EP0334796B1 - Procédé de préparation d'hydrocarbures halogénés insaturés - Google Patents

Procédé de préparation d'hydrocarbures halogénés insaturés Download PDF

Info

Publication number
EP0334796B1
EP0334796B1 EP89710014A EP89710014A EP0334796B1 EP 0334796 B1 EP0334796 B1 EP 0334796B1 EP 89710014 A EP89710014 A EP 89710014A EP 89710014 A EP89710014 A EP 89710014A EP 0334796 B1 EP0334796 B1 EP 0334796B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
employed
catholyte
acid
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89710014A
Other languages
German (de)
English (en)
Other versions
EP0334796A1 (fr
Inventor
Steffen Dr. Dapperheld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0334796A1 publication Critical patent/EP0334796A1/fr
Application granted granted Critical
Publication of EP0334796B1 publication Critical patent/EP0334796B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/27Halogenation
    • C25B3/28Fluorination
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Definitions

  • the invention relates to a process for the production of unsaturated halogenated hydrocarbons by electrolysis in the presence of certain onium compounds and metal salts.
  • Unsaturated halogenated hydrocarbons such as tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride or hexafluoropropene are of great technical importance especially for the production of fluoroplastics and inert liquids.
  • Halogenated olefins especially fluorine-containing olefins, are among others. prepared by decarboxylation of fluorocarboxylic acids, pyrolysis of chlorofluorocarbons or thermal or base-catalyzed dehydrohalogenation of hydrogen-containing haloalkanes.
  • porous ceramic diaphragms The problem of membrane damage can be overcome by using porous ceramic diaphragms.
  • a mixing of the anolyte and the catholyte as well as the anolyte and the catholyte exhaust gas is to be expected, so that on the one hand the olefin reacts with the anodically produced chlorine and on the other hand chlorine and the explosive chlorine oxyhydrogen gas formed on the cathode can form.
  • Ceramic diaphragms are used in various processes (SU-PS 230.131, Zh. Prikl. Chim. 1978, Vol. 51, pp. 701, 703).
  • the electrolysis of chlorofluorocarbons such as CF2Cl-CFCl2 or CF2Cl-CF2Cl to chlorotrifluoroethylene and tetrafluoroethylene can be carried out in basic or neutral mixtures of water and polar organic solvents such as isopropanol, acetone or dioxane.
  • the current yields are between 53.3 and 21.7%.
  • the catholyte which consists of 75 ml KOH solution in water and 75 ml isopropanol, has to be fed about 0.15 g lead nitrate per hour to maintain the activity of the lead cathode.
  • Starting compounds of formula (II) are polyhalogenated alkyl compounds, preferably the dichlorides, dibromides or bromochloride addition products of corresponding olefins, which are e.g. derived from the following olefins: 1,1,2,2-tetrafluoroethylene, 1,1,2-trifluoro-2-chloroethylene, 1,1,2-trifluoroethylene, the various dichlorodifluoro, difluoro, difluorochloroethylene, 1.1 , 2-trichloro-2-fluoroethylene, fluoroethylene, the various dichlorofluoro- and chlorofluoroethylene as well as hexafluoropropene.
  • olefins e.g. derived from the following olefins: 1,1,2,2-tetrafluoroethylene, 1,1,2-trifluoro-2-chloroethylene, 1,1,2-trifluoroethylene, the various dichlorodifluoro, difluoro, diflu
  • the compounds of formula (II) are in concentrations of 1% to 60 wt .-%, preferably 5 to 50 wt .-%, based on the total amount of the electrolyte D) in the undivided cell or the catholyte D1) in the divided Cell used.
  • the method according to the invention is carried out in divided or undivided cells. Accordingly, there is a catholyte D1) or an anolyte D2) in divided cells, while only one electrolyte D) is present in undivided cells. These circumstances must be taken into account when interpreting the description and claims.
  • ion exchange membranes in particular cation exchange membranes made of a polymer such as polystyrene, preferably of perfluorinated polymers with carboxyl and / or sulfonic acid groups, are used.
  • ion exchange membranes in particular cation exchange membranes made of a polymer such as polystyrene, preferably of perfluorinated polymers with carboxyl and / or sulfonic acid groups, are used.
  • the use of stable anion exchange membranes is also possible.
  • the electrolysis can be carried out in all conventional electrolysis cells, for example in beaker or plate and frame cells or cells with fixed bed or fluidized bed electrodes. Both the monopolar and the bipolar circuit of the electrodes can be used.
  • Electrolysis is generally carried out on carbon cathodes.
  • All known carbon electrode materials can therefore be used as carbon cathodes, for example electrode graphites, impregnated graphite materials, porous graphites, carbon felts, vitreous carbon and also carbon-plastic composite materials.
  • the composite materials used are, for example, polytetrafluoroethylene and polyvinylidene fluoride.
  • All known materials on which the corresponding anode reactions take place can be used as anode material.
  • lead, lead dioxide on lead or other carriers, platinum, titanium dioxide doped with noble metal oxides (such as ruthenium dioxide) on titanium are suitable for the development of oxygen from dilute sulfuric acid.
  • Carbon or titanium dioxide doped with precious metal oxides on titanium are suitable, for example, for the development of chlorine from aqueous alkali metal chloride or aqueous or alcoholic hydrogen chloride solutions.
  • anolyte D2 When working in divided electrolytic cells, the use of an anolyte D2) is required.
  • Suitable anolyte liquids are aqueous mineral acids or solutions of their salts, for example dilute sulfuric acid, hydrochloric acid, sodium sulfate or sodium chloride solutions or solutions of hydrogen chloride in alcohol.
  • the electrolyte D) in the undivided or the catholyte D1) in the divided cell contains the compound of formula (II) used and consists of water, one or more organic solvents or a mixture of both.
  • suitable organic solvents are short-chain aliphatic alcohols such as the various butanols; Diols such as propanediol, but also polyethylene glycols and their ethers; Ethers such as tetrahydrofuran, amides such as hexamethylphosphoric triamide, nitriles such as propionitrile; Ketones such as acetone; as well as sulfolane or dimethyl sulfoxide, but preferably methanol, ethanol, the various propanols, ethylene glycol, dioxane, N, N-dimethylformamide and N-methyl-2-pyrrolidone.
  • the electrolyte D) in the undivided cell or the catholyte D1) in the divided cell are C) soluble salts of metals with a hydrogen overvoltage of at least 0.25 V, based on a current density of 100 mA / cm2) in concentrations of 10 ⁇ 5 to 5 wt .-%, preferably 10 ⁇ 3 to 5 wt .-%, each based on the total amount of the electrolyte or catholyte, added.
  • the preferred anions of these salts are Cl ⁇ , SO 2- 4th NO3 ⁇ , CH3COO ⁇ and PO 3- 4th .
  • the salts can be added directly or, for example, can be generated in the solution by adding soluble oxides or carbonates. When choosing the anions, care must be taken to ensure that no compounds which are insoluble in the electrolyte are formed with the cations of the aforementioned metals.
  • one or more compounds B) with at least one nitrogen or phosphorus atom according to the formulas (III) to (VI) in concentrations of 10oly to 10% by weight are added to the electrolyte or the catholyte. , preferably 10 ⁇ 4 to 5 wt .-%, based on the total amount D) or D1) added.
  • Particularly suitable compounds of the formulas (III) to (VI) are tetramethyl, tetraethyl, tetrapropyl-, tetrabutylammonium or -phosphonium-, benzyl-, octyl, decyl, dodecyl, tetradecyl-, hexadecyl, octadecyltrimethylammonium or -trimethylphosphonium, dio , Didecyl-, Didodecyl, Ditetradecyl, Dihexadecyl, Dioctadecyldimethylammonium or -dimethylphosphonium, Methyltrioctylammonium and mixtures thereof.
  • primary, secondary and tertiary amines can also be used, from which the onium compounds are formed in the course of the electrolysis.
  • the nature of the anions of the compounds B) is irrelevant for the process; preference is given to the halide, sulfate, tetrafluoroborate and hydroxide ions.
  • the catholyte in the divided cell or the electrolyte in the undivided cell as component E) can have at least one inorganic and / or organic acid and salts thereof in concentrations of 5 to 60, preferably 10 to 50,% by weight to be added to the total amount of the electrolyte.
  • Hydrochloric, boric, phosphoric, sulfuric or tetrafluoroboric acid can be used as the inorganic acids, but preference is given to the organic acids.
  • C1-C5 alkane carboxylic acids such as formic, acetic, propionic
  • the salts of the acids mentioned are the ammonium, sodium, potassium and / or C1-C4-tetraalkylammonium salts.
  • compounds can be added to the electrolyte which are oxidized at a more negative potential than the released halogen ions in order to avoid the formation of the free halogen.
  • compounds of the formulas (III) and (IV) are suitable in which the anion Z is radicals of oxalic acid, methoxyacetic acid, glyoxylic acid, formic acid and / or hydrochloric acid, e.g. the tetramethyl and tetraethylammonium compounds of the acids mentioned.
  • the electrolysis is carried out at atmospheric pressure. Since some of the suitable organic acids or their salts are not sufficiently soluble under the conditions described, in particular at low temperatures, and some of the starting products have very low boiling points, it may be necessary to carry out the electrolysis under increased pressure of up to 10 bar, preferably Carry out up to 7 and in particular up to 5 bar and, if appropriate, elevated temperature.
  • the current density in the electrolysis is generally 1 to 600 mA / cm2, preferably 10 to 500 mA / cm2, in particular 20 to 400 mA / cm2.
  • the electrolysis temperature is in the range from -40 ° C. to the boiling point of the electrolyte or catholyte used, preferably from -30 ° C. to 90 ° C., in particular from -10 ° to 80 ° C.
  • Electrolysis under increased pressure makes it possible to shift the boiling point of the electrolyte or catholyte to higher values, in order to improve the solubility of the starting compounds and of the acids or salts.
  • the pH of the electrolyte can be varied between 0 and 14 over the pH range mentioned.
  • electrolysis at a pH of less than 7 is advantageous, since under these conditions the metal ions used do not form poorly soluble compounds which can destroy the cation exchange membrane of a divided cell.
  • the electrolysis is carried out in particular at a pH between 5 and 0.2.
  • reaction products generally leave the electrolysis arrangement in gaseous form or under elevated pressure or also in condensed form and are in suitable vessels, e.g. Cold traps, caught.
  • the electrolyte or catholyte is worked up, the isolation of non-gaseous products and the recovery of unreacted halogen fluorocarbons is carried out by extraction and / or distillation in a known manner.
  • the added metal salts and the compounds of the formulas (III) to (VI) or the acids or salts contained in electrolytes or catholytes can include be fed back to the electrolysis because the starting products and the hydrohalic acids formed in most cases boil lower than the organic acids and can thus be separated off easily.
  • the hydrohalic acids can be added to the anolyte where they are oxidized to halogen.
  • the products obtained by the process according to the invention are suitable as a starting material for the production of fluorine-containing polymers.
  • Electrolysis cell 1
  • Electrode graphite or impregnated graphite (®Diabon N from Sigri, Meitingen, Germany) was used as the cathode and graphite or a platinum plate impregnated as the anode.
  • Anolyte aqueous 15 to 35% hydrochloric acid, saturated methanolic hydrochloric acid or 0.5 to 2N aqueous sulfuric acid.
  • the electrode spacing was 4 mm and nets made of polyethylene were used as spacers.
  • the cation exchange membrane was a two- or single-layer membrane made from a copolymer of a perfluorosulfonylethoxy vinyl ether and tetrafluoroethylene (type ®Nafion 324 or 423 from DuPont, Wilmington, Dela., USA).
  • Electrolytic cell 2
  • Uncovered glass pot cell with a volume of 350 ml; Cathode (®Diabon N from Sigri, Meitingen, Germany); Anode: platinum mesh, graphite or lead plate (20 cm2); Cathode area: 12 cm2; Electrode distance: 1.5 cm; Anolyte: as in electrolytic cell 1; Cation exchange membrane: Nafion 324; Mass transfer: by magnetic stirrer.
  • Concentrated hydrochloric acid in water was oxidized to chlorine on an anode made of electrode graphite.
  • Anode and cathode compartments were separated by a Nafion 324 cation exchange membrane.
  • the voltage was 5.5 V. After a charge consumption of 45 Ah, the voltage had risen to 7.1 V and continued to increase by approximately 0.1 V per minute. 74% of the charge was used to develop hydrogen from protons.
  • Electrolytic cell 1 Starting catholyte: 2000 ml of methanol, 100 ml of concentrated hydrochloric acid, 500 g of CF2Cl-CFCl2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (17)

  1. Procédé de préparation de composés de formule
    Figure imgb0029
    par électrolyse d'un composé A) de formule
    Figure imgb0030
    sur une électrode de carbone, où, dans la formule (II):
    R¹ est, indépendamment l'un de l'autre, l'hydrogène, le chlore ou le fluor,
    R² est identique à R¹, -C(R¹)₂-R³, ou bien le groupe [C(R¹)₂]m-C(R¹)₂ remplace deux groupes R²,
    R³ est -(CH₂)n-CH₂-R⁵, -(CF₂)n-CH₂-R⁵, -(CF₂)n-CF₂-R⁵ ou alkyle en C₁-C₁₂ qui est partiellement ou entièrement fluoré,
    R⁴ est, indépendamment l'un de l'autre, le chlore, le brome ou l'iode,
    R⁵ est identique à R¹, le brome, l'iode, -CO-R⁶ ou -SO₂-R⁶,
    R⁶ représente -OH, -O-alkyle de 1 à 6 atomes de carbone dans le reste alkyle, le fluor ou le chlore,
    m et n signifient chacun indépendamment zéro ou un nombre entier de 1 à 12, de préférence de 1 à 6, et
    au moins l'un des R¹ est le fluor,
    dans une cellule d'électrolyse divisée ou non divisée en présence de B) au moins un composé de type onium qui contient au moins un atome d'azote ou de phosphore, et de C) au moins un sel métallique soluble, avec une surtension d'hydrogène supérieure à 0,25 V par rapport à une densité de courant de 100 mA/cm², dans D) un électrolyte et E) en l'absence ou en présence de 5 à 60 % en poids, par rapport à la quantité totale de l'électrolyte, d'au moins un acide inorganique et/ou organique et/ou de leurs sels, sous la pression atmosphérique ou sous une pression élevée de 10 bars au plus, avec une densité de courant de 1 à 600 mA/cm² et à une température comprise entre -40°C et la température d'ébullition de l'électrolyte.
  2. Procédé selon la revendication 1, caractérisé en ce que, comme constituant C), on utilise des sels des métaux plomb (Pb), chrome (Cr), cuivre (Cu), argent (Ag), thallium (Tl) et bismuth (Bi), les anions représentant Cl⁻, SO₄²⁻, NO₃⁻, CH₃COO⁻ et PO₄³⁻.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la température de l'électrolyse est de -30 à 90°C, en particulier de -10 à 80°C, en ce que la densité de courant est de 10 à 500 mA/cm², en particulier de 20 à 400 mA/cm² et en ce que la pression s'élève jusqu'à 7 bars, en particulier jusqu'à 5 bars.
  4. Procédé selon l'une ou plusieurs des revendications 1 à 3, caractérisé en ce que, comme composés de formule (II), on utilise les dichlorures, les dibromures ou les produits d'addition avec le chlorure de brome des oléfines correspondantes.
  5. Procédé selon la revendication 4, caractérisé en ce qu'on utilise les dichlorures, les dibromures ou les produits d'addition avec le chlorure de brome du 1,1,2,2-tétrafluoroéthylène, du 1,1,2-trifluoro-2-chloréthylène, du 1,1,2-trifluoroéthylène, des différents dichlorodifluoro-, difluoro-, difluorochloroéthylènes, du 1,1,2-trichloro-2-fluoroéthylène, du fluoroéthylène, des différents dichlorofluoro- et chlorofluoroéthylènes et de l'hexafluoropropène.
  6. Procédé selon l'un ou plusieurs des revendications 1 à 5, caractérisé en ce que, comme composés de type onium B), on utilise des composés ayant les formules
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    dans lesquelles
    X est le phosphore ou l'azote,
    R⁷ signifie hydrogène, alkyle, cycloalkyle, aralkyle ayant 1 à 18 atomes de carbone dans le reste alkyle et aryle de 6 à 12 atomes de carbone,
    R⁸ est identique à R⁷ ou signifie -(R⁷-O)pR⁷,
    R⁹ est identique à R⁷, R⁸ ou signifie -CH₂(Y)qCH₂-,
    R¹⁰ est -(CH₂)p-, -CH₂-[O-(CH₂)p]q-O-(CH₂)₂-,
    p est un nombre entier de 1 à 12,
    q est nul ou un nombre entier de 1 à 6,
    Y est l'azote, l'oxygène, le soufre ou -CH₂- et
    Z est -OH ou un anion d'un acide inorganique ou organique.
  7. Procédé selon l'une ou plusieurs des revendications 1 à 6, caractérisé en ce que, comme électrode de carbone, on utilise du graphite pour électrodes, du graphite imprégné, du graphite poreux, du feutre de carbone, du carbone vitreux ou des matériaux composites de carbone et de matière plastique.
  8. Procédé selon l'une ou plusieurs des revendications 1 à 7, caractérisé en ce que l'électrolyse est mise en oeuvre de façon continue ou discontinue.
  9. Procédé selon l'une ou plusieurs des revendications 1 à 8, caractérisé en ce que l'électrolyse est mise en oeuvre dans des cellules d'électrolyse divisées dans lesquelles sont présents un catholyte D₁) et un anolyte D₂).
  10. Procédé selon l'une ou plusieurs des revendications 1 à 9, caractérisé en ce qu'on utilise de l'eau et, comme constituant E), de 10 à 50 % en poids d'au moins un acide organique et/ou de ses sels.
  11. Procédé selon la revendication 10, caractérisé en ce que, comme acide organique, on utilise l'acide formique, l'acide acétique, l'acide chloracétique, l'acide méthanesulfonique, l'acide méthanephosphonique, ou les acides éthercarboxyliques
    Figure imgb0035
    avec r = 0 et 1.
  12. Procédé selon la revendication 10, caractérisé en ce que l'on utilise les sels d'ammonium, de sodium, de potassium ou de tétraalkylammonium ayant de 1 à 4 atomes de carbone dans le reste alkyle des acides E).
  13. Procédé selon l'une ou plusieurs des revendications 1 à 9, caractérisé en ce que, comme électrolyte D) ou comme catholyte D₁), on utilise au moins un solvant organique, de l'eau ou un mélange des deux.
  14. Procédé selon la revendication 13, caractérisé en ce que le solvant organique est le méthanol, l'éthanol, les différents propanols, l'éthylèneglycol, le dioxanne, le N,N-diméthylformamide et la N-méthyl-2-pyrrolidone.
  15. Procédé selon l'une ou plusieurs des revendications 1 à 14, caractérisé en ce que les composés de formule (II) sont utilisés en des quantités de 1 % à 60 %, de préférence de 5 à 50 % par rapport à la quantité totale de l'électrolyte D) ou du catholyte D₁).
  16. Procédé selon l'une ou plusieurs des revendications 1 à 15, caractérisé en ce que les sels C) sont utilisés en des quantités de 10⁻⁵ à 5 % en poids, de préférence de 10⁻³ à 5 % en poids, toujours par rapport à la quantité totale de l'électrolyte ou du catholyte.
  17. Procédé selon l'une ou plusieurs des revendications 1 à 16, caractérisé en ce que les composés B) sont utilisés en des quantités de 10⁻⁵ à 10 % en poids, de préférence de 10⁻⁴ à 5 % en poids par rapport à la quantité totale de D) ou de D₁).
EP89710014A 1988-03-19 1989-03-15 Procédé de préparation d'hydrocarbures halogénés insaturés Expired - Lifetime EP0334796B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3809296 1988-03-19
DE3809296 1988-03-19
DE3904475 1989-02-15
DE3904475 1989-02-15

Publications (2)

Publication Number Publication Date
EP0334796A1 EP0334796A1 (fr) 1989-09-27
EP0334796B1 true EP0334796B1 (fr) 1993-05-12

Family

ID=25866160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89710014A Expired - Lifetime EP0334796B1 (fr) 1988-03-19 1989-03-15 Procédé de préparation d'hydrocarbures halogénés insaturés

Country Status (5)

Country Link
US (1) US5026460A (fr)
EP (1) EP0334796B1 (fr)
JP (1) JPH01298188A (fr)
KR (1) KR890014784A (fr)
DE (1) DE58904307D1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016063A1 (de) * 1990-05-18 1991-11-21 Hoechst Ag Verfahren zur teilweisen elektrolytischen enthalogenierung von di- und trichloressigsaeure sowie elektrolyseloesung
US6255535B1 (en) 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing allylethers and higher homologs
DE10034131A1 (de) 2000-07-13 2002-01-24 Bayer Ag Heterocyclische Fluoralkenylthioether (II)
DE10034132A1 (de) * 2000-07-13 2002-01-24 Bayer Ag Heterocyclische Fluoralkenylthioether (lll)
DE10034133A1 (de) 2000-07-13 2002-01-24 Bayer Ag Heterocyclische Fluoralkenylthioether (l)
DE10221120A1 (de) * 2002-05-13 2003-11-27 Bayer Cropscience Ag Verfahren zur Herstellung von substituierten Trifluorethylenen
DE10221119A1 (de) * 2002-05-13 2003-12-04 Bayer Cropscience Ag Verfahren zur Herstellung von substituierten Trifluorethylenen
DE10238725A1 (de) * 2002-08-23 2004-03-04 Bayer Cropscience Ag Substituierte Heterocyclypyrimidine
US20090270522A1 (en) * 2008-04-25 2009-10-29 Honeywell International Inc. Blowing agents for polymeric foams
US8829254B2 (en) * 2012-02-14 2014-09-09 Honeywell International Inc. Process for making 1,3,3,3-tetrafluoropropene
WO2016196538A1 (fr) * 2015-06-04 2016-12-08 Arkema Inc. Procédé de production d'oléfines fluorées

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132504A (en) * 1977-04-26 1978-11-18 Central Glass Co Ltd Dehalogenation of halogenated hydrocarbons
GB2135669A (en) * 1983-03-01 1984-09-05 Ici Plc Electrolytic production of tetrafluoroethylene
DE3607446A1 (de) * 1986-03-07 1987-09-10 Hoechst Ag Verfahren zur enthalogenierung von chlor- und von bromessigsaeuren
DE3704915A1 (de) * 1987-02-17 1988-08-25 Hoechst Ag Elektrochemisches verfahren zum austausch von halogenatomen in einer organischen verbindung

Also Published As

Publication number Publication date
US5026460A (en) 1991-06-25
KR890014784A (ko) 1989-10-25
JPH01298188A (ja) 1989-12-01
EP0334796A1 (fr) 1989-09-27
DE58904307D1 (de) 1993-06-17

Similar Documents

Publication Publication Date Title
EP0334796B1 (fr) Procédé de préparation d'hydrocarbures halogénés insaturés
EP0457320B1 (fr) Procédé de déshalogénation électrolytique partielle des acides dichloro-acétiques et solution d'électrolyse
EP0280120B1 (fr) Procédé électrochimique d'échange d'atomes d'halogène dans un composé organique
EP0308838B1 (fr) Procédé de production d'acides fluorés et leurs dérivés
DE68912871T2 (de) Verfahren zur Herstellung von Fluorkohlenwasserstoffen.
DE3607446A1 (de) Verfahren zur enthalogenierung von chlor- und von bromessigsaeuren
EP0326855B1 (fr) Procédé de préparation de l'acide fluoromalonique et de ses dérivés
DE4217338C2 (de) Elektrochemisches Verfahren zur Reduktion von Oxalsäure zu Glyoxylsäure
DE3908384A1 (de) Verfahren zur herstellung von ungesaettigten halogenierten kohlenwasserstoffen
EP0339523B1 (fr) Procédé de préparation d'esters d'acides hydroxycarboxyliques
EP0548141A1 (fr) Procede de production d'acides acryliques halogenes
EP1769103B1 (fr) Procédé electrochimique pour la préparation de cyclopropylbenzylamines
EP0293856B1 (fr) Procédé de préparation d'un éther de vinyle fluoriné
EP0382106B1 (fr) Procédé de préparation de dérivés de thiophène
EP0100498B1 (fr) Procédé pour la préparation de l'acide dichlorolactique, du nitrile ou de l'amide de l'acide dichlorolactique
DE10031563A1 (de) Verfahren zur Herstellung von perfluororganischen Verbindungen durch elektrochemische Fluorierung
DE60312515T2 (de) Verfahren zur herstellung fluorierter fluorsulfonylalkyl-vinyl-ether
DD151187A1 (de) Verfahren zur herstellung von dihalogenvinylessigsaeuren bzw.deren estern
EP0237769B1 (fr) Acétals dialkyliques de benzaldéhyde
DE4205423C1 (de) Elektrochemisches Verfahren zur Herstellung von Glyoxylsäure
DE1961364A1 (de) Verfahren zur Herstellung von substituierten Hydrazinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19891106

17Q First examination report despatched

Effective date: 19911219

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 58904307

Country of ref document: DE

Date of ref document: 19930617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930721

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940211

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940214

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940309

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940518

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

Ref country code: BE

Effective date: 19950331

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050315

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT