  • Figur 4 zeigt eine weitere Ausfuehrung einer Frequenzweiche mit daran angeschlossenen Lautsprechereinheiten 41, 42 und 43, die alle in eine gemeinsame Schallwand 44 muenden. Das bedeutet, dass deren Magnetsysteme 45, 46 und 47 unterschiedliche Abstaende zu dieser Schallwand 44 aufweisen. Misst man diese Abstaende in Laufzeiten der Schallwellen, so hat die Schwingspule im Magnetsystem 45 der Lautsprechereinheit 41 einen solchen Abstand Δt₁ + Δt₂, die Schwingspule im Magnetsystem 46 der Lautsprechereinheit 42 einen Abstand Δt₂ und die Schwingspule im Magnetsystem 47 der Lautsprechereinheit 43 einen vernachlaessigbaren Abstand. Die hier nicht gezeichneten Leistungsverstaerker und Integratoren wie sie aus der Figur 1 bekannt sind, sind fuer die Zwecke dieser Darstellung nicht wesentlich, sind in Wirklichkeit aber doch vorhanden. Die Frequenzweiche hat wiederum die selben Elemente wie sie bereits aus den Figuren 2 und 3 bekannt sind. Diese Elemente sind deshalb auch mit den selben Bezugszeichen versehen. Neue Elemente sind aber trotzdem hinzugekommen und zwar eine Zeitverzoegerungsschaltung 48, die an den Ausgang 30 der Additionsschaltung 21 angeschlossen ist und eine Zeitverzoegerung erzeugt, die vom Abstand Δt₁ abhaengt sowie eine an einen Ausgang 49 der Additionsschaltung 31 angeschlossene Zeitverzoegerungsschaltung 50. Diese erzeugt eine Zeitverzoegerung, die vom Abstand Δt₂ abhaengt.
  • Figur 5 zeigt zwei symmetrische Magnetsysteme. Links einer Mittellinie 51 das Magnetsystem 52 und rechts davon das Magnetsystem 53. Der Aufbau beider Magnetsysteme 52, 53 ist teilweise gleich. Deshalb koennen gemeinsame Elemente mit den selben Bezugszeichen versehen werden. Dazu gehoeren ein Polstueck 54, eine Polplatte 55 und ein Magnet 56. Das Magnetsystem 52 weist eine Schwingspule 57 auf die in an sich bekannter Weise angeschlossen und gespeist wird. Zwischen der Polplatte 55 und dem Polstueck 54 oder genauer genommen einer dazugehoerenden Grundplatte 58 ist ein Kurzschlussring 59 aus Kupfer in an sich bekannter Weise eingesetzt. Im Bereiche der Schwingspule 57 ist auch auf dem Polstueck 54 ein Kurzschlussring 93 aus Kupfer eingesetzt.
  • Im Magnetsystem 53, welches auch einen ringfoermigen Luftspalt 60 aufweist, ist eine Schwingspule 61 angeordnet. Koaxial zur Schwingspule 61 ist eine weitere Spule 62 fest auf dem Polstueck 54 angeordnet. Es gibt verschiedene Moeglichkeiten die Schwingspule 61 und die weitere Spule 62 an einen Leistungsverstaerker anzuschliessen. Deshalb sind nur zwei Anschluesse 63 und 64 eingezeichnet. Eine Moeglichkeit besteht darin, das eine Ende 65 der Schwingspule 61 mit dem anderen Ende 66 der weiteren Spule 62 zu verbinden, wie dies mit der Leitung 67 angedeutet ist. Vorzugsweise ist aber die weitere Spule 62 an den selben Leistungsverstaerker wie die Schwingspule 61 angeschlossen, weisen beide Spulen 61 und 62 gleichviele Windungen auf und sind in entgegengesetztem Umlaufssinn gewickelt. Ziel der weiteren Spule 62 ist es, ein Magnetfeld zu erzeugen, das zu jeder Zeit demjenigen Magnetfeld entgegen wirkt, das durch den Strom in der Schwingspule 61 erzeugt wird und dieses ausgleicht, so dass die Summe beider Magnetfelder Null ist und demzufolge im Luftspalt 60 nur das gleichfoermige Magnetfeld auftritt, das durch den Magneten 56 erzeugt wird.
  • Figur 6 zeigt ein vereinfachtes elektrisches Ersatzschaltbild eines Lautsprechers mit seiner Speisung. Darin findet man eine Spannungsquelle 68, einen negativen Widerstand 69, einen Widerstand 70, der den ohmschen Widerstand der Schwingspule darstellt, eine Induktivitaet 71, die die Induktivitaet der Schwingspule darstellt, eine Induktivitaet 72, die mechanische Rueckstellkraefte wie sie die Aufhaengung der Membran und das Luftpolster im Gehaeuse des Lautsprechers erzeugen, darstellt und eine Kapazitaet 73, die die Massen der Membran usw. darstellt. Alle diese Elemente sind ueber Leitungen 74, 91 miteinander verbunden und in Serie geschaltet, mit Ausnahme der Induktivitaet 72, die zu der Kapazitaet 73 parallel geschaltet ist und ueber eine Leitung 75 an die Leitung 74, 91 angeschlossen ist. Die Elemente 68 und 69 bilden zusammen den Leistungsverstaerker und die uebrigen Elemente bilden zusammen eine Lautsprechereinheit.
  • Figur 7 zeigt ein Beispiel einer Leistungsverstaerkerschaltung mit einer negativen Quellenimpedanz wie sie in der Figur 6 an die Stelle der Spannungsquelle 68 und des negativen Widerstandes 69 treten kann. Sie besteht aus einem Operationsverstaerker 76 mit einem invertierenden Eingang 77, einem nicht invertierenden Eingang 78 und einem Ausgang 79. An diesen ist eine Impedanz Zs angeschlossen. Von deren Ausgang 80 ist eine Rueckkopplung 81 mit einem Widerstand R₂ auf den Eingang 77 zurueckgefuehrt. Dazu gehoert auch ein Widerstand R₁, der an den Eingang 77 angeschlossen ist. Vom Ausgang 79 ist eine weitere Rueckkopplung 82 mit einem Widerstand R₄ auf den Eingang 78 zurueckgefuehrt und zudem auch ueber einen Widerstand R₃ mit der Erde verbunden. An den Ausgang 80 ist eine Last 83 angeschlossen. Diese Last 83 stellt vereinfacht die Widerstaende, Kapazitaeten und Induktivitaeten der Lautsprechereinheiten dar. Aus Figur 6 sind dies die Elemente 70, 71, 72, 73, 74, 75 und 91. Als Impedanz Zq ist diejenige Impedanz zu verstehen, die am unbelasteten Ausgang 80 auftritt. Fuer diese Schaltung gemaess Figur 7 gilt:
    - Die Impedanz Zs soll viel kleiner sein als die Widerstaende R₂ und R₄
    - Die Impedanz Zq = -Zs(1 + V₁ )/(V₂ - V₁) mit V₁ = R₂/R₁ und V₂ = R₄/R₃.
  • Figur 8 zeigt eine Darstellung verschiedener Frequenzgaenge. Auf der horizontalen Achse 84 sind die Frequenzen, auf der vertikalen Achse 85 ist der akustische Ausgang i₀, unter dem man Schalldruck, Ausgangsleistungen usw. verstehen kann, aufgetragen. Eine Linie 86 zeigt den Frequenzgang, den der Leistungsverstaerker 10, 11, 12 (Fig. 1) mit der negativen Quellenimpedanz erzeugt. Eine Linie 87 zeigt den Frequenzgang, den der Integrator 7, 8, 9 (Fig. 1) erzeugt. Eine Linie 88 zeigt den Frequenzgang, wie er durch die Serieschaltung des Integrators mit dem Leistungsverstaerker erzeugt wird.
  • Figur 9 zeigt eine Schaltung wie sie beispielsweise fuer das Magnetsystem 53 gemaess Figur 5 zusammen mit der weiteren Spule 62 verwendet werden kann. In dieser Schaltung ist die Spule 62 durch einen ohm'schen Widerstand 62a und eine Induktivitaet 62b dargestellt. Ueber einen Anschluss 63 ist sie an den Ausgang 95 eines Verstaerkers 94 mit negativer Quellenimpedanz angeschlossen. Der Eingang 96 des Verstaerkers 94 ist mit der Erde verbunden, wie auch das andere Ende 66 der Spule 62.
  • Figur 10 zeigt einen Frequenzgang wie er fuer das Filter 24 vorgesehen werden kann. Auf der horizontalen Achse 100 sind die Frequenzen und auf der vertikalen Achse 101 ist der akustische Ausgang aufgetragen. Eine Kurve 102 stellt eine an sich bekannte Filtercharakteristik fuer einen Tiefpass mindestens 2.Ordnung nach Bessel dar. Eine weitere Kurve 103 oberhalb einer Stelle 104 stellt eine ebenfalls an sich bekannte Filtercharakteristik fuer einen Tiefpassfilter 2.Ordnung nach Butterworth (sofern die Guete 1/√2 genau entspricht) oder Tchebycheff (sofern die Guete groesser als 1/√2 ist) dar. Erfindungsgemaess ist diese Charakteristik nach der Stelle 104 horizontal in einem Bereich 105 auslaufend, in dem die Daempfung im wesentlichen konstant ist. Die Daempfung welche einem Abstand 106 entspricht, soll nur so gross sein, dass Signalanteile die dieses Filter durchlaesst und die im Frequenzbereich der Lautsprechereinheit 42 (Mitteltonbereich) liegen, die Lautsprechereinheit 41 (Tiefton) beziehungsweise dessen Ausgangssignal nicht spuerbar stoeren.
  • Die Wirkungsweise des erfindungsgemaessen Lautsprechers soll nachstehend erlaeutert werden. Dazu ist es vorteilhaft, zuerst die Wirkungsweise mit Hilfe der elektrischen Ersatzschaltung gemaess Figur 6 zu behandeln. Dort stellt die Induktivitaet 72 die Eigenschaften der Aufhaengung der Membran und die Kapazitaet 73 die Traegheit der Membran einer Lautsprechereinheit dar. In der Leitung 91 fliesst ein Strom, der dem akustischen Ausgang entspricht. Dieser Strom sollte in einfacher und genauer Weise von der Spannung und der Frequenz an der Spannungsquelle 68 abhaengen. Im Idealfall soll die Spannung am Knoten 89 der Spannung an der Spannungsquelle 68 entsprechen. Dies scheint aber nicht zuzutreffen, da zwischen der Spannungsquelle 68 und dem Knoten 89 Impedanzen 69, 70 und 71 in Serie angeordnet sind und diese von einem Strom durchflossen werden. Damit treten an diesen Impedanzen Spannungsabfaelle auf, deren Summe eine Spannungsdifferenz ΔU zwischen der Spannungsquelle 68 und dem Knoten 89 angeben. Diese Spannungsdifferenz ΔU kann verschwinden, wenn die Spannungsquelle 68 direkt mit dem Knoten 89 verbunden wird. Dies trifft auch dann zu, wenn die Summe der Impedanzen 69, 70 und 71 null ist. Dies wird erreicht, indem die Impedanz oder der Widerstand 69 eine Groesse hat, die der negativen Summe der Impedanz oder des Widerstandes 70 und der Impedanz oder Induktivitaet 71 entspricht. Damit gelingt es, den unerwuenschten Einfluss des Widerstandes 70, der Induktivitaet 71 und auch der Induktivitaet 72 auf den Strom in der Leitung 91 ganz aufzuheben. Deren Einfluss auf den Frequenzgang und die Verzerrungen entfaellt damit.
  • Eine solche Impedanz oder Widerstand 69 mit negativer Impedanz zusammen mit einem Leistungsverstaerker wird genauer durch die Schaltung gemaess Figur 7 dargestellt. Dabei stellt der Widerstand 83 die angeschlossene Lautsprechereinheit dar.
  • Der Ausgang 80 und der Knoten 92 sind zur besseren Orientierung in beiden Schaltungen (Fig. 6 und 7) angegeben. Die Wirkungsweise der Schaltung gemaess Figur 7 laesst sich wie folgt angeben: Die Widerstaende R₂ und R₁ bilden die negative Rueckkopplung 81 mit der Tendenz das Ausgangssignal am Ausgang 79 zu verkleinern. Die Widerstaende R₃ und R₄ bilden die positive Rueckkopplung 82 mit der Tendenz das Ausgangssignal am Ausgang 79 zu erhoehen. Fliesst an den Ausgaengen 79 und 80 kein Strom, so haben beide Ausgaenge 79 und 80 gleiche Spannung. Diese haengt von der Groesse der Widerstaende R₁ bis R₄ ab. Wird die Last 83 zugeschaltet, was bedeutet, dass die Lautsprechereinheit im Betrieb ist, so fliesst in der Impedanz Zs ein Strom. Die Spannung am Ausgang 80 wird damit etwas kleiner als am Ausgang 79. Die positive Ruekkopplung 82 wird damit von einer groesseren Spannung abgenommen, als die negative Rueckkopplung 81. Damit steigt die Wirkung der positiven gegenueber der negativen Rueckkopplung und das Signal an den Ausgaengen 79 und 80 wird groesser. Eine groessere Belastung am Ausgang 80 hat eine Signalvergroesserung zur Folge. Das entspricht einer negativen Quellenimpedanz.
  • Beim erfindungsgemaessen elektrodynamischen Lautsprecher wie er in der Figur 1 dargestellt ist, wird an den Eingang 2 ein Wechselstromsignal angelegt. Dieses wird in der Frequenzweiche so aufgeteilt, dass beispielsweise Signalteile mit tiefen Frequenzen ueber den Ausgang 6 in den Integrator 9, Signalteile mit mittleren Frequenzen ueber den Ausgang 5 in den Integrator 8 und Signalteile mit hohen Frequenzen ueber den Ausgang 4 in den Integrator 7 gelangen. In diesen Integratoren werden diese Signalteile in an sich bekannter Weise so behandelt, dass deren Amplituden mit steigender Frequenz abnehmen, wie dies die Linie 87 in der Figur 8 angibt. Nach diesen Integratoren 7, 8 oder 9 gelangen diese Signalteile in die Leistungsverstaerker 10, 11 und 12, wo diese Signalteile eine Amplituden/Frequenz-Charakteristik gemaess der Linie 86 aus Figur 8 erhalten. Zusammen ergibt das dann aber eine Charakteristik gemaess der Linie 88 oder eben einen geraden Frequenzgang. Die Integratoren und die Leistungsverstaerker mit der negativen Quellenimpedanz sind dabei so auszulegen, dass die Steigungen der Linien 86 und 87 gerade entgegengesetzt gleich sind. Vorzugsweise betraegt die Steigung 6dß/Oktave. Dabei waere es denkbar den Leistungsverstaerker 10 fuer die Hochton-Lautsprechereinheit 13 ohne negative Quellenimpedanz auszubilden, doch dann laesst sich der gerade Frequenzgang nicht mehr bis in den Hochtonbereich hinein erzeugen. Doch koennte man diesen Kompromiss allenfalls eingehen und die Nachteile vernachlaessigen.
  • Wird ein elektrisches Signal an den Eingang 17 der ersten Frequenzweiche 21 bis 30 gemaess der Figur 2 angelegt, so gelangt es ueber die Leitung 28 an den Eingang 25 des Filters 24, welches als Tiefpassfilter ausgebildet ist. Das ungefilterte Signal wird auch ueber die Leitung 28 an den positiv zaehlenden Eingang 22 der Additionsschaltung 21 angelegt. Von diesem Signal werden in der Additionsschaltung 21 die tiefen Frequenzen subtrahiert und am Ausgang 30 erscheinen nur noch die hohen Frequenzen. Die tiefen Frequenzen erreichen dann den Ausgang 20. Genau entsprechend arbeiten die Elemente 31 und 34 der zweiten Frequenzweiche 31 bis 39, so dass am Ausgang 18 die hohen, am Ausgang 19 die mittleren und am Ausgang 20 die tiefen Frequenzen anfallen. Dies gilt, wenn auch das Filter 34 als Tiefpassfilter ausgebildet ist. Unabhaengig davon, ob Zeitverzoegerungsschaltungen 29 und 39 vorgesehen sind oder nicht, laesst sich mit einer solchen Frequenzweiche erreichen, dass die Signale von den Ausgaengen 18, 19 und 20, die ja ueber die Leistungsverstaerker 10, 11 und 12 an die Lautsprechereinheiten 13, 14 und 15 abgegeben werden, zusammen ein akustisches Ausgangssignal abgeben, das eine lineare Phasen/Frequenz-Charakteristik aufweist.
  • Eine wesentliche Verbesserung laesst sich erreichen, wenn die Zeitverzoegerungsschaltungen 29 und 39 so ausgelegt sind, dass sie die Zeitverzoegerungen des Signales in den Filtern 24 und 34 genau ausgleichen und wenn die Filter 24 und 34 als Tiefpassfilter mindestens vierter Ordnung nach Bessel ausgebildet sind. So ergeben sich an den Ausgaengen 18, 19 und 20 Signale, die die Lautsprechereinheiten 13, 14 und 14, 15 bei der betreffenden Uebernahmefrequenz gleichphasig arbeiten lassen. Das bedeutet, dass bei jeder Frequenz von Signalen im Bereiche der oberen Grenzfrequenz des als Tiefpassfilter ausgebildeten Filters 24, die Membranen der Lautsprechereinheiten 14 und 15 synchron und ohne Phasendifferenz arbeiten. Damit ist die Abstrahlungscharakteristik dieser beiden Lautsprechereinheiten stabil. Derselbe Effekt kann fuer die Uebernahmefrequenz der Lautsprechereinheiten 13 und 14 erreicht werden.
  • Eine Vereinfachung laesst sich erreichen, wenn das Filter 24 als Tiefpassfilter mit zwei Polen und mit einer Guete die groesser oder gleich 1/√2 ist, ausgebildet wird und wenn der abfallende Frequenzgang des Filters so ausgelegt ist, dass er in einen Bereich mit im wesentlichen konstanter Daempfung uebergeht, wie dies die Figur 10 zeigt. Dies im Gegensatz zu einem ueblichen Frequenzgang, der bis zur unendlichen Daempfung absinkt. Dadurch wird die Gruppenlaufzeit im Filter 24 wesentlich verkuerzt was den Schaltungsaufwand in der Zeitverzoegerungsschaltung 29 wesentlich verringert. Unter Umstaenden kann die Zeitverzoegerungsschaltung 29 dann auch ganz weggelassen werden. Diese Vereinfachung hat zur Folge, dass die im Bereiche der Grenzfrequenz des Filters 24 arbeitenden Lautsprechereinheiten 14 und 15 nicht mehr genau gleichphasig arbeiten.
  • Wie aus der Figur 3 bekannt, kann dem Filter 34 eine Phasenkorrekturschaltung 40 vorgeschaltet werden. Dies ergibt eine Verbesserung und ein phasenlineares und gleichphasiges akustisches Ausgangssignal. Dabei wird das als Tiefpass ausgebildete Filter 34 vorzugsweise als Butterworth-Filter zweiter Ordnung ausgelegt. Die Phasenkorrekturschaltung 40 muss dazu so ausgelegt werden, dass sie die Phase bis zu genuegend hohen Frequenzen beeinflusst. Zu diesen genuegend hohen Frequenzen gehoeren insbesondere auch Frequenzen im Bereiche des ab fallenden Frequenzganges des Filters 34. Damit bildet die Additionsschaltung 31 ein Hochpassfilter mit einer Steilheit eines Filters dritter Ordnung.
  • Alle bisher fuer die Frequenzweiche vorgeschlagenen Elemente sind in der Darstellung gemaess der Figur 4 vereint. Dazu kommen aber noch die beiden Zeitverzoegerungsschaltungen 48 und 50. Die Zeitverzoegerungsschaltung 48 verzoegert das Signal aus dem Ausgang 30 um einen Betrag, der so bemessen ist, dass Zeitverzoegerungen aller in Serie geschalteten Elemente, wie Zeitverzoegerungsschaltung 48, Phasenkorrekturschaltung 40 und Filter 34, zusammengerechnet der Zeitdifferenz Δt₁ entsprechen. Man stelle sich vor, dass das Signal das dem Eingang 2, 17 zugefuehrt wird, aus zwei Teilsignalen zusammengesetzt ist und dass ein Teilsignal ueber die Lautsprechereinheit 41 und das andere Teilsignal ueber die Lautsprechereinheit 42 ausgestrahlt wird. Dann wird durch die Zeitverzoegerungsschaltung 48 sichergestellt, dass beide Teilsignale, wenn sie die Schallwand passieren und in Schallwellen umgewandelt sind, die Schallwand 44 genau dann und somit so verlassen, wie sie im Signal am Eingang 2, 17 zusammengesetzt waren. Die Zeitverzoegerungsschaltung 50 gleicht genau diejenige Zeitdifferenz Δt₂ aus, die dem Laufzeitunterschied der Schallwellen in den Lautsprechereinheiten 42 und 43 von der Membran bis zur Schallwand 44 entspricht. Um denselben Zweck zu erreichen, koennten aber solche Zeitverzoegerungsschaltungen auch an anderen Orten in der Frequenzweiche vorgesehen werden.
  • Durch Verbesserungen an den Magnetsystemen (siehe Fig. 5) der einzelnen Lautsprechereinheiten 13, 14 und 15 laesst sich der erfindungsgemaesse Lautsprecher insgesamt weiter verbessern.
  • Es ist bekannt, dass es an einem Magnetsystem Massnahmen gibt, welche dahin zielen, die Verteilung des Magnetfeldes im Luftspalt zu verbessern. Diese Verbesserung soll dazu fuehren, dass die Abnahme der Magnetfeldstaerke an beiden Enden des Luftspaltes stetig und symmetrisch erfolgt. Dies wird beispielsweise dadurch erreicht, dass das Polstueck 54 ueber die Polplatte 55 hinausragt. Dadurch werden nichtlineare Verzerrungen bei der Bewegung der Schwingspule vermindert. Diese Verminderung ist in vielen Faellen nicht bemerkbar, weil die nichtlinearen Verzerrungen, die durch die nichtlinearen Rueckstellkraefte der Aufhaengung der Membran erzeugt werden, ueberwiegen. Das bedeutet, dass solche Verbesserungen am Magnetsystem erst dann sinnvoll werden, wenn sie zusammen mit der Speisung ueber Leistungsverstaerker mit negativer Quellenimpedanz angewendet werden.
  • Ferner ist es bekannt, dass der in einen Hohlraum 97 (Fig. 5) hineinragende Teil 98 der Schwingspule 57 eine zusaetzliche Erregung im Magnetkreis bewirkt, sobald er vom Strom durchflossen wird. Die Kraft, die die Schwingspule erfaehrt, ist gegeben durch das Vektorprodukt aus Magnetfeld und Strom. Da aber das Magnetfeld, wie erwaehnt, wieder eine Funktion des Stromes durch die Schwingspule ist, wird das Vektorprodukt nicht linear. Es gilt also der Aenderung des Magnetfeldes entgegenzuwirken. Eine Moeglichkeit dazu bietet der Kurzschlussring 59. Darin bilden sich immer Stroeme derart aus, dass der Aenderung des Magnetflusses entgegengewirkt wird. Es besteht weiter die Moeglichkeit eine Spule an Stelle des Kurzschlussringes 59 vorzusehen. Sie wird durch den Strom in der Schwingspule erregt und kompensiert damit die unerwuenschte Erregung durch den unteren Teil 98 der Schwingspule 57. Man kann diese Spule auch kurzschliessen. Die Wirkung entspricht dann derjenigen des Kurzschlussringes 59. Stoert der ohm'sche Widerstand dieser Spule, so laesst sich dieser kompensieren, indem der Kurzschluss ueber einen negativen Widerstand erfolgt. Das heisst, die Spule wird an einen Verstaerker mit negativer Quellenimpedanz angeschlossen. Es ergibt sich dann auch fuer diese an die Stelle des Kurzschlussringes 59 getretene Spule eine Schaltung gemaess der Figur 9. Der Verstaerker 94 erhaelt aber kein Signal am Eingang 96. Der Verstaerker 94 kompensiert den ohm'schen Widerstand 62a der Spule 62b. Somit hat die Spule 62b keinen Widerstand mehr und es koennen darin beliebig grosse Stroeme fliessen, das heisst sie ist kurzgeschlossen. Auch diese Verbesserung ist erst richtig bemerkbar, wenn die Verzerrungen die durch die nichtlinearen Rueckstellkraefte hervorgerufen werden, beseitigt sind.
  • Es ist weiter bekannt, dass die Schwingspule als ganzes ein magnetisches Feld erzeugt, welches das Magnetfeld im Luftspalt 60 (Fig. 5) derart beeinflusst, dass je nach Polaritaet der Felder am einen Ende des Luftspaltes eine Feldverstaerkung und am anderen Ende eine Feldschwaechung eintritt. Dies scheint zunaechst nicht schlimm zu sein, bleibt doch der totale Fluss im Luftspalt etwa konstant. Erst genauere Untersuchungen zeigen, dass dies nicht der Fall ist. Die Permeabilitaet des Eisens in der Polplatte 55 und im Polstueck 54 ist von der magnetischen Aussteuerung abhaengig. Dies fuehrt dazu, dass der totale Magnetfluss doch wieder vom Strom in der Schwingspule 61 abhaengig ist. Durch einen Kurzschlussring 93 im Bereiche des Luftspaltes lassen sich die doch entstandenen Verzerrungen bekaempfen. Eine weitere Moeglichkeit ist der Ersatz des Kurzschlussringes 93 durch eine feststehende weitere Spule 62, welche so angeordnet ist, dass sie das durch die Schwingspule 61 erzeugte Feld exakt aufhebt. Zu diesem Zwecke wird sie vorzugsweise vom Schwingspulenstrom ebenfalls durchflossen. Sie wird zu der Schwingspule in Serie oder parallel geschaltet. Es ist auch moeglich die Spule 62 durch einen separaten Verstaerker anzuspeisen. Ferner ist es denkbar, die Spule an einen Verstaerker mit negativer Quellenimpedanz anzuschliessen, wie dies die Figur 9 zeigt. Die Verbesserungen welche sich durch diese Massnahmen erreichen lassen, wirken sich erst richtig aus, wenn die dominanten Verzerrungen beseitigt sind, die durch nichtlineare Rueckstellkraefte hervorgerufen werden.

Claims (10)

1. Elektrodynamischer Lautsprecher (1), dadurch gekennzeichnet, dass er eine Frequenzweiche (3) aufweist, an die mehrere dynamisch arbeitende Lautsprechereinheiten (13, 14, 15) ueber je einen Leistungsverstaerker (10, 11, 12) angeschlossen sind und dass mindestens zwei dieser Leistungsverstaerker (10, 11, 12) eine negative Quellenimpedanz (-Ri) aufweisen.
2. Elektrodynamischer Lautsprecher nach Anspruch 1, dadurch gekennzeichnet, dass die Lautsprechereinheiten (13, 14, 15) ein Magnetsystem (53) mit einer Schwingspule (61) aufweisen, dessen Magnetfluss von einem Strom im wesentlichen unabhaengig ist, der die Schwingspule durchfliesst.
3. Elektrodynamischer Lautsprecher nach Anspruch 1, dadurch gekennzeichnet, dass die Frequenzweiche (3) derart ausgebildet ist, dass sie Signale abgibt, die die Lautsprechereinheiten (13, 14, 15) zusammen ein phasenlineares akustisches Ausgangssignal erzeugen lassen.
4. Elektrodynamischer Lautsprecher nach Anspruch 1, dadurch gekennzeichnet, dass die Frequenzweiche (3) derart ausgebildet ist, dass sie Signale abgibt, die die Lautsprechereinheiten (13, 14, 15) bei einer Uebernahmefrequenz gleichphasig arbeiten lassen.
5. Elektrodynamischer Lautsprecher nach Anspruch 2, dadurch gekennzeichnet, dass das Magnetsystem (53) zusaetzlich zur Schwingspule (61) eine weitere Spule (62) aufweist, die zur Schwingspule gleichachsig aber feststehend angeordnet ist und die das durch die Schwingspule erzeugte Magnetfeld aufhebt.
6. Elektrodynamischer Lautsprecher nach Anspruch 3, dadurch gekennzeichnet, dass die Frequenz weiche aus einer Additionsschaltung (21) mit einem positiv zaehlenden und einem negativ zaehlenden Eingang (22, 23) und aus einem Filter (24) besteht, die so verbunden sind, dass der Eingang (25) des Filters (24) mit dem positiv zaehlenden Eingang (22) und der Ausgang (26) des Filters (24) mit dem negativ zaehlenden Eingang (23) der Additionsschaltung (21) verbunden ist.
7. Elektrodynamischer Lautsprecher nach Anspruch 6, dadurch gekennzeichnet, dass das Filter (24) als Tiefpassfilter mit zwei Polen, einer Guete groesser oder gleich 1/√2 und mit einem abfallenden Frequenzgang (103) ausgelegt ist, der in einen Bereich (105) mit im wesentlichen konstanter Daempfung (106) uebergeht.
8. Elektrodynamischer Lautsprecher nach Anspruch 6, wobei die Frequenz weiche aus einer ersten und einer zweiten in Serie geschalteten Frequenzweiche besteht, dadurch gekennzeichnet, dass als Filter (24, 34) Tiefpassfilter vorgesehen sind, dass dem Filter (34) der zweiten Frequenzweiche eine Phasenkorrekturschaltung (40) zugeschaltet ist und dass das Filter (34) der zweiten Frequenzweiche so ausgelegt ist, dass die nachgeschaltete Additionsschaltung (31) als Hochpassfilter mindestens dritter Ordnung wirkt.
9. Elektrodynamischer Lautsprecher nach Anspruch 6, dadurch gekennzeichnet, dass der Additionsschaltung (21) eine Verzoegerungsschaltung (48) nachgeschaltet ist, die Laufzeitunterschiede zwischen den Magnetsystemen (45, 46) der Lautsprechereinheiten (41, 42) und der Schallwand (44) der Lautsprechereinheiten mindestens teilweise ausgleicht.
10. Elektrodynamischer Lautsprecher nach Anspruch 1, dadurch gekennzeichnet, dass die negative Quellenimpedanz den ohm'schen Widerstand (70) und die Induktivitaet (71) der Schwingspule der angeschlossenen Lautsprechereinheiten ausgleicht.
EP89110971A 1988-07-15 1989-06-16 Elektrodynamischer Lautsprecher Expired - Lifetime EP0350652B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH272788 1988-07-15
CH2727/88 1988-07-15

Publications (2)

Publication Number Publication Date
EP0350652A1 true EP0350652A1 (de) 1990-01-17
EP0350652B1 EP0350652B1 (de) 1994-09-21

Family

ID=4240249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89110971A Expired - Lifetime EP0350652B1 (de) 1988-07-15 1989-06-16 Elektrodynamischer Lautsprecher

Country Status (4)

Country Link
US (1) US5129005A (de)
EP (1) EP0350652B1 (de)
AT (1) ATE112126T1 (de)
DE (1) DE58908385D1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE387074T1 (de) * 1999-10-01 2008-03-15 Freitag Juergen Lautsprecherkombination
US9307321B1 (en) * 2011-06-09 2016-04-05 Audience, Inc. Speaker distortion reduction
GB201712391D0 (en) 2017-08-01 2017-09-13 Turner Michael James Controller for an electromechanical transducer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR892396A (fr) * 1942-02-05 1944-04-05 Système électrodynamique, spécialement pour hauts-parleurs
FR2345880A1 (fr) * 1976-03-24 1977-10-21 Stahl Karl Procede pour ameliorer la reproduction des graves dans un haut-parleur, et appareil pour la mise en oeuvre de ce procede
FR2378418A1 (fr) * 1977-01-25 1978-08-18 Rank Organisation Ltd Perfectionnements aux enceintes acoustiques
US4137510A (en) * 1976-01-22 1979-01-30 Victor Company Of Japan, Ltd. Frequency band dividing filter
WO1981002501A1 (en) * 1980-02-26 1981-09-03 K Sakai Magnetic circuit for an electro-mechanical transducer of a dynamic electricity-type
US4340778A (en) * 1979-11-13 1982-07-20 Bennett Sound Corporation Speaker distortion compensator
EP0221324A1 (de) * 1985-10-07 1987-05-13 Studer Revox Ag Signalwandler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB659066A (en) * 1947-11-06 1951-10-17 Ian Irvine Boswell Improvements in or relating to electro-mechanical transducers
DE2141141A1 (de) * 1971-08-12 1973-02-22 Neumann Gmbh Georg Schaltungsanordnung zur gegenkopplung eines lautsprechers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR892396A (fr) * 1942-02-05 1944-04-05 Système électrodynamique, spécialement pour hauts-parleurs
US4137510A (en) * 1976-01-22 1979-01-30 Victor Company Of Japan, Ltd. Frequency band dividing filter
FR2345880A1 (fr) * 1976-03-24 1977-10-21 Stahl Karl Procede pour ameliorer la reproduction des graves dans un haut-parleur, et appareil pour la mise en oeuvre de ce procede
FR2378418A1 (fr) * 1977-01-25 1978-08-18 Rank Organisation Ltd Perfectionnements aux enceintes acoustiques
US4340778A (en) * 1979-11-13 1982-07-20 Bennett Sound Corporation Speaker distortion compensator
WO1981002501A1 (en) * 1980-02-26 1981-09-03 K Sakai Magnetic circuit for an electro-mechanical transducer of a dynamic electricity-type
EP0221324A1 (de) * 1985-10-07 1987-05-13 Studer Revox Ag Signalwandler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AUDIO ENGINEERING, August 1951, Seiten 20-22,54-55, Philadelphia, US; W. CLEMENTS: "A new approach to loudspeaker damping" *
FUNK-TECHNIK, Band 40, Nr. 8, August 1985, Seiten 322-325, Heidelberg, DE; H.-J. HAASE: "Schaltungstechnik moderner Hifi-Aktiv-Lautsprecher-boxen" *

Also Published As

Publication number Publication date
EP0350652B1 (de) 1994-09-21
US5129005A (en) 1992-07-07
DE58908385D1 (de) 1994-10-27
ATE112126T1 (de) 1994-10-15

Similar Documents

Publication Publication Date Title
DE69933627T2 (de) Vorrichtung und Verfahren zur Anpassung des Phasen- und Amplitudenfrequenzgangs eines Mikrofons
DE2713023C2 (de)
DE3329194C2 (de)
DE3410134A1 (de) Lautsprecher-system mit einem mit mehreren schalloeffnungen versehenen gehaeuse
DE2536439A1 (de) Lautsprechersystem
DE3618586A1 (de) Bassreflex-lautsprechersystem
CH694604A5 (de) Hörhilfegerät mit Richtmikrofoncharakteristik.
DE4112401C2 (de) Schaltkreisanordnung zum Kompensieren von tieffrequenten und mittelfrequenten Wiedergabecharakteristiken in einem Lautsprechersystem
DE3907275C2 (de) Tonsystem
DE60013807T2 (de) Zentrierung eines räumlich erweiterten stereophonischen tonbildes
EP0350652B1 (de) Elektrodynamischer Lautsprecher
DE19533946C2 (de) Verfahren und Schaltungsanordnung zur Aufteilung eines Frequenzgemisches auf mehrere Teilfrequenzbänder insbesondere für Lautsprecher
DE2141141A1 (de) Schaltungsanordnung zur gegenkopplung eines lautsprechers
DE102007029560A1 (de) Membrananordnung für einen Air-Motion-Transformer (AMT) und Schallwandler mit einer solchen Membrananordnung
DE102005036538A1 (de) Vorrichtung und Verfahren zur Ansteuerung eines Lautsprechers
DE2413640B2 (de) Verfahren zur Aufteilung des Übertragungsbandes einer Mehrwegelautsprecherkombination in mindestens zwei sich genau ergänzende Frequenzbänder
DE3326494C2 (de)
DE102006052063B4 (de) Lautsprechersystem und Verfahren zum Betreiben eines Lautsprechersystems
EP3813254B1 (de) Verstärkerschaltung mit variabler stromquelle
DE10259393A1 (de) Verstärkerschaltung mit Gegenkopplung
DE4447269C1 (de) Verfahren und Anordnung zur Aufteilung eines Frequenzgemisches auf mehrere Teilfrequenzbereiche, insbesondere für Mehrweglautsprecher mit verbessertem Phasenverhalten
CH238929A (de) Niederfrequenzverstärker mit elektrodynamischem Lautsprecher.
DE10323126A1 (de) Adaptive Bassanhebung für aktive Basslautsprecherboxen
DE3918654C2 (de)
DE102011050924B4 (de) Kapazitives elektro-akustisches Wandler-System und kapazitiver elektro-akustischer Wandler davon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19900626

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STUDER REVOX AG

17Q First examination report despatched

Effective date: 19920609

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 112126

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940928

REF Corresponds to:

Ref document number: 58908385

Country of ref document: DE

Date of ref document: 19941027

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960604

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960612

Year of fee payment: 8

Ref country code: BE

Payment date: 19960612

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960618

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960625

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960628

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970616

Ref country code: AT

Effective date: 19970616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: BE

Effective date: 19970630

BERE Be: lapsed

Owner name: STUDER REVOX A.G.

Effective date: 19970630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050616