EP0342574A1 - Acier austénitique, résistant à la corrosion - Google Patents

Acier austénitique, résistant à la corrosion Download PDF

Info

Publication number
EP0342574A1
EP0342574A1 EP89108725A EP89108725A EP0342574A1 EP 0342574 A1 EP0342574 A1 EP 0342574A1 EP 89108725 A EP89108725 A EP 89108725A EP 89108725 A EP89108725 A EP 89108725A EP 0342574 A1 EP0342574 A1 EP 0342574A1
Authority
EP
European Patent Office
Prior art keywords
corrosion
steel according
max
steel
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89108725A
Other languages
German (de)
English (en)
Inventor
Paul Dr.-Ing. Gümpel
Winfried Dr.-Ing. Heimann
Rolf Dr.-Ing. Grundmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Stahl AG
VDM Nickel Technologie AG
Original Assignee
Thyssen Edelstahlwerke AG
VDM Nickel Technologie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Edelstahlwerke AG, VDM Nickel Technologie AG filed Critical Thyssen Edelstahlwerke AG
Publication of EP0342574A1 publication Critical patent/EP0342574A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a fully austenitic steel as a material for corrosion-chemically and mechanically stressed system components.
  • austenitic and ferritic-austenitic steels and, on the other hand, nickel-based alloys have been used as materials for parts of the plant construction that are subject to high mechanical and corrosion-chemical stress.
  • the mechanical strength of austenitic steels is not sufficient for a large number of applications.
  • Disadvantages of ferritic-austenitic steels are their unfavorable processing behavior, in particular during hot forming and welding, and their sometimes inadequate corrosion resistance.
  • Nickel based alloys are too expensive for many applications.
  • the invention is based on the object of finding a material which is suitable for the purpose mentioned at the outset and which has a high 0.2 proof stress at room temperature, the toughness of which is retained over a wide temperature range and which is highly resistant to a combination of mechanical and corrosion-chemical Load shows. So the material should be resistant to a variety of different corrosive media. It should be easy to weld, good hot formable and inexpensive.
  • steels or alloys are required which not only have to be corrosion-resistant, but also have to be high-strength and, in particular, wear-resistant due to the high mechanical stress. The wear resistance can be increased on the one hand by a higher strength, on the other hand it is also influenced by the structure and the alloy composition.
  • a fully austenitic steel is used to achieve this object Max. 0.04% C 0 to 0.69% Si 5.4 to 8.9% Mn Max. 0.01% S 15.1 to 30% Cr 10.1 to 24.9% Ni 2.01 to 7% Mo 0.31 to 0.8% N Rest of Fe including common impurities proposed.
  • Such a steel has not only proven to be extremely suitable in a corrosive manner, but also has very good mechanical strength with a 0.2 proof stress of at least 350 N / mm2.
  • the stacking error energy is reduced with increasing manganese content, as a result of which more stacking errors are formed, and with mechanical stress, strong hardening occurs in the highly stressed zone.
  • the steel protects itself, so to speak. The greater the stress, the stronger the material is solidified in the stressed zone. If corrosive stress occurs at the same time as mechanical stress, so-called erosion corrosion often occurs as a damage mechanism.
  • the wear resistance of the steel according to the invention is based on this mechanism.
  • the steel should only have a carbon content of up to max. 0.04%, preferably max. 0.03% included.
  • the silicon content in the steel according to the invention is max. 0.69% and preferably max. Limited to 0.2%.
  • a preferred composition within the range given above is: Max. 0.03 % C Max. 0.01 % S to 0.2 % Si 5.4 to 8.9 % Mn 20.1 to 26.9 % Cr 16 to 20th % Ni 3.1 to 4.9 % Mon 0.31 to 0.6 % N Balance Fe including usual impurities.
  • the chromium content can be limited to 23 - 25%, nickel to 16 - 18.5% and molybdenum to 2.8 - 4.6% in order to achieve optimal corrosion-chemical properties.
  • 0.1 to 1.0% Cu can be added to the steel to be used according to the invention.
  • FIG. 1 shows the critical pitting temperature as a function of the effective sum% Cr + 3 (% Mo) + 15 (N%) of austenitic stainless chromium-nickel-molybdenum steels with and without melting using a TIG welding torch in FIG. 10 % FeCl3 solution according to ASTM G 48 shows.
  • the critical pitting temperature is increased as the effective sum increases.
  • the course of the lower curve shows that the critical pitting temperature in conventional steels drops significantly with increasing active sum after melting, for example 40 of approx.
  • steels according to the invention show a significantly lower drop in the critical pitting temperature during melting, for example from 90 ° C. to approx. 80 ° C. This is an indication of the particularly good weldability of the steels according to the invention.
  • the limit values for carbon, chromium, nickel and molybdenum were primarily established to ensure corrosion resistance.
  • the stabilization of the austenitic structure and the increase in solubility for nitrogen were in the foreground when determining the limit values for manganese.
  • the minimum quantity of 5.4% was required for this.
  • Levels higher than 8.9% proved to be unfavorable in terms of processing technology.
  • Nickel increases the resistance to stress corrosion cracking within the stated limits of 10.1 to 24.9%, in particular 16.0 to 18.5% and preferably 16 to 20%.
  • Copper improves the corrosion resistance in media containing sulfuric acid in the specified range of 0.1 to 1%.
  • Nitrogen in the specified amount from 0.31 to 0.8% increases strength, austenite stability and corrosion resistance.
  • a low silicon content of not more than 0.69% leads to an increase in structural stability and ensures good resistance to media containing nitric acid.
  • the corrosion resistance is increased. Only through the sum of these alloying measures has it been possible to make the corrosion behavior of the steel to be used according to the invention favorable compared to a wide range of corrosive media.
  • the addition of niobium and / or vanadium in the amount of 0.01 to 1.0% increases the strength of the steels. By adding both elements, the 0.2 proof stress can be increased by at least 100 N / mm2 due to precipitation hardening. This increase in strength is, however, paid for by a loss in toughness and a certain deterioration in corrosion resistance.
  • the steel according to the invention is particularly suitable for plant components in the pulp and paper industry.
  • the corrosion-chemical stress of such components results from the process steps typical of the process for the digestion of the organic cellulose material, generally low-resin wood, which is mainly carried out after the sulfate or sulfite process.
  • the sulfate process is a further development of the older soda process.
  • Na2S sodium sulfide
  • the required sodium sulfide is produced in the system from sodium sulfate in a kind of cyclic process.
  • the cooking temperature is up to 180 ° C, the pressure is set at 1.1 MPa.
  • the solution consists essentially of an approx. 10% sodium hydroxide solution with approx. 35 g / l sodium sulfide.
  • sodium carbonate + sodium sulfide are melted from the used black liquor with the addition of sodium sulfate via evaporator and rotary tube furnaces as an intermediate product. After dissolving and reacting with quicklime (CaO), soda (sodium sulfate) is again used as sodium hydroxide. In addition, the above-mentioned additive sodium sulfide is obtained.
  • the sulfite digestion is carried out with an acidic calcium bisulfite solution Ca (HSO3) 2.
  • Ca acidic calcium bisulfite solution
  • sulfurous acid is reacted with milk of lime with the addition of sulfur dioxide and bisulfite lye.
  • the cell structure of the wood is dissolved.
  • the bleaching columns remove the natural synthetic dyes that are brought in from recycling material.
  • the extraction of alkali residues follows the chlorine treatment. This is followed by the hypochlorite process, followed by the chloride oxide treatment to remove the last color residues.
  • composition of a chlorination solution can serve as an example. 1700 ppm to max. 4000 ppm chloride, 90 to max. 500 ppm chlorine, pH from 1.5 to 3, temperature approx. 40 ° C.
  • the core problem in the bleaching processes is the interaction of oxidizing substances with chlorides at low pH values and elevated temperatures.
  • the materials used for the system components must be resistant to pitting, crevice and stress corrosion cracking. This applies in particular to the materials in the welded state.
  • Examples of system parts are: Parts that are exposed to chlorine, chlorine dioxide, chlorides and hypochlorides at elevated temperatures, alkali evaporators or heaters. Sulfite digestion tanks, tank linings and internals such as hoods, trays, supports, spray nozzles, pipes, feed chutes, fans, exhaust gas scrubber parts, components for tall oil production, cyclones for sulfite lye evaporators, recovery system parts, washers for bleaching columns.
  • the steel according to the invention is also particularly suitable for components of systems or devices for conveying, storing and transporting oil or gas, e.g. for pipelines, pump rods, conveying or storage facilities as well as transport containers such as tank or tank wagons.
  • ferritic-austenitic steels have been used as materials for such mechanically and corrosion-chemically stressed components. (Petroleum, natural gas, coal - baintechnik 102, June 1986, Issue 6, pp. 289/94). Disadvantages of ferritic-austenitic steels are their unfavorable processing behavior, in particular when hot-forming and welding, and their inadequate corrosion resistance.
  • fully austenitic steels according to the invention can be considered for plant components of flue gas purification plants, wastewater treatment plants and devices for conveying, transporting and storing contaminated sludge which are subject to high mechanical and mechanical stress.
  • Wastewater treatment plants also mean those in which sludge is treated.
  • the suitability of the steels according to the invention compared to known ones was demonstrated on the basis of comparative tests. The results of these tests are reported below.
  • Table 1 contains the composition of comparative alloys Nos. 1 to 8 and ten steels Nos. 9 to 18 according to the invention. The samples were subjected to various corrosion tests. The results are shown in FIGS. 2 to 6.
  • Fig. 2 shows the temperature limit for resistance to pitting in a 10% FeCl3.6H2O solution after a test period of 244 hours.
  • the high resistance of steel No. 18 according to the invention in which the limit temperature compared to the test medium at approx. 90 ° C.
  • FIG. 3 to 5 show an illustration of a test arrangement for simulating the corrosion conditions in bleaching plants in a top view ( FIG. 3 ), in a longitudinal section ( FIG. 4 ) and in perspective ( FIG. 5 ). Test results obtained by means of this test device are shown in FIG. 6 .
  • the steel No. 18 according to the invention shows a significantly better corrosion behavior than the alloys 6 and 7, and that it also surpasses the nickel alloy No. 8. This material behavior in an application-related test solution is surprising, since this difference did not appear in a generally customary test for chloride resistance.
  • Table 2 contains the composition of 11 reference alloys Nos. 1 to 11 and nine steels Nos. 12 to 20 according to the invention. Samples Nos. 1 to 20 were subjected to various corrosion tests. The results are shown graphically in FIGS. 7 to 11.
  • Fig. 7 shows the limit temperatures for the pitting resistance of various steels in three chloride-containing media, namely a 3% NaCl solution at 950 mV H , in 10% FeCl3.6H2O and finally in synthetic flue gas condensate (7 vol% H2SO4, 3 vol% HCl) after a test period of 24 h. 7 clearly shows the superiority of the steels No. 12, 14, 15, 17 and 18 according to the invention, in which the limit temperature was above 60 ° C. compared to all three media containing chloride. Only comparison steel No. 7 was able to keep up here. The limit temperature for all other comparative alloys is 55 ° C and below.
  • Fig. 8 shows the limit temperatures for the crevice corrosion resistance of various steels when tested in 10% FeCl3 .6H2O (gap conditions according to the MTI regulation). The test duration was again 24 hours. 8 clearly shows the superiority of steels 13, 17 and 18 according to the invention. The comparative steel 7 and the comparative nickel alloy 11 behaved equally well.
  • Figure 10 contains the results of testing samples in sulfuric acid. After a test period of 24 h, the mass loss rate was in g / h. m2 determined. The steels according to the invention performed best.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Heat Treatment Of Steel (AREA)
EP89108725A 1988-05-17 1989-05-16 Acier austénitique, résistant à la corrosion Withdrawn EP0342574A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE3816743 1988-05-17
DE3816743 1988-05-17
DE3816744 1988-05-17
DE3816744 1988-05-17
DE3906029 1989-02-27
DE3906029 1989-02-27

Publications (1)

Publication Number Publication Date
EP0342574A1 true EP0342574A1 (fr) 1989-11-23

Family

ID=27197635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89108725A Withdrawn EP0342574A1 (fr) 1988-05-17 1989-05-16 Acier austénitique, résistant à la corrosion

Country Status (3)

Country Link
EP (1) EP0342574A1 (fr)
DD (1) DD300547A5 (fr)
NO (1) NO891969L (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416313A1 (fr) * 1989-08-11 1991-03-13 Hitachi, Ltd. Acier austénitique du type Cr-Ni-Mn ayant une bonne résistance à la fragilisation par irradiation de neutrons
EP0507229A1 (fr) * 1991-04-03 1992-10-07 Thyssen Schweisstechnik GmbH Métal d'apport pour le soudage d'aciers austénitiques à résistance élevée à la corrosion
EP0626460A1 (fr) * 1993-05-28 1994-11-30 Creusot-Loire Industrie Acier inoxydable austénitique à haute résistance à la corrosion par les milieux chlorurés et sulfuriques et utilisations
US5494636A (en) * 1993-01-21 1996-02-27 Creusot-Loire Industrie Austenitic stainless steel having high properties
WO2000043562A1 (fr) * 1999-01-23 2000-07-27 Noel Village (Steel Founder) Ltd Aciers inoxydables
DE10215124A1 (de) * 2002-04-05 2003-10-16 Wme Ges Fuer Windkraftbetr Ene Verdampferrohr für eine Meerwasserentsalzungsanlage
EP1605072A1 (fr) * 2003-03-20 2005-12-14 Sumitomo Metal Industries Limited Acier inoxydable destine a venir en contact avec du gaz hydrogene haute pression, cuve et equipement contenant ledit acier
WO2006071192A1 (fr) * 2004-12-28 2006-07-06 Outokumpu Oyj Acier austénitique et produit en acier
DE102018133251A1 (de) * 2018-12-20 2020-06-25 Schoeller-Bleckmann Oilfield Technology Gmbh Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung
DE102018133255A1 (de) * 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Superaustenitischer Werkstoff

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1194587B (de) * 1963-06-06 1965-06-10 Phoenix Rheinrohr Ag Verwendung von austenitischen Stahllegierungen als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind
US3201233A (en) * 1962-06-13 1965-08-17 Westinghouse Electric Corp Crack resistant stainless steel alloys
DE1205289B (de) * 1964-05-27 1965-11-18 Phoenix Rheinrohr Ag Verwendung einer austenitischen Stahllegierung als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind
DE1214005B (de) * 1965-02-03 1966-04-07 Suedwestfalen Ag Stahlwerke Bauteile aus austenitischen Staehlen
GB1295889A (fr) * 1969-10-09 1972-11-08
US4302247A (en) * 1979-01-23 1981-11-24 Kobe Steel, Ltd. High strength austenitic stainless steel having good corrosion resistance
GB2087427A (en) * 1980-10-08 1982-05-26 Roechling Burbach Gmbh Stahl Use of an Austenitic Steel in the Cold-hardened State under Conditions of Extreme Corrosion
EP0142015A1 (fr) * 1983-10-21 1985-05-22 Avesta Aktiebolag Acier austénitique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201233A (en) * 1962-06-13 1965-08-17 Westinghouse Electric Corp Crack resistant stainless steel alloys
DE1194587B (de) * 1963-06-06 1965-06-10 Phoenix Rheinrohr Ag Verwendung von austenitischen Stahllegierungen als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind
DE1205289B (de) * 1964-05-27 1965-11-18 Phoenix Rheinrohr Ag Verwendung einer austenitischen Stahllegierung als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind
DE1214005B (de) * 1965-02-03 1966-04-07 Suedwestfalen Ag Stahlwerke Bauteile aus austenitischen Staehlen
GB1295889A (fr) * 1969-10-09 1972-11-08
US4302247A (en) * 1979-01-23 1981-11-24 Kobe Steel, Ltd. High strength austenitic stainless steel having good corrosion resistance
GB2087427A (en) * 1980-10-08 1982-05-26 Roechling Burbach Gmbh Stahl Use of an Austenitic Steel in the Cold-hardened State under Conditions of Extreme Corrosion
EP0142015A1 (fr) * 1983-10-21 1985-05-22 Avesta Aktiebolag Acier austénitique

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116569A (en) * 1989-08-11 1992-05-26 Hitachi, Ltd. Austenitic steel excellent in resistance to neutron irradiation embrittlement and members made of the steel
EP0416313A1 (fr) * 1989-08-11 1991-03-13 Hitachi, Ltd. Acier austénitique du type Cr-Ni-Mn ayant une bonne résistance à la fragilisation par irradiation de neutrons
EP0507229A1 (fr) * 1991-04-03 1992-10-07 Thyssen Schweisstechnik GmbH Métal d'apport pour le soudage d'aciers austénitiques à résistance élevée à la corrosion
DE4110695A1 (de) * 1991-04-03 1992-10-08 Thyssen Schweisstechnik Stahl
US5494636A (en) * 1993-01-21 1996-02-27 Creusot-Loire Industrie Austenitic stainless steel having high properties
EP0626460A1 (fr) * 1993-05-28 1994-11-30 Creusot-Loire Industrie Acier inoxydable austénitique à haute résistance à la corrosion par les milieux chlorurés et sulfuriques et utilisations
FR2705689A1 (fr) * 1993-05-28 1994-12-02 Creusot Loire Acier inoxydable austénitique à haute résistance à la corrosion par les milieux chlorurés et sulfuriques et utilisations.
WO2000043562A1 (fr) * 1999-01-23 2000-07-27 Noel Village (Steel Founder) Ltd Aciers inoxydables
US6632395B1 (en) 1999-01-23 2003-10-14 The Village Partnership Llp Stainless steels
US7494573B2 (en) 2002-04-05 2009-02-24 Wme Gesellschaft Fur Windkraftbetriebene Meerwasserentsalzung Mbh Evaporator tube for a sea water desalination system
DE10215124A1 (de) * 2002-04-05 2003-10-16 Wme Ges Fuer Windkraftbetr Ene Verdampferrohr für eine Meerwasserentsalzungsanlage
EP1605072A1 (fr) * 2003-03-20 2005-12-14 Sumitomo Metal Industries Limited Acier inoxydable destine a venir en contact avec du gaz hydrogene haute pression, cuve et equipement contenant ledit acier
EP1605072A4 (fr) * 2003-03-20 2007-11-14 Sumitomo Metal Ind Acier inoxydable destine a venir en contact avec du gaz hydrogene haute pression, cuve et equipement contenant ledit acier
US7531129B2 (en) 2003-03-20 2009-05-12 Sumitomo Metal Industries, Ltd. Stainless steel for high-pressure hydrogen gas
WO2006071192A1 (fr) * 2004-12-28 2006-07-06 Outokumpu Oyj Acier austénitique et produit en acier
EA012333B1 (ru) * 2004-12-28 2009-08-28 Отокумпу Оюй Аустенитная сталь и стальная продукция
CN100564570C (zh) * 2004-12-28 2009-12-02 奥托库姆普联合股份公司 奥氏体钢与钢产品
US8119063B2 (en) 2004-12-28 2012-02-21 Outokumpu Oyj Austenitic iron and an iron product
DE102018133251A1 (de) * 2018-12-20 2020-06-25 Schoeller-Bleckmann Oilfield Technology Gmbh Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung
DE102018133255A1 (de) * 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Superaustenitischer Werkstoff

Also Published As

Publication number Publication date
DD300547A5 (de) 1992-06-17
NO891969L (no) 1989-11-20
NO891969D0 (no) 1989-05-16

Similar Documents

Publication Publication Date Title
DE69628190T2 (de) Hochfeste, geschweisste stahlstrukturen mit hervorragendem korrosionswiderstand
DE69421281T2 (de) Ferritisch-austenitischer rostfreier stahl und seine verwendung
DE4342188C2 (de) Austenitische Legierungen und deren Verwendung
DE69604341T3 (de) Martensitischer. rostfreier stahl mit guter beständigkeit gegen lochfrasskorrosion und mit hoher härte
EP0342574A1 (fr) Acier austénitique, résistant à la corrosion
DE2752083A1 (de) Warmverformbarer, austenitischer, nichtrostender stahl
DE69422850T2 (de) Austenitischer rostfreie Stahl mit hoher Korrosionsbeständigkeit in chlorid- und schwefelenthaltende Umgebung, und seine Verwendung
EP0563720A1 (fr) Alliage austénitique nickel-molybdène
DE602005003216T2 (de) Vorrichtung zur verarbeitung von hochkorrosiven mitteln
DE2616599A1 (de) Verwendung eines hochlegierten stahles zum herstellen von hochfesten, gegen sauergaskorrosion bestaendigen gegenstaenden
DE3716665A1 (de) Korrosionsbestaendige legierung
EP0991788B1 (fr) Alliage nickel-chrome-molybdene
DE68905066T2 (de) Hochtemperaturfestes stahlrohr mit niedrigem siliziumgehalt und mit verbesserten duktilitaets- und faehigkeitseigenschaften.
DE2525395C3 (de) Verwendung eines Stahles für Gegenstände, die mit einer Wärmezufuhr von mehr als 60000 J/cm geschweißt werden
DE69025468T2 (de) Austenitischer rostfreier Stahl
DE3300392A1 (de) Austenitischer nichtrostender stahl von ueberaus hoher temperaturbestaendigkeit
DE1758825C2 (de) Verwendung einer Nickel-Chrom-Eisen-Legierung
DE69108604T2 (de) Palladium enthaltender austenitischer Stahl zur Verwendung in Gegenwart von konzentrierter Schwefelsäure auf hoher Temperatur.
DE1608171A1 (de) Nickel-Chrom-Molybdaen-Legierung
DE3105891C2 (de) Verwendung eines schweißbaren nichtrostenden Stahles für Kettenglieder
EP0507229A1 (fr) Métal d'apport pour le soudage d'aciers austénitiques à résistance élevée à la corrosion
DE69432780T2 (de) Inertgaslichtbogenschweissdraht für temperaturbeständigen hochchromhaltigen ferritischen stahl
DE2809026A1 (de) Niedriggekohlter, austenitischer ni-cr-stahl mit verbesserter bestaendigkeit gegen spannungsrisskorrosion
DE1533165A1 (de) Chrom-Nickel-Stahl mit guter Warmverformbarkoit und guten Schweisseigenschaften,kombiniert mit Spannungsrisskorrosionsbestaendigkeit und guter allgemeiner Korrosionsbestaendigkeit
DE2153186A1 (de) Verwendung ferritischer chromstaehle als korrosionsbestaendiger werkstoff fuer den chemischen apparatebau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDM NICKEL-TECHNOLOGIE AKTIENGESELLSCHAFT

Owner name: THYSSEN EDELSTAHLWERKE AG

17P Request for examination filed

Effective date: 19900518

17Q First examination report despatched

Effective date: 19920212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19921109