EP0325758A1 - Dampfkondensator - Google Patents

Dampfkondensator Download PDF

Info

Publication number
EP0325758A1
EP0325758A1 EP88121053A EP88121053A EP0325758A1 EP 0325758 A1 EP0325758 A1 EP 0325758A1 EP 88121053 A EP88121053 A EP 88121053A EP 88121053 A EP88121053 A EP 88121053A EP 0325758 A1 EP0325758 A1 EP 0325758A1
Authority
EP
European Patent Office
Prior art keywords
steam
bundle
cooler
condenser
bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88121053A
Other languages
English (en)
French (fr)
Other versions
EP0325758B1 (de
Inventor
Francisco Dr. Blangetti
Peter Stucki
Marc-Aurel Voth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0325758A1 publication Critical patent/EP0325758A1/de
Application granted granted Critical
Publication of EP0325758B1 publication Critical patent/EP0325758B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/184Indirect-contact condenser
    • Y10S165/205Space for condensable vapor surrounds space for coolant
    • Y10S165/207Distinct outlets for separated condensate and gas
    • Y10S165/211Distinct outlets for separated condensate and gas including concave member adjacent to vapor outlet and partially covering a group of coolant tubes

Definitions

  • the invention relates to a steam condenser in which the steam is deposited on pipes through which cooling water flows and which are combined in separate bundles, the pipes of a bundle arranged in rows enclosing a cavity in which a cooler for the non-condensable gases is arranged.
  • Such a steam condenser is known from Swiss Patent No. 423 819.
  • the condenser tubes are arranged in several, so-called sub-bundles in a condenser housing.
  • the steam flows through an exhaust pipe into the condenser housing and is distributed in the room through flow channels. These narrow in the general direction of the flow in such a way that the flow velocity of the steam in these channels remains at least approximately constant.
  • the free inflow of steam to the outside tubes of the partial bundles is ensured.
  • the steam then flows through the bundles with little resistance due to the low pipe depth.
  • the sub-bundles are Arranged next to each other in the condenser so that flow channels arise between them, which appear in the sectional view in the same order of magnitude as the sub-bundles themselves. Furthermore, the tubes in the successive rows form a self-contained wall, which is preferably of the same thickness throughout.
  • This known condenser has the advantage that due to the loose arrangement of the sub-bundles, all peripheral tubes of a sub-bundle are well steamed with no noticeable loss.
  • the requirement for at least approximately the same "wall thickness" of the tube-shaped sub-bundle around the cavity results in a relatively large overall height of the sub-bundle.
  • This known solution is less suitable for steam condensers of small power plants up to 100 MW electrical, in chemistry or in process engineering, in which the amount of steam generated is lower.
  • the surface capacitors in the last-mentioned systems are predominantly designed in a round shape.
  • These concepts are usually carried out with one-sided steam flushing of the bundle through a V-cut arranged in the middle of the condenser.
  • the rivers are arranged vertically from the center outwards with the air coolers on both sides of the jacket.
  • the typical weak points of these concepts lie in the lack of condensation performance of the lower pipe sections as well as in consequent subcooling and high oxygen content in the condensate, as well as in poor partial load behavior.
  • the invention is therefore based on the object of creating a capacitor of the type mentioned of any size and of a preferably simple external shape, which has the advantages of the partial bundle concepts mentioned above.
  • this is achieved in that two bundles spaced apart from one another are provided, which are acted upon by steam over their entire periphery, the bundle shape being selected independently of the external shape of the condenser such that between the bundles on the one hand and between each bundle and the condenser wall First, a convergent - the steam accelerating - flow channel is formed and then a - diverting the steam deflecting dam part is formed, and that the cooler for the non-condensable gases within a bundle is in the plane in which outside the bundle the convergent Steam channel merges into the divergent part.
  • the advantage of the invention can be seen in the fact that as a result of the deliberately implemented pressure reduction in the flow-through alleys at the level of the air cooler on both sides of the respective bundle, the steam-side pressure drop across the bundle is approximately constant, so that there is a homogeneous pressure gradient in the direction of the cooler . With this measure, good steam flushing through the bundle is achieved.
  • the steam in the alleys is decelerated to zero with pressure recovery at the level of the condensate collector. This causes an increase in the saturation temperature of the steam and thus a regression of the condensate supercooling that has taken place and the oxygen concentration in the condensate.
  • cooling water first acts on the lower tubes of each bundle, the cooler for the non-condensable gases preferably being arranged inside the lower tube bundle which is acted on first. This supports the regenerative properties of the bundle configuration.
  • the tubes of the cooler in the cavity of the bundle are provided with a cover plate, which is also designed as a closed suction channel that communicates with the cooler zone via panels.
  • the multifunctional cover plate protects the cooler pipes from the condensate running down.
  • the heat exchanger shown is a round surface condenser as it is suitable for the so-called underfloor arrangement. As a rule, such capacitors have exchange areas between 500 and 2500 m2.
  • the steam flows into the elongated condenser neck 1 via an evaporation nozzle (not shown) with which the condenser hangs on the turbine.
  • the best possible homogeneous flow field is generated therein in order to carry out a clean steam purging of the bundles 2 arranged downstream over their entire length.
  • Deflection blades 3 can be provided in the condenser neck 1 for the purpose of clean distribution of the steam.
  • the condensation space inside the cylindrical condenser jacket contains two separate bundles 2. This has the aim, among other things, that a partial shutdown on the cooling water side can also be carried out during system operation, for example for the purpose of an inspection of the shutdown bundle on the cooling water side.
  • the independent application of cooling water is expressed by the fact that, according to FIG. 1, the water chambers are divided into two compartments by a vertical partition wall 10.
  • the bundles consist of a number of tubes 5, which are fastened at their two ends in tube plates 6. Beyond the tube sheets, the water chambers 7 are arranged.
  • a two-flow cooling water guide is ge selects, which means that the inlet and outlet water chambers are on one side of the condenser and the reversal chambers are on the other side.
  • the lower bundle part is chosen to be the first flow, ie the cooling water is introduced there. Accordingly, in FIG. 1 the lower water chamber connections form the inlet pipes 8 and the upper water chamber connections the outlet pipes 9.
  • Horizontal dividing walls 11 each divide the chambers into inlet or Outlet chambers.
  • the condensate flowing off from the bundles 2 is collected in the condensate collecting vessel 12 and from there it reaches the water / steam circuit, not shown.
  • a cavity 13 is formed in the interior of each bundle 2, in which the vapor enriched with non-condensable gases - hereinafter called air - collects.
  • An air cooler 14 is accommodated in this cavity 13. The steam / air mixture flows through this air cooler, with most of the steam condensing. The rest of the mixture is suctioned off at the cold end.
  • a cylinder - the shape of the two bundles 2 is adjusted so that the following goals are achieved: - Good use of the temperature gradient - Small pressure drop in the tube bundle despite the high packing density of tubing - No stagnant air accumulation in the steam lanes and the bundles - No undercooling of the condensate - Good degassing of the condensate.
  • the bundles are designed in such a way that all pipes in the periphery have a good flow of steam without noticeable pressure loss.
  • the existing flow paths between the two bundles 2 on the one hand and between each bundle and their adjacent condenser wall are designed as follows:
  • the predominant first part 15 of the flow path between the beginning and end of the bundle is designed to be convergent.
  • the flowing steam experiences a spatial acceleration with a corresponding decrease in the static pressure. This is approximately homogeneous on both sides of the bundle.
  • account must be taken of the fact that the steam mass flow becomes increasingly smaller as a result of the condensation.
  • the steam according to the invention should now be decelerated to zero speed with a simultaneous pressure recovery. This is achieved in that the second part 16 of the steam lane is made divergent. It also applies here Note that the channel expansion does not have to be optically recognizable due to the increasing decrease in the mass flow. The decisive factor is that the residual steam flowing towards the condenser bottom creates a dynamic pressure there. This deflects the steam and also supplies the lower parts of the bundle. The increase in temperature caused by the dynamic pressure benefits the condensate flowing down from pipe to pipe by heating up again if it has cooled below the saturation temperature. This ensures two advantages: There are no thermodynamic losses due to condensate hypothermia and the oxygen content of the condensate is reduced to a minimum.
  • the air cooler 14 is arranged in the interior of the bundle at the level at which the bundle of pressure runs through a relative minimum in the flow through the bundle on both sides.
  • the air cooler according to FIG. 2 is thus in the middle of the bundle, specifically in the first flow directly below the parting plane of the two flows.
  • the bundle is designed in such a way that the steam suction into the cavity 13 - taking into account the effective pressure at the pipe periphery and due to the different pipe row thickness - acts homogeneously in the radial direction over all pipes adjacent in the cavity 13. This results in a homogeneous pressure gradient and thus a clear flow direction of the steam and the non-condensable gases towards the air cooler.
  • the air cooler 14 has the task of removing the non-condensable gases from the condenser. During this process, the steam losses are to be kept as low as possible. This is achieved in that the steam / air mixture is accelerated in the direction of the suction duct 17. The high speed results in good heat transfer, which leads to extensive condensation of the residual steam. In order to accelerate the mixture, the cross section in the direction of flow is increasingly smaller, as can be seen in FIG. 3. The air is sucked off through orifices 18 into the channel 17. These screens are distributed several times over the entire length of the condenser and ensure that the suction effect is homogeneous in all compartments of the condenser.
  • a part of the wall of the suction channel 17 is also designed as a cover plate 19. This sheet is placed over the pipes of the cooler and protects them from the steam and condensate flow flowing downwards. This also specifies the direction of entry of the mixture to be cooled, namely from bottom to top towards the screens 18.
  • vapor barriers 21 The free space created by the omission of the pipes is equipped by means of vapor barriers 21.
  • the primary goal of these is to prevent steam bypass.
  • These are longitudinal, baffle-like sheets that have through openings (not shown) for the suction lines 20. These baffles are designed so that they do not prevent vertical steam or condensate exchange. In the direction of the steam lane / cooler, they form a flow obstacle that should have the same pressure drop as the original pipe.
  • the invention is not limited to the example shown and described. In deviation from the two-flow arrangement shown, an influence arrangement could also be implemented. In this case, it is expedient if the non-condensable gases are led out of the condenser in the longitudinal direction instead of across the bundle. In this case, the suction line penetrates one of the tube sheets and the corresponding water chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In einem Dampfkondensator, in dem der Dampf an kühlwasserdurchflossenen, in separaten Bündeln (2) zusammengefassten Rohren (5) niedergeschlagen wird, wobei die in Reihen angeordneten Rohre (5) eines Bündels (2) einen Hohlraum (13) umschliessen, ist im Hohlraum (13) ein Kühler (14) für die nicht kondensierbaren Gase angeordnet. Es sind zwei voneinander beabstandete Bündel (2) vorgesehen, die über ihre ganze Peripherie vom Dampf beaufschlagt sind, wobei unabhängig von der Kondensator-Aussenform die Bündelform so gewählt ist, dass zwischen den Bündeln (2) einerseits sowie zwischen je einem Bündel (2) und der Kondensatorwandung (4) zunächst ein konvergenter - den Dampf beschleunigenden - Strömungskanal (15) gebildet ist und daran anschliessend ein - den Dampf umlenkenden - divergenter Stauteil (16) gebildet ist. Der Kühler (14) für die nicht kondensierbaren Gase befindet sich innerhalb eines Bündels (2) in der Ebene, in welcher ausserhalb des Bündels (2) der konvergente Dampfkanal (15) in den divergenten Teil (16) übergeht.

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft einen Dampfkondensator, in dem der Dampf an kühlwasserdurchflossenen, in separaten Bündeln zusam­mengefassten Rohren niedergeschlagen wird, wobei die in Reihen angeordneten Rohre eines Bündels einen Hohlraum umschliessen, in dem ein Kühler für die nichtkondensierbaren Gase angeordnet ist.
  • Stand der Technik
  • Ein derartiger Dampfkondensator ist aus der schweizerischen Patentschrift Nr. 423 819 bekannt. Dort sind in einem Konden­satorgehäuse die Kondensatorrohre in mehreren, sogenannten Teilbündeln angeordnet. Der Dampf strömt durch einen Abdampf­stutzen in das Kondensatorgehäuse ein und verteilt sich im Raum durch Strömungskanäle. Diese verengen sich in der allge­meinen Richtung der Strömung derart , dass die Strömungsge­schwindigkeit des Dampfes in diesen Kanälen zumindest annä­hernd konstant bleibt. Die freie Zuströmung des Dampfes zu den aussenliegenden Rohren der Teilbündel ist gewahrt. Durch die Bündel strömt der Dampf anschliessend mit durch die geringe Rohrreihentiefe bedingtem kleinen Widerstand hindurch. Um die Bedingung der in den Zuströmkanälen konstant zu haltenden Dampfgeschwindigkeit erfüllen zu können, sind die Teilbündel im Kondensator so nebeneinander angeordnet, dass zwischen ihnen Strömungskanäle entstehen, die im Schnittbild in der gleichen Grössenordnung erscheinen wie die Teilbündel selbst. Des weiteren bilden die Rohre in den hintereinanderfolgenden Reihen eine in sich geschlossene Wand, die vorzugsweise durch­wegs von gleicher Dicke ist.
  • Dieser bekannte Kondensator weist den Vorteil auf, dass durch die lockere Anordnung der Teilbündel alle peripheren Rohre ei­nes Teilbündels ohne merklichen Durchverlust gut mit Dampf be­schnickt sind. Andererseits bedingt das Erfordernis nach zumin­dest annähernd gleicher "Wandstärke" des berohrten Teilbündels um den Hohlraum herum eine relativ grosse Bauhöhe des Teilbün­dels. Hieraus resultiert die hervorragende Eignung dieses Teilbündelkonzeptes für Grosskondensatoren, bei denen eine Mehrzahl von Teilbündeln stehend nebeneinander angeordnet wer­den. Weniger geeignet ist diese bekannte Löstung für Dampfkon­densatoren von kleinen Kraftwerksanlagen bis zu 100 MW elek­trisch, in der Chemie oder in der Verfahrenstechnik, bei wel­chen die anfallenden Dampfmengen geringer sind.
  • Aus Kostengründen werden bei den zuletzt genannten Anlagen die Oberflächenkondensatoren vorwiegend in runder Form ausgeführt. Diese Konzepte werden normalerweise mit einseitiger Dampfspü­lung des Bündels durch einen in der Kondensatormitte angeord­neten V-Schnitt ausgeführt. Die Flüsse werden in vertikaler Richtung von der Mitte nach aussen mit den Luftkühlern an bei­den Mantelseiten angeordnet. Die typischen Schwachstellen die­ser Konzepte liegen im Mangel an Kondensationsleistung der un­teren Rohrpartien sowie an konsequenter Kondensatunterkühlung und hohem Sauerstoffgehalt im Kondensat, sowie in einem schlechten Teillastverhalten.
  • Darstellung der Erfindung
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, einen Kon­densator der eingangs genannten Art beliebiger Grösse und von vorzugsweise einfacher äusserer Form zu schaffen, der die Vor­teile der oben genannten Teilbündelkonzepte aufweist.
  • Erfindungsgemäss wird dies dadurch erreicht, dass zwei vonein­ander beabstandete Bündel vorgesehen sind, die über ihre ganze Peripherie vom Dampf beaufschlagt sind, wobei unabhängig von der Kondensator-Aussenform die Bündelform so gewählt ist, dass zwischen den Bündeln einerseits sowie zwischen je einem Bündel und der Kondensatorwandung zunächst ein konvergenter - den Dampf beschleunigenden - Strömungskanal gebildet ist und daran anschliessend ein - den Dampf umlenkenden - divergenter Stau­teil gebildet ist, und dass der Kühler für die nicht konden­sierbaren Gase innerhalb eines Bündels sich in der Ebene be­findet, in welcher ausserhalb des Bündels der konvergente Dampfkanal in den divergenten Teil übergeht.
  • Der Vorteil der Erfindung ist darin zu sehen, das infolge der bewusst realisierten Druckabsenkung in den durchströmten Gas­sen auf der Höhe des Luftkühlers zu beiden Seiten des jeweili­gen Bündels der dampfseitige Druckabfall über das Bündel etwa konstant ist, so dass sich ein homogener Druckgradient in Richtung Kühler ergibt. Mit dieser Massnahme wird eine gute Dampfdurchspülung durch das Bündel erreicht. Nach Durchlauf der maximalen Geschwindigkeit erfährt der Dampf in der Gassen eine Abbremsung bis auf Null mit Druckrückgewinn auf dem Ni­veau des Kondensatsammelbehälters. Dies bewirkt eine Erhöhung der Sättigungstemperatur des Dampfes und damit eine Rückbil­dung der stattgefundenen Kondensatunterkühlung und der Sauer­stoffkonzentration im Kondensat. Dadurch, dass durch die ge­wählte Strömungsführung der Stau erst am unteren Bündelende erfolgt, werden zudem Ansammlungen von nichtkondensierbaren Gasen in den Bündelgassen selbst vermieden.
  • Bei einer Zweifluss-Kühlwasserführung ist es zweckmässig, wenn das Kühlwasser zunächst die unteren Rohre eines jeden Bündels beaufschlagt, wobei der Kühler für die nicht kondensierbaren Gase vorzugsweise im Innern des zuerst beaufschlagten, unteren Rohrbündels angeordnet ist. Hierdurch werden die regenerativen Eigenschaften der Bündelkonfiguration unterstützt.
  • Es ist sinnvoll, wenn die Rohre das Kühlers im Hohlraum des Bündels mit einem Abdeckblech versehen sind, welches zudem als geschlossener Absaugkanal ausgebildet ist, der mit der Kühler­zone über Blenden kommuniziert. Das multifunktionale Abdeck­blech schützt dabei die Kühlerrohre vor dem herabrinnenden Kondensat.
  • Ferner ist es bei Zwei- oder Mehrflussanordnungen unumgäng­lich, das Luft-Dampfgemisch seitlich aus dem Kondensator her­auszuführen. Hierzu empfiehlt es sich, dass das vom Kühler in den Saugkanal einströmende Dampf-Luftgemisch aus dem Kanal über mindestens eine, jedes Bündel durchdringende Saugleitung abzusaugen, wozu an der Trennfläche zwischen den beiden Flüs­sen ein resp. zwei Rohrreihen im ansonsten geschlossenen Man­tel fehlen und durch schikaneartige Dampfsperren ersetzt sind. Diese Dampfsperren verhindern ein direktes Einströmen des Dampfes zu den Luftkühlern.
  • Eine ähnliche Abschirmung ist zwar aus der bereits genannten CH-PS 423 819 bekannt. Indes handelt es sich dort um eine ge­schlossene Verschalung, welche in der Vertikalen ein Strö­mungshindernis darstellt, insbesondere für das herabtropfende Kondensat.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung an­hand eines Kraftwerkkondensator schematisch dargestellt.
  • Es zeigt:
    • Fig. 1 eine perspektivische Ansicht des Kondensators;
    • Fig. 2 einen teilweisen Querschnitt durch den Kondensator;
    • Fig. 3 das Detail A aus Fig. 2 in vergrössertem Massstab.
  • Beim dargestellten Wärmeaustauscher handelt es sich um einen Oberflächenkondensator in runder Bauform, wie er geeignet ist für die sogenannte Unterfluranordnung. In der Regel weisen derartige Kondensatoren Austauschflächen zwischen 500 und 2500 m² auf.
  • Weg zur Ausführung der Erfindung
  • Ueber einen nicht gezeigten Abdampfstutzen, mit dem der Kon­densator an der Turbine hängt, strömt der Dampf in den längli­chen Kondensatorhals 1 ein. Darin wird ein möglichst gutes ho­mogenes Strömungsfeld erzeugt, um eine saubere Dampfbespülung der stromabwärts angeordneten Bündel 2 über deren ganze Länge vorzunehmen. Zwecks sauberer Verteilung des Dampfes können Um­lenkschaufeln 3 im Kondensatorhals 1 vorgesehen sein.
  • Der Kondensationsraum im Innern des zylinderischen Kondensa­tormantels beinhaltet zwei getrennte Bündel 2. Dies hat unter anderem zum Ziel, dass auch während des Anlagenbetriebes eine kühlwasserseitige Teilabschaltung vorgenommen werden kann, beispielsweise zum Zwecke einer kühlwasserseitigen Inspektion des abgeschalteten Bündels. Die unabhängige Kühlwasserbeauf­schlagung kommt dadurch zum Ausdruck, dass gemäss Fig. 1 die Wasserkammern durch eine vertikale Trennwand 10 in zwei Kom­partimente unterteilt sind.
  • Die Bündel bestehen aus einer Anzahl Rohre 5, die an ihren beiden Ende jeweils in Rohrböden 6 befestigt sind. Jenseits der Rohrböden sind jeweils die Wasserkammern 7 angeordnet. Im gezeigten Beispiel ist eine Zweifluss-Kühlwasserführung ge­ wählt, was bedingt, dass sich die Eintritts- und Austrittswas­serkammern auf einer Seite des Kondensators und die Umkehrkam­mern auf dessen anderer Seite befinden. Um die Kondensatbela­stung des unteren Bündelteiles gering zu halten, wird der un­tere Bündelteil zum ersten Fluss gewählt, d.h. das Kühlwasser wird dort eingeführt. Demzufolge bilden in Fig. 1 die unteren Wasserkammeranschlüsse die Eintrittsrohre 8 und die oberen Wasserkammeranschlüsse die Austrittsrohre 9. Horizontale Trennwände 11 unterteilen jeweils die Kammern in Eintritts- resp. Austrittskammern.
  • Das von den Bündeln 2 abfliessende Kondensat wird im Konden­satsammelgefäss 12 aufgefangen und gelangt von dort in den nicht dargestellten Wasser/Dampf-Kreislauf.
  • Im Innern jedes Bündels 2 ist ein Hohlraum 13 ausgebildet, in dem sich der mit nicht kondensierbaren Gasen - nachstehend Luft genannt - angereicherte Dampf sammelt. In diesem Hohlraum 13 ist ein Lufkühler 14 untergebracht. Das Dampf-Lutfgemisch durchströmt diesen Luftkühler, wobei der grösste Teil des Dampfes kondensiert. Der Rest des Gemisches wird am kalten Ende abgesaugt.
  • Soweit sind Kondensatoren bekannt. Dabei ist zu beachten, dass der sich im Innern des Rohrbündels befindliche Luftkühler die Wirkung hat, dass das Dampf-Gasgemisch innerhalb des Kondensa­torbündels beschleunigt wird. Dadurch verbessern sich die Ver­hältnisse insofern, als keine kleinen Strömungsgeschwindigkei­ten vorherrschen, die den Wärmeübergang beeinträchtigen könn­ten.
  • Ausgehend von der vorgegebenen Aussenform des Kondensators - im vorliegenden Fall ein Zylinder - ist die Form der beiden Bündel 2 so angepasst, dass folgende Ziele erreicht werden:
    - Gute Ausnützung des Temperaturgefälles
    - Kleiner Druckabfall im Rohrbündel trotz hoher Packungs­ dichte der Berohrung
    - Keine stagnierenden Luftansammlungen in den Dampfgassen und den Bündeln
    - Keine Unterkühlung des Kondensates
    - Gute Entgasung des Kondensates.
  • Hierzu sind die Bündel so gestaltet, dass aller Rohre der Pe­ripherie ohne merklichen Druckverlust gut mit Dampf angeströmt sind. Um nun eine homogene, saubere Dampfströmung zu gewähr­leisten und insbesondere um Stauungen innerhalb des Bündels auszuschliessen, sind die vorhandenen Strömungspfade zwischen den beiden Bündeln 2 einerseits sowie zwischen je einem Bündel und deren benachbarter Kondensatorwand folgendermassen ausge­bildet:
  • Zunächst wird vorausgesetzt, dass über dem gesamten Ausström­querschnitt des Kondensatorbodens 1 ein einigermassen homoge­nes Strömungsfeld vorherrscht, was unter anderem durch Anord­nung der Umlenkschaufeln 3 erzielt werden kann. Diese sind da­bei so angestellt, dass durch die Nachlaufströmung des Dampfes keine Schwingungen der zuerst vom Dampf beaufschlagten Rohre induziert werden.
  • Der überwiegende erste Teil 15 des Strömungspfades zwischen Bündelanfang und Bündelende ist konvergent ausgebildet. Darin erfährt der strömende Dampf eine räumliche Beschleunigung mit entsprechender Senkung des statischen Druckes. Dies verläuft ungefähr homogen an beiden Seiten des Bündels. Bei der vorzu­nehmenden Kanalverengung beidseits des Bündels ist dabei der Tatsache Rechnung zu tragen, dass infolge der Kondensation der Dampfmassenstrom zunehmend geringer wird.
  • Nach Erreichen der maximal vorgegebenen Geschwindigkeit soll der Dampf gemäss der Erfindung nunmehr bis auf die Geschwin­digkeit Null abgebremst werden mit gleichzeitigem Druckrück­gewinn. Dies wird dadurch erreicht, dass der zweite Teil 16 der Dampfgasse divergent ausgeführt wird. Auch hier gilt es zu beachten, dass die Kanalerweiterung infolge der zunehmenden Abnahme des Massenstromes optisch nicht erkennbar sein muss. Massgebend ist, dass der zum Kondensatorboden hinströmende Restdampf dort einen Staudruck erzeugt. Dadurch wird der Dampf umgelenkt und versorgt so auch die unteren Teile der Bündel. Die durch den Staudruck bedingte Temperaturerhöhung kommt dem von Rohr zu Rohr hinabfliessenden Kondensat zugute, indem es sich, falls es sich unter Sättigungstemperatur abgekühlt hatte, wieder erwärmt. Dadurch sichert man sich zwei Vorteile: Thermodynamische Verluste wegen Kondensatunterkühlung sind nicht vorhanden und der Sauerstoffgehalt des Kondensates ist auf ein Minimun reduziert.
  • Aus alldem ist zu erkennen, dass zur Spezifizierung des erfin­derischen Gedankens keine Zahlenwerte angegeben werden können, da diese von allzu zahlreichen Parametern abhängig sind. We­sentlich ist, dass die Bündelperipherie gleichmässig mit Dampf beschickt werden soll.
  • Als weitere Massnahme, die der gleichmässigen Bündelbeauf­schlagung mit Dampf dient, wird der Lufkühler 14 im Bündelin­nern auf jenem Niveau angeordnet, auf dem beidseitig der Bün­del der Druckverlauf in der durchströmten Gasse ein relatives Minimum durchläuft. Im gezeigten Beispiel befindet sich der Luftkühler gemäss Fig. 2 somit in der Bündelmitte und zwar im ersten Fluss unmittelbar unterhalb der Trennebene der beiden Flüsse. Das Bündel ist so gestaltet, dass die Dampfansaugung in den Hohlraum 13 - unter Berücksichtigung des wirksamen Druckes an der Rohrperipherie und auf Grund der unterschied­lichen Rohrreihendicke - in radialer Richtung homogen über alle im Hohlraum 13 angrenzenden Rohre wirkt. Daraus resul­tiert ein homogener Druckgradient und damit eine eindeutige Fliessrichtung des Dampfes und der nicht kondensierbaren Gase in Richtung Luftkühler.
  • Im Betrieb kondensiert der Dampf an den Rohren 5 und das Kon­densat tropft gegen den Kondensatorboden ab. Dieses Abtropfen erfolgt innerhalb der Bündel, wobei das Kondensat mit Dampf steigenden Druckes in Berührung kommt.
  • Der Luftkühler 14 hat die Aufgabe, die nichtkondensierbaren Gase aus dem Kondensator zu entfernen. Bei diesem Vorgang sind die Dampfverluste so geringe wie möglich zu halten. Dies wird dadurch erreicht, dass das Dampf/Luftgemisch in Richtung Ab­saugkanal 17 beschleunigt wird. Die hohe Geschwindigkeit hat einen guten Wärmeübergang zur Folge, was zu einer weitgehenden Kondensation des Restdampfes führt. Zwecks Beschleunigung des Gemisches wird der Querschnitt in Strömungsrichtung zunehmend kleiner bemessen, wie es aus Fig. 3 hervorgeht. Die Luft wird über Blenden 18 in den Kanal 17 abgesaugt. Diese Blenden sind mehrfach über die ganze Kondensatorlänge verteilt und bewir­ken, dass die Saugwirkung in allen Kompartimenten des Konden­sators homogen ist.
  • Ein Teil der Wandung des Absaugkanals 17 ist gleichzeitig als Abdeckblech 19 konzipiert. Dieses Blech ist über die Rohre des Kühlers gestülpt und schützt diese vor der oben nach unten fliessenden Dampf- und Kondensatströmung. Damit ist auch die Eintrittsrichtung des abzukühlenden Gemisches vorgegeben, nämlich von unten nach oben zu den Blenden 18 hin.
  • Um die Luft aus dem Absaugkanal 17 zum nicht dargestellten Saugapparat zu leiten, sind eine entsprechende Anzahl Rohre 5 aus den Bündeln 2 ausgespart. Je nach Grösse und Staffelung der Rohre 5 handelt es sich dabei um das Fortlassen entweder einer oder zweier Rohrreihen. Durch diese Aussparung wird meh­rere, das Bündel durchdringende Saugleitungen 20 herausge­führt. Bei der dargestellten Zweiflussanordnung werden diese Aussparung an der Trennfläche zwischen den beiden Flüssen vor­gesehen. Dadurch geht kein Platz verloren, da für die kühlwas­serseitigen Trennwände 11 in den Wasserkammern ohnehin Monta­gefläche vorgesehen werden muss.
  • Der durch das Fortlassen der Rohre entstehende freie Raum wird mittels Dampfsperren 21 bestückt. Diese haben primär zum Ziel, einen Dampfbypass zu verhindern. Es handelt sich um längsge­richtete schikaneartige Bleche, die nichtgezeigte Durchtritts­öffnungen für die Saugleitungen 20 aufweisen. Diese Schikanen sind so konzipiert, dass sie den vertikalen Dampf- oder Kon­densataustausch nicht unterbinden. In Richtung Dampfgasse/­Kühler bilden sie ein Strömungshinderniss, das den gleichen Druckverlust aufweisen sollte wie die Originalberohrung.
  • Selbstverständlich ist die Erfindung nicht auf das darge­stellte und beschriebene Beispiel beschränkt. So könnte in Ab­weichung zur gezeigten Zweiflussanordnung auch eine Einfluss­anordnung zur Ausführung gelangen. In diesem Fall ist es zweckmässig, wenn die nichtkondensierbaren Gase in Längsrich­tung aus dem Kondensator herausgeführt werden statt quer durch die Bündel. Die Saugleitung durchdringt in diesem Fall einen der Rohrböden und die entsprechende Wasserkammer.

Claims (4)

1. Dampfkondensator, in dem der Dampf an kühlwasserdurch­flössenen, in separaten Bündeln (2) zusammengefassten Rohren (5) niedergeschlagen wird, wobei die in Reihen an­geordneten Rohre eines Bündels einen Hohlraum (13) um­schliessen, in dem ein Kühler (14) für die nicht konden­sierbaren Gase angeordnet ist, dadurch gekennzeichnet, dass zwei voneinander beabstandete Bündel (2) vorgesehen sind, die über ihre ganze Peripherie vom Dampf beauf­schlagt sind, wobei unabhängig von der Kondensator-Aus­senform die Bündelform so gewählt ist, dass zwischen den Bündeln (2) einerseits sowie zwischen je einem Bündel und der Kondensatorwandung zunächst ein konvergenter - den Dampf beschleunigenden - Strömungskanal (15) gebildet ist und daran anschliessend ein - den Dampf umlenkenden - di­vergenter Stauteil (16) gebildet ist, und dass der Kühler (14) für die nicht kondensierbaren Gase innerhalb eines Bündels sich in der Ebene befindet, in welcher ausserhalb des Bündels der konvergente Dampfkanal in den divergenten Teil übergeht.
2. Dampfkondensator nach Anspruch 1, dadurch gekennzeichnet, dass bei einer Zweifluss-Kühlwasserführung das Kühlwasser zunächst die unteren Rohre eines jeden Bündels (2) beauf­schlagt, wobei der Kühler (14) für die nicht kondensier­baren Gase vorzugsweise im Innern des zuerst vom Wasser beaufschlagten, unteren Rohrbündels angeordnet ist.
3. Dampfkondensator nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre des Kühlers (14) im Hohlraum (13) des Bün­dels (2) mit einem Abdeckblech (19) versehen sind, wel­ches als geschlossener Absaugkanal (17) ausgebildet ist, der mit der Kühlerzone über Blenden (18) kommuniziert.
4. Dampfkondensator nach den Ansprüchen 2 und 3, dadurch ge­kennzeichnet, dass das vom Kühler in den Saugkanal ein­strömende Dampf-Luftgemisch aus dem Kanal über mindestens eine, das Bündel durchdringende Saugleitung (20) abgezo­gen wird, wozu an der Trennfläche zwischen den beiden Flüssen ein resp. zwei Rohrreihen im ansonsten geschlos­senen Mantel fehlen und durch schikaneartige Dampfsperren (21) ersetzt sind.
EP88121053A 1988-01-22 1988-12-16 Dampfkondensator Expired - Lifetime EP0325758B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH23088 1988-01-22
CH230/88 1988-01-22

Publications (2)

Publication Number Publication Date
EP0325758A1 true EP0325758A1 (de) 1989-08-02
EP0325758B1 EP0325758B1 (de) 1991-03-06

Family

ID=4182257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88121053A Expired - Lifetime EP0325758B1 (de) 1988-01-22 1988-12-16 Dampfkondensator

Country Status (7)

Country Link
US (1) US4967833A (de)
EP (1) EP0325758B1 (de)
AU (1) AU607036B2 (de)
CA (1) CA1309908C (de)
DE (1) DE3861964D1 (de)
ES (1) ES2021132B3 (de)
YU (1) YU239088A (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141132C1 (de) * 1991-12-13 1993-02-11 Preussenelektra Ag, 3000 Hannover, De
EP0619466A2 (de) * 1993-04-05 1994-10-12 ABB Management AG Dampfkondensator
DE19642100A1 (de) * 1996-10-12 1998-04-16 Asea Brown Boveri Dampfkondensator
EP0967451A1 (de) 1998-06-24 1999-12-29 Asea Brown Boveri AG Dampfkondensator
WO2013117730A2 (en) 2012-02-10 2013-08-15 Alstom Technology Ltd Water/steam cycle and method for operating the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561012B1 (de) * 1992-03-16 1996-05-29 Asea Brown Boveri Ag Verfahren und Einrichtung zum Behandeln von Wasser in einem Oberflächenkondensator
US6269867B1 (en) 1994-12-02 2001-08-07 Hitachi, Ltd Condenser and power plant
DE69530047T2 (de) * 1994-12-02 2004-01-29 Hitachi Ltd Kondensator und Kraftwerk
JP3735405B2 (ja) * 1995-12-15 2006-01-18 株式会社東芝 復水器
US9217566B2 (en) * 2007-03-27 2015-12-22 Boyle Energy Services & Technology, Inc. Method and apparatus for commissioning power plants
DE102018118275A1 (de) * 2018-07-27 2020-01-30 Valeo Siemens Eautomotive Germany Gmbh Rotoranordnung für eine elektrische Maschine, elektrische Maschine für ein Fahrzeug und Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH423819A (de) * 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Kondensationsanlage für Dampfturbinen-Abdampf
FR1579333A (de) * 1967-09-08 1969-08-22
DE1948073A1 (de) * 1969-08-29 1971-03-25 Bbc Brown Boveri & Cie Verfahren zum Kondensieren von Wasserdampf und Anlage zur Durchfuehrung dieses Verfahrens
US4226283A (en) * 1976-08-27 1980-10-07 Hitachi, Ltd. Multitubular heat exchanger
EP0049116A2 (de) * 1980-09-29 1982-04-07 Hitachi, Ltd. Speisewasservorwärmer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1764716A (en) * 1926-02-11 1930-06-17 Elliott Co Condenser
US1796708A (en) * 1929-12-07 1931-03-17 Worthington Pump & Mach Corp Condenser
US2663547A (en) * 1949-05-25 1953-12-22 Lummus Co Condenser deaerator
US2869833A (en) * 1957-04-03 1959-01-20 Worthington Corp Modular heat exchanger
JPS53147103A (en) * 1977-05-27 1978-12-21 Hitachi Ltd Multitubular system heat exchager

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH423819A (de) * 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Kondensationsanlage für Dampfturbinen-Abdampf
FR1579333A (de) * 1967-09-08 1969-08-22
DE1948073A1 (de) * 1969-08-29 1971-03-25 Bbc Brown Boveri & Cie Verfahren zum Kondensieren von Wasserdampf und Anlage zur Durchfuehrung dieses Verfahrens
US4226283A (en) * 1976-08-27 1980-10-07 Hitachi, Ltd. Multitubular heat exchanger
EP0049116A2 (de) * 1980-09-29 1982-04-07 Hitachi, Ltd. Speisewasservorwärmer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141132C1 (de) * 1991-12-13 1993-02-11 Preussenelektra Ag, 3000 Hannover, De
EP0619466A2 (de) * 1993-04-05 1994-10-12 ABB Management AG Dampfkondensator
EP0619466A3 (de) * 1993-04-05 1995-12-13 Abb Management Ag Dampfkondensator.
DE19642100A1 (de) * 1996-10-12 1998-04-16 Asea Brown Boveri Dampfkondensator
EP0841527A3 (de) * 1996-10-12 1998-12-02 Asea Brown Boveri AG Dampfkondensator
US5941301A (en) * 1996-10-12 1999-08-24 Asea Brown Boveri Ag Steam condenser
EP0967451A1 (de) 1998-06-24 1999-12-29 Asea Brown Boveri AG Dampfkondensator
WO2013117730A2 (en) 2012-02-10 2013-08-15 Alstom Technology Ltd Water/steam cycle and method for operating the same
US9453428B2 (en) 2012-02-10 2016-09-27 Alstom Technology Ltd Water/steam cycle and method for operating the same

Also Published As

Publication number Publication date
DE3861964D1 (de) 1991-04-11
US4967833A (en) 1990-11-06
AU607036B2 (en) 1991-02-21
ES2021132B3 (es) 1991-10-16
CA1309908C (en) 1992-11-10
EP0325758B1 (de) 1991-03-06
AU2861889A (en) 1989-07-27
YU239088A (en) 1991-08-31

Similar Documents

Publication Publication Date Title
EP0384200B1 (de) Dampfkondensator
EP0325758B1 (de) Dampfkondensator
DE2545061C2 (de)
DE1958885B2 (de) Einrichtung zum trocknen und ueberhitzen von nassdampf in dampfkraftanlagen
DE4201637C3 (de) Kondensator zur Verflüssigung von Dampf
DE2026941C3 (de) Vorrichtung zum Behandeln eines strömenden Fließmittels
EP0619466B1 (de) Dampfkondensator
DE19642100B4 (de) Dampfkondensator
DE60006321T2 (de) Verdampferkondensor mit hartgelöteten Platten und deren Verwendung in einer Luftdestillationsvorrichtung
DE3538515C2 (de)
DE2524080B2 (de) Waermeuebertrager, in dem ein dampffoermiges medium unter waermeabgabe an ein anderes medium kondensiert
EP0795729B1 (de) Dampfkondensator
DE2414295C2 (de) Wärmeaustauscher zur Kondensation von Dampf
EP0561012B1 (de) Verfahren und Einrichtung zum Behandeln von Wasser in einem Oberflächenkondensator
DE2917498C2 (de) Oberflächen-Wärmetauscher
DE1501337C (de) Oberflachenkondensator fur Dampftur binen Abdampf
EP1139051A2 (de) Kondensator
DE2839896C2 (de) Vorrichtung zum Destillieren von Wasser aus einer wässrigen Lösung
DE611002C (de) Heizkammer fuer Verdampfer und Verkocher mit senkrecht stehenden Heizrohren
DE3121346C2 (de)
DE19604704C1 (de) Dampfkondensator
DE3419045C2 (de)
DE1514501B2 (de) Kernreaktoranlage mit Dampferzeuger
DE1299663B (de) Verfahren zur vollstaendigen oder teilweisen Kondensation von Wasserdampf oder anderer dampffoermiger Medien und Kondensator zur Durchfuehrung des Verfahrens
DE1298107B (de) Absorptionskuehlanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR IT LI NL SE

17P Request for examination filed

Effective date: 19900118

17Q First examination report despatched

Effective date: 19900702

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR IT LI NL SE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REF Corresponds to:

Ref document number: 3861964

Country of ref document: DE

Date of ref document: 19910411

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88121053.8

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD CHSP IN

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

NLS Nl: assignments of ep-patents

Owner name: ALSTOM (SWITZERLAND) LTD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ABB SCHWEIZ HOLDING AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071222

Year of fee payment: 20

Ref country code: CH

Payment date: 20071217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071217

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081216

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081217