EP0342574A1 - Acier austénitique, résistant à la corrosion - Google Patents
Acier austénitique, résistant à la corrosion Download PDFInfo
- Publication number
- EP0342574A1 EP0342574A1 EP89108725A EP89108725A EP0342574A1 EP 0342574 A1 EP0342574 A1 EP 0342574A1 EP 89108725 A EP89108725 A EP 89108725A EP 89108725 A EP89108725 A EP 89108725A EP 0342574 A1 EP0342574 A1 EP 0342574A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- corrosion
- steel according
- max
- steel
- components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the invention relates to a fully austenitic steel as a material for corrosion-chemically and mechanically stressed system components.
- austenitic and ferritic-austenitic steels and, on the other hand, nickel-based alloys have been used as materials for parts of the plant construction that are subject to high mechanical and corrosion-chemical stress.
- the mechanical strength of austenitic steels is not sufficient for a large number of applications.
- Disadvantages of ferritic-austenitic steels are their unfavorable processing behavior, in particular during hot forming and welding, and their sometimes inadequate corrosion resistance.
- Nickel based alloys are too expensive for many applications.
- the invention is based on the object of finding a material which is suitable for the purpose mentioned at the outset and which has a high 0.2 proof stress at room temperature, the toughness of which is retained over a wide temperature range and which is highly resistant to a combination of mechanical and corrosion-chemical Load shows. So the material should be resistant to a variety of different corrosive media. It should be easy to weld, good hot formable and inexpensive.
- steels or alloys are required which not only have to be corrosion-resistant, but also have to be high-strength and, in particular, wear-resistant due to the high mechanical stress. The wear resistance can be increased on the one hand by a higher strength, on the other hand it is also influenced by the structure and the alloy composition.
- a fully austenitic steel is used to achieve this object Max. 0.04% C 0 to 0.69% Si 5.4 to 8.9% Mn Max. 0.01% S 15.1 to 30% Cr 10.1 to 24.9% Ni 2.01 to 7% Mo 0.31 to 0.8% N Rest of Fe including common impurities proposed.
- Such a steel has not only proven to be extremely suitable in a corrosive manner, but also has very good mechanical strength with a 0.2 proof stress of at least 350 N / mm2.
- the stacking error energy is reduced with increasing manganese content, as a result of which more stacking errors are formed, and with mechanical stress, strong hardening occurs in the highly stressed zone.
- the steel protects itself, so to speak. The greater the stress, the stronger the material is solidified in the stressed zone. If corrosive stress occurs at the same time as mechanical stress, so-called erosion corrosion often occurs as a damage mechanism.
- the wear resistance of the steel according to the invention is based on this mechanism.
- the steel should only have a carbon content of up to max. 0.04%, preferably max. 0.03% included.
- the silicon content in the steel according to the invention is max. 0.69% and preferably max. Limited to 0.2%.
- a preferred composition within the range given above is: Max. 0.03 % C Max. 0.01 % S to 0.2 % Si 5.4 to 8.9 % Mn 20.1 to 26.9 % Cr 16 to 20th % Ni 3.1 to 4.9 % Mon 0.31 to 0.6 % N Balance Fe including usual impurities.
- the chromium content can be limited to 23 - 25%, nickel to 16 - 18.5% and molybdenum to 2.8 - 4.6% in order to achieve optimal corrosion-chemical properties.
- 0.1 to 1.0% Cu can be added to the steel to be used according to the invention.
- FIG. 1 shows the critical pitting temperature as a function of the effective sum% Cr + 3 (% Mo) + 15 (N%) of austenitic stainless chromium-nickel-molybdenum steels with and without melting using a TIG welding torch in FIG. 10 % FeCl3 solution according to ASTM G 48 shows.
- the critical pitting temperature is increased as the effective sum increases.
- the course of the lower curve shows that the critical pitting temperature in conventional steels drops significantly with increasing active sum after melting, for example 40 of approx.
- steels according to the invention show a significantly lower drop in the critical pitting temperature during melting, for example from 90 ° C. to approx. 80 ° C. This is an indication of the particularly good weldability of the steels according to the invention.
- the limit values for carbon, chromium, nickel and molybdenum were primarily established to ensure corrosion resistance.
- the stabilization of the austenitic structure and the increase in solubility for nitrogen were in the foreground when determining the limit values for manganese.
- the minimum quantity of 5.4% was required for this.
- Levels higher than 8.9% proved to be unfavorable in terms of processing technology.
- Nickel increases the resistance to stress corrosion cracking within the stated limits of 10.1 to 24.9%, in particular 16.0 to 18.5% and preferably 16 to 20%.
- Copper improves the corrosion resistance in media containing sulfuric acid in the specified range of 0.1 to 1%.
- Nitrogen in the specified amount from 0.31 to 0.8% increases strength, austenite stability and corrosion resistance.
- a low silicon content of not more than 0.69% leads to an increase in structural stability and ensures good resistance to media containing nitric acid.
- the corrosion resistance is increased. Only through the sum of these alloying measures has it been possible to make the corrosion behavior of the steel to be used according to the invention favorable compared to a wide range of corrosive media.
- the addition of niobium and / or vanadium in the amount of 0.01 to 1.0% increases the strength of the steels. By adding both elements, the 0.2 proof stress can be increased by at least 100 N / mm2 due to precipitation hardening. This increase in strength is, however, paid for by a loss in toughness and a certain deterioration in corrosion resistance.
- the steel according to the invention is particularly suitable for plant components in the pulp and paper industry.
- the corrosion-chemical stress of such components results from the process steps typical of the process for the digestion of the organic cellulose material, generally low-resin wood, which is mainly carried out after the sulfate or sulfite process.
- the sulfate process is a further development of the older soda process.
- Na2S sodium sulfide
- the required sodium sulfide is produced in the system from sodium sulfate in a kind of cyclic process.
- the cooking temperature is up to 180 ° C, the pressure is set at 1.1 MPa.
- the solution consists essentially of an approx. 10% sodium hydroxide solution with approx. 35 g / l sodium sulfide.
- sodium carbonate + sodium sulfide are melted from the used black liquor with the addition of sodium sulfate via evaporator and rotary tube furnaces as an intermediate product. After dissolving and reacting with quicklime (CaO), soda (sodium sulfate) is again used as sodium hydroxide. In addition, the above-mentioned additive sodium sulfide is obtained.
- the sulfite digestion is carried out with an acidic calcium bisulfite solution Ca (HSO3) 2.
- Ca acidic calcium bisulfite solution
- sulfurous acid is reacted with milk of lime with the addition of sulfur dioxide and bisulfite lye.
- the cell structure of the wood is dissolved.
- the bleaching columns remove the natural synthetic dyes that are brought in from recycling material.
- the extraction of alkali residues follows the chlorine treatment. This is followed by the hypochlorite process, followed by the chloride oxide treatment to remove the last color residues.
- composition of a chlorination solution can serve as an example. 1700 ppm to max. 4000 ppm chloride, 90 to max. 500 ppm chlorine, pH from 1.5 to 3, temperature approx. 40 ° C.
- the core problem in the bleaching processes is the interaction of oxidizing substances with chlorides at low pH values and elevated temperatures.
- the materials used for the system components must be resistant to pitting, crevice and stress corrosion cracking. This applies in particular to the materials in the welded state.
- Examples of system parts are: Parts that are exposed to chlorine, chlorine dioxide, chlorides and hypochlorides at elevated temperatures, alkali evaporators or heaters. Sulfite digestion tanks, tank linings and internals such as hoods, trays, supports, spray nozzles, pipes, feed chutes, fans, exhaust gas scrubber parts, components for tall oil production, cyclones for sulfite lye evaporators, recovery system parts, washers for bleaching columns.
- the steel according to the invention is also particularly suitable for components of systems or devices for conveying, storing and transporting oil or gas, e.g. for pipelines, pump rods, conveying or storage facilities as well as transport containers such as tank or tank wagons.
- ferritic-austenitic steels have been used as materials for such mechanically and corrosion-chemically stressed components. (Petroleum, natural gas, coal - baintechnik 102, June 1986, Issue 6, pp. 289/94). Disadvantages of ferritic-austenitic steels are their unfavorable processing behavior, in particular when hot-forming and welding, and their inadequate corrosion resistance.
- fully austenitic steels according to the invention can be considered for plant components of flue gas purification plants, wastewater treatment plants and devices for conveying, transporting and storing contaminated sludge which are subject to high mechanical and mechanical stress.
- Wastewater treatment plants also mean those in which sludge is treated.
- the suitability of the steels according to the invention compared to known ones was demonstrated on the basis of comparative tests. The results of these tests are reported below.
- Table 1 contains the composition of comparative alloys Nos. 1 to 8 and ten steels Nos. 9 to 18 according to the invention. The samples were subjected to various corrosion tests. The results are shown in FIGS. 2 to 6.
- Fig. 2 shows the temperature limit for resistance to pitting in a 10% FeCl3.6H2O solution after a test period of 244 hours.
- the high resistance of steel No. 18 according to the invention in which the limit temperature compared to the test medium at approx. 90 ° C.
- FIG. 3 to 5 show an illustration of a test arrangement for simulating the corrosion conditions in bleaching plants in a top view ( FIG. 3 ), in a longitudinal section ( FIG. 4 ) and in perspective ( FIG. 5 ). Test results obtained by means of this test device are shown in FIG. 6 .
- the steel No. 18 according to the invention shows a significantly better corrosion behavior than the alloys 6 and 7, and that it also surpasses the nickel alloy No. 8. This material behavior in an application-related test solution is surprising, since this difference did not appear in a generally customary test for chloride resistance.
- Table 2 contains the composition of 11 reference alloys Nos. 1 to 11 and nine steels Nos. 12 to 20 according to the invention. Samples Nos. 1 to 20 were subjected to various corrosion tests. The results are shown graphically in FIGS. 7 to 11.
- Fig. 7 shows the limit temperatures for the pitting resistance of various steels in three chloride-containing media, namely a 3% NaCl solution at 950 mV H , in 10% FeCl3.6H2O and finally in synthetic flue gas condensate (7 vol% H2SO4, 3 vol% HCl) after a test period of 24 h. 7 clearly shows the superiority of the steels No. 12, 14, 15, 17 and 18 according to the invention, in which the limit temperature was above 60 ° C. compared to all three media containing chloride. Only comparison steel No. 7 was able to keep up here. The limit temperature for all other comparative alloys is 55 ° C and below.
- Fig. 8 shows the limit temperatures for the crevice corrosion resistance of various steels when tested in 10% FeCl3 .6H2O (gap conditions according to the MTI regulation). The test duration was again 24 hours. 8 clearly shows the superiority of steels 13, 17 and 18 according to the invention. The comparative steel 7 and the comparative nickel alloy 11 behaved equally well.
- Figure 10 contains the results of testing samples in sulfuric acid. After a test period of 24 h, the mass loss rate was in g / h. m2 determined. The steels according to the invention performed best.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Paper (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3816743 | 1988-05-17 | ||
DE3816743 | 1988-05-17 | ||
DE3816744 | 1988-05-17 | ||
DE3816744 | 1988-05-17 | ||
DE3906029 | 1989-02-27 | ||
DE3906029 | 1989-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0342574A1 true EP0342574A1 (fr) | 1989-11-23 |
Family
ID=27197635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89108725A Withdrawn EP0342574A1 (fr) | 1988-05-17 | 1989-05-16 | Acier austénitique, résistant à la corrosion |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0342574A1 (fr) |
DD (1) | DD300547A5 (fr) |
NO (1) | NO891969L (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0416313A1 (fr) * | 1989-08-11 | 1991-03-13 | Hitachi, Ltd. | Acier austénitique du type Cr-Ni-Mn ayant une bonne résistance à la fragilisation par irradiation de neutrons |
EP0507229A1 (fr) * | 1991-04-03 | 1992-10-07 | Thyssen Schweisstechnik GmbH | Métal d'apport pour le soudage d'aciers austénitiques à résistance élevée à la corrosion |
EP0626460A1 (fr) * | 1993-05-28 | 1994-11-30 | Creusot-Loire Industrie | Acier inoxydable austénitique à haute résistance à la corrosion par les milieux chlorurés et sulfuriques et utilisations |
US5494636A (en) * | 1993-01-21 | 1996-02-27 | Creusot-Loire Industrie | Austenitic stainless steel having high properties |
WO2000043562A1 (fr) * | 1999-01-23 | 2000-07-27 | Noel Village (Steel Founder) Ltd | Aciers inoxydables |
DE10215124A1 (de) * | 2002-04-05 | 2003-10-16 | Wme Ges Fuer Windkraftbetr Ene | Verdampferrohr für eine Meerwasserentsalzungsanlage |
EP1605072A1 (fr) * | 2003-03-20 | 2005-12-14 | Sumitomo Metal Industries Limited | Acier inoxydable destine a venir en contact avec du gaz hydrogene haute pression, cuve et equipement contenant ledit acier |
WO2006071192A1 (fr) * | 2004-12-28 | 2006-07-06 | Outokumpu Oyj | Acier austénitique et produit en acier |
DE102018133251A1 (de) * | 2018-12-20 | 2020-06-25 | Schoeller-Bleckmann Oilfield Technology Gmbh | Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung |
DE102018133255A1 (de) * | 2018-12-20 | 2020-06-25 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Superaustenitischer Werkstoff |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1194587B (de) * | 1963-06-06 | 1965-06-10 | Phoenix Rheinrohr Ag | Verwendung von austenitischen Stahllegierungen als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind |
US3201233A (en) * | 1962-06-13 | 1965-08-17 | Westinghouse Electric Corp | Crack resistant stainless steel alloys |
DE1205289B (de) * | 1964-05-27 | 1965-11-18 | Phoenix Rheinrohr Ag | Verwendung einer austenitischen Stahllegierung als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind |
DE1214005B (de) * | 1965-02-03 | 1966-04-07 | Suedwestfalen Ag Stahlwerke | Bauteile aus austenitischen Staehlen |
GB1295889A (fr) * | 1969-10-09 | 1972-11-08 | ||
US4302247A (en) * | 1979-01-23 | 1981-11-24 | Kobe Steel, Ltd. | High strength austenitic stainless steel having good corrosion resistance |
GB2087427A (en) * | 1980-10-08 | 1982-05-26 | Roechling Burbach Gmbh Stahl | Use of an Austenitic Steel in the Cold-hardened State under Conditions of Extreme Corrosion |
EP0142015A1 (fr) * | 1983-10-21 | 1985-05-22 | Avesta Aktiebolag | Acier austénitique |
-
1989
- 1989-05-16 EP EP89108725A patent/EP0342574A1/fr not_active Withdrawn
- 1989-05-16 NO NO89891969A patent/NO891969L/no unknown
- 1989-05-17 DD DD328672A patent/DD300547A5/de unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3201233A (en) * | 1962-06-13 | 1965-08-17 | Westinghouse Electric Corp | Crack resistant stainless steel alloys |
DE1194587B (de) * | 1963-06-06 | 1965-06-10 | Phoenix Rheinrohr Ag | Verwendung von austenitischen Stahllegierungen als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind |
DE1205289B (de) * | 1964-05-27 | 1965-11-18 | Phoenix Rheinrohr Ag | Verwendung einer austenitischen Stahllegierung als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind |
DE1214005B (de) * | 1965-02-03 | 1966-04-07 | Suedwestfalen Ag Stahlwerke | Bauteile aus austenitischen Staehlen |
GB1295889A (fr) * | 1969-10-09 | 1972-11-08 | ||
US4302247A (en) * | 1979-01-23 | 1981-11-24 | Kobe Steel, Ltd. | High strength austenitic stainless steel having good corrosion resistance |
GB2087427A (en) * | 1980-10-08 | 1982-05-26 | Roechling Burbach Gmbh Stahl | Use of an Austenitic Steel in the Cold-hardened State under Conditions of Extreme Corrosion |
EP0142015A1 (fr) * | 1983-10-21 | 1985-05-22 | Avesta Aktiebolag | Acier austénitique |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5116569A (en) * | 1989-08-11 | 1992-05-26 | Hitachi, Ltd. | Austenitic steel excellent in resistance to neutron irradiation embrittlement and members made of the steel |
EP0416313A1 (fr) * | 1989-08-11 | 1991-03-13 | Hitachi, Ltd. | Acier austénitique du type Cr-Ni-Mn ayant une bonne résistance à la fragilisation par irradiation de neutrons |
EP0507229A1 (fr) * | 1991-04-03 | 1992-10-07 | Thyssen Schweisstechnik GmbH | Métal d'apport pour le soudage d'aciers austénitiques à résistance élevée à la corrosion |
DE4110695A1 (de) * | 1991-04-03 | 1992-10-08 | Thyssen Schweisstechnik | Stahl |
US5494636A (en) * | 1993-01-21 | 1996-02-27 | Creusot-Loire Industrie | Austenitic stainless steel having high properties |
EP0626460A1 (fr) * | 1993-05-28 | 1994-11-30 | Creusot-Loire Industrie | Acier inoxydable austénitique à haute résistance à la corrosion par les milieux chlorurés et sulfuriques et utilisations |
FR2705689A1 (fr) * | 1993-05-28 | 1994-12-02 | Creusot Loire | Acier inoxydable austénitique à haute résistance à la corrosion par les milieux chlorurés et sulfuriques et utilisations. |
WO2000043562A1 (fr) * | 1999-01-23 | 2000-07-27 | Noel Village (Steel Founder) Ltd | Aciers inoxydables |
US6632395B1 (en) | 1999-01-23 | 2003-10-14 | The Village Partnership Llp | Stainless steels |
US7494573B2 (en) | 2002-04-05 | 2009-02-24 | Wme Gesellschaft Fur Windkraftbetriebene Meerwasserentsalzung Mbh | Evaporator tube for a sea water desalination system |
DE10215124A1 (de) * | 2002-04-05 | 2003-10-16 | Wme Ges Fuer Windkraftbetr Ene | Verdampferrohr für eine Meerwasserentsalzungsanlage |
EP1605072A1 (fr) * | 2003-03-20 | 2005-12-14 | Sumitomo Metal Industries Limited | Acier inoxydable destine a venir en contact avec du gaz hydrogene haute pression, cuve et equipement contenant ledit acier |
EP1605072A4 (fr) * | 2003-03-20 | 2007-11-14 | Sumitomo Metal Ind | Acier inoxydable destine a venir en contact avec du gaz hydrogene haute pression, cuve et equipement contenant ledit acier |
US7531129B2 (en) | 2003-03-20 | 2009-05-12 | Sumitomo Metal Industries, Ltd. | Stainless steel for high-pressure hydrogen gas |
WO2006071192A1 (fr) * | 2004-12-28 | 2006-07-06 | Outokumpu Oyj | Acier austénitique et produit en acier |
EA012333B1 (ru) * | 2004-12-28 | 2009-08-28 | Отокумпу Оюй | Аустенитная сталь и стальная продукция |
CN100564570C (zh) * | 2004-12-28 | 2009-12-02 | 奥托库姆普联合股份公司 | 奥氏体钢与钢产品 |
US8119063B2 (en) | 2004-12-28 | 2012-02-21 | Outokumpu Oyj | Austenitic iron and an iron product |
DE102018133251A1 (de) * | 2018-12-20 | 2020-06-25 | Schoeller-Bleckmann Oilfield Technology Gmbh | Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung |
DE102018133255A1 (de) * | 2018-12-20 | 2020-06-25 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Superaustenitischer Werkstoff |
Also Published As
Publication number | Publication date |
---|---|
DD300547A5 (de) | 1992-06-17 |
NO891969L (no) | 1989-11-20 |
NO891969D0 (no) | 1989-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69628190T2 (de) | Hochfeste, geschweisste stahlstrukturen mit hervorragendem korrosionswiderstand | |
DE69421281T2 (de) | Ferritisch-austenitischer rostfreier stahl und seine verwendung | |
DE4342188C2 (de) | Austenitische Legierungen und deren Verwendung | |
DE69604341T3 (de) | Martensitischer. rostfreier stahl mit guter beständigkeit gegen lochfrasskorrosion und mit hoher härte | |
EP0342574A1 (fr) | Acier austénitique, résistant à la corrosion | |
DE2752083A1 (de) | Warmverformbarer, austenitischer, nichtrostender stahl | |
DE69422850T2 (de) | Austenitischer rostfreie Stahl mit hoher Korrosionsbeständigkeit in chlorid- und schwefelenthaltende Umgebung, und seine Verwendung | |
EP0563720A1 (fr) | Alliage austénitique nickel-molybdène | |
DE602005003216T2 (de) | Vorrichtung zur verarbeitung von hochkorrosiven mitteln | |
DE2616599A1 (de) | Verwendung eines hochlegierten stahles zum herstellen von hochfesten, gegen sauergaskorrosion bestaendigen gegenstaenden | |
DE3716665A1 (de) | Korrosionsbestaendige legierung | |
EP0991788B1 (fr) | Alliage nickel-chrome-molybdene | |
DE68905066T2 (de) | Hochtemperaturfestes stahlrohr mit niedrigem siliziumgehalt und mit verbesserten duktilitaets- und faehigkeitseigenschaften. | |
DE2525395C3 (de) | Verwendung eines Stahles für Gegenstände, die mit einer Wärmezufuhr von mehr als 60000 J/cm geschweißt werden | |
DE69025468T2 (de) | Austenitischer rostfreier Stahl | |
DE3300392A1 (de) | Austenitischer nichtrostender stahl von ueberaus hoher temperaturbestaendigkeit | |
DE1758825C2 (de) | Verwendung einer Nickel-Chrom-Eisen-Legierung | |
DE69108604T2 (de) | Palladium enthaltender austenitischer Stahl zur Verwendung in Gegenwart von konzentrierter Schwefelsäure auf hoher Temperatur. | |
DE1608171A1 (de) | Nickel-Chrom-Molybdaen-Legierung | |
DE3105891C2 (de) | Verwendung eines schweißbaren nichtrostenden Stahles für Kettenglieder | |
EP0507229A1 (fr) | Métal d'apport pour le soudage d'aciers austénitiques à résistance élevée à la corrosion | |
DE69432780T2 (de) | Inertgaslichtbogenschweissdraht für temperaturbeständigen hochchromhaltigen ferritischen stahl | |
DE2809026A1 (de) | Niedriggekohlter, austenitischer ni-cr-stahl mit verbesserter bestaendigkeit gegen spannungsrisskorrosion | |
DE1533165A1 (de) | Chrom-Nickel-Stahl mit guter Warmverformbarkoit und guten Schweisseigenschaften,kombiniert mit Spannungsrisskorrosionsbestaendigkeit und guter allgemeiner Korrosionsbestaendigkeit | |
DE2153186A1 (de) | Verwendung ferritischer chromstaehle als korrosionsbestaendiger werkstoff fuer den chemischen apparatebau |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VDM NICKEL-TECHNOLOGIE AKTIENGESELLSCHAFT Owner name: THYSSEN EDELSTAHLWERKE AG |
|
17P | Request for examination filed |
Effective date: 19900518 |
|
17Q | First examination report despatched |
Effective date: 19920212 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19921109 |