EP0325600A1 - Verfahren zum herstellen von keramisch-metallischen verbundkörpern, sowie nach dem verfahren hergestellte verbundkörper und deren verwendung - Google Patents

Verfahren zum herstellen von keramisch-metallischen verbundkörpern, sowie nach dem verfahren hergestellte verbundkörper und deren verwendung

Info

Publication number
EP0325600A1
EP0325600A1 EP87906185A EP87906185A EP0325600A1 EP 0325600 A1 EP0325600 A1 EP 0325600A1 EP 87906185 A EP87906185 A EP 87906185A EP 87906185 A EP87906185 A EP 87906185A EP 0325600 A1 EP0325600 A1 EP 0325600A1
Authority
EP
European Patent Office
Prior art keywords
ceramic
composite body
composite
pressing
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87906185A
Other languages
English (en)
French (fr)
Inventor
Bernhard Farkasch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0325600A1 publication Critical patent/EP0325600A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube

Definitions

  • the invention relates to a method for producing ceramic-metallic composite bodies, and to composite bodies produced by the method and their use.
  • Ceramic materials as well as ceramic-metallic composite materials are made from granular components.
  • the shaping is carried out by pressing, casting, slip casting, etc. These processes have in common that the ceramic and metallic components are present unconnected after the shaping, that is to say that they are not connected to one another by solid bridges. They obtain their "green strength" from binders, adhesion and tension forces. The final strength is achieved by sintering at high temperatures.
  • organic materials are added to the starting mixtures before they are shaped, which burn out when heated. Salts, which are removed after shaping, serve the same purpose. With these methods, however, no complex pores and material structures with precise pore diameters can be introduced into the parts.
  • binders in the form of organic adhesives is disadvantageous because they envelop the grains and then only in slight, direct contact
  • Inorganic adhesives form phases that impair the material obtained. Such adhesives generally have an insulating effect in ceramic superconductors. If water glass is used as the adhesive, the application limit temperature is reduced.
  • the present invention is based on the object of simply creating thin ceramic or ceramic-metallic composite bodies as comparatively thin-walled bodies with possible different spatial shapes and with predictable properties, in particular porosity, which at the same time have multiple uses, in particular as a filter and these binders can be used as superconducting ceramic structures or as reinforcement in refractory bodies.
  • the ceramic material is inorganic, non-metallic substances. These inorganic materials can be powdery, granular, but also in the form of fibers. If they are in the form of fibers, they can be inserted between the metal foils in the form of mats.
  • the metal foils can consist of iron alloys, but also metal alloys, provided that they are not pure metals. As a rule, they consist of aluminum, copper or zirconium. They have a small thickness as foils, so they are usually 0.5 to 200 ⁇ m, in particular 20 to 40 ⁇ m thick.
  • the pressing creates a fundamentally different spatial shape.
  • depressions can be introduced into the structure, for example as channels.
  • another fundamental change in the spatial shape can take place in such a way that a flat composite body is given an arched or round cross-sectional shape with the pressing.
  • the method is particularly advantageous in that the ceramic material is applied to a first metal foil, then another metal foil with another identical or different ceramic material is applied to it, and this composite is pressed together at room temperature and then sintered.
  • sintering can also take place in a neutral atmosphere. This is done, for example, if the metal foil is to be retained. It can also be provided that the ceramic substances are added with oxygen-releasing substances which result in an oxide layer on the inside of the metal foils in order to improve the bond with the ceramic substances.
  • the composite wires can be compressed • the pressing or after the first pressing to ceramic as electrically superconducting
  • the ceramic or metal-ceramic composite body be treated with liquid plastic, liquid metal or molten oxide or be surrounded by these liquid substances. In the latter case, they are then reinforcements in plastic, metal or a stone obtained from molten oxide, which is used as a refractory stone, for example in melting furnaces or in furnaces.
  • a finished composite body is characterized according to the invention by one or more metal foils, between which ceramic materials are arranged, with which they are intimately connected by pressing and sintering.
  • one or more metal foils in particular the inner metal foil, are provided with openings.
  • the outer metal foils can have openings, in particular for use as a filter.
  • the ceramic materials as grains or fibers can have approximately the same grain size. But they can also have different grain sizes. According to the present invention, it is possible to create an adjustable or predictable porosity by selecting the grain sizes in the individual layers. At the same time, a predictable strength can be created. Therefore, the ceramic composite material, usually of low overall thickness, can be used in many ways, for example as reinforcement in a refractory brick.
  • the ceramic composite material meets the requirements for a superconductor. Description of the drawing
  • FIGURE 1 essentially schematic of the ceramic material present between two metal foils before pressing
  • FIGURE 2 the body of FIGURE 1 after pressing
  • FIGURE 3 the body of FIGURE 2 after sintering
  • FIG. 3A shows a partial section from FIG. 3 in a larger representation
  • FIGURE 4 essentially schematically the fundamental change of the spatial shape with the pressing
  • FIG. 5 shows a ceramic body with three layers of metal foil and ceramic grains of different grain sizes arranged between them before pressing
  • FIGURE 6 the body of FIGURE 5 after pressing
  • FIGURE 8 shows another structure before pressing
  • FIGURE 9 the body of FIGURE 8 after pressing
  • FIGURE 10 in a basic representation the structure for a superconductor before pressing
  • FIGURE 11 shows the arrangement of FIGURE 10 after pressing
  • FIGURE 12 shows a further structure for a superconductor before pressing
  • FIGURE 13 shows the arrangement of FIGURE 12 after pressing
  • FIGURE 14 is a vertical section through a housing with filters made of ceramic elements
  • FIGURE 16 shows the arrangement of FIGURE 15 after pressing
  • FIGURE 17 the installation of the pressed and sintered bodies in a melt-cast oxidic stone. Best ways to carry out the invention.
  • Figure 1 shows the initial situation for producing a ceramic or metal-ceramic body.
  • a ceramic material 13 is introduced, which according to the embodiment consists of grains of approximately the same grain size. However, depending on the desired porosity, a grain structure with different grains can also be present.
  • the solution according to the invention of creating small composite bodies in thickness permits a very fine gradation here.
  • Figure 2 shows the composite after pressing. According to the exemplary embodiment, it has a total thickness of 100 ⁇ m, i.e. H. 0.1 mm.
  • Figure 3 shows the composite after sintering with the proviso that the unit of the metal foils with the ceramic material after sintering is to be represented by the hatching.
  • the metal foils are retained or they also oxidize to form a ceramic material, so that the bond to the ceramic material present between the original foils is thereby achieved is improved.
  • FIG 4 shows the deformation after pressing.
  • FIG. 5 shows that a central metal foil 14 is arranged between the outer metal foils 11 and 12.
  • the grains have different grain sizes, such as the coarse grains 13a and the fine grains 13b.
  • the coarse grains 13 partially penetrate the middle metal foil or partially dig into the inner sides of the outer metal foils, so that an intimate connection by anchoring already takes place with the pressing. This intimate connection is increased by sintering at the appropriately adjusted sintering temperature.
  • Figure 7 shows that the upper metal foil is provided with numerous openings 15, 15a.
  • the lower metal foil 11 can also be provided with these openings.
  • Such breakthroughs are present, for example, when the finished ceramic or metal-ceramic bodies are used as filters in a housing. After pressing and sintering, a total thickness of 400 ⁇ m, ie. H. 0.4 mm available.
  • FIG. 8 shows the starting product in such a way that the central metal foil 14 is provided with initial perforations in order to increase the bond.
  • Figure 9 shows the intimate connection after pressing.
  • FIG. 10 shows stiff metal foils 11, 12, between which ceramic materials 13, for example in the form of fibers, are arranged.
  • the edge regions of the foils 11, 12 and 13 are connected to one another by pressing. This can be done through application an adhesive that is not present in the ceramic in superconductors. Welding or soldering can take place. Finally, the metal foils can be connected during sintering.
  • FIG. 12 shows a metallic strip with a meandering cross section so that the ceramic material 13 can be introduced between the film layers.
  • the metallic layers are connected with the pressing. With the pressing, as shown in FIG. 13a in a cross section, a bend can be made into a wire-like configuration.
  • FIG. 14 shows a filter housing 16 with the inlet 17 and the outlet 18.
  • the metal-ceramic or ceramic plate-shaped structures 10a, 10b are present on the inside. If the metal foils have been preserved, then they have the openings 15, 15a described in FIG. 7, in order to give the filter medium a corresponding passage. However, it can also be provided that the metal foils have become a ceramic material by oxidation and then the filter structure is also present in the area of the earlier metal foils.
  • FIG. 15 shows a plate 13 which, after pressing, as shown in FIG. 16, has channel-like depressions 19, 19a and 19b which are alternately present on one and the other side.
  • the metal-ceramic or ceramic body 10 is then installed in a refractory stone 20. It is preferably a melt-cast stone.
  • FIG. 17 shows the front side 23, which is highly stressed by the temperature, so that the ceramic structure extends in the longitudinal direction of the temperature gradient.
  • the metal-ceramic and ceramic plate-shaped elements have a predetermined porosity, the result is that cracks occurring in the stone at high temperatures cannot propagate because they end at the porous inlays.
  • the solution according to the invention allows the metal-ceramic or ceramic plates, in particular as thin plates or strips themselves, to have a fire resistance which is greater than the stone material in which they are installed.
  • a selection can be made here that corresponds to optimal requirements and special features.
  • the ceramic or metal-ceramic plates or wires or similar structures have a total thickness after sintering, which preferably the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)

Description

Verfahren zum Herstellen von keramisch- metallischen Verbundkörpern, sowie nach dem Verfahren hergestellte Verbundkörper und deren Verwendung.
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zum Her¬ stellen von keramisch-metallischen Verbundkörpern, sowie nach dem Verfahren hergestellte Verbundkörper und deren Verwendung.
Stand der Technik
Keramische Werkstoffe sowie keramisch-metalli- sehe Verbundwerkstoffe werden aus körnigen Komponenten hergestellt. Die Formgebung erfolgt durch Pressen, Gießen, Schlickergießen usw.. Diesen Verfahren ist gemeinsam, daß die keramischen und metallischen Bestandteile nach der Formgebung unverbunden vorliegen, das heißt, daß sie nicht durch Feststoffbrücken mit¬ einander verbunden sind. Ihre "Grünfestigkeit" erhal¬ ten sie durch Binder, Adhäsions- und Verspannungs- kräfte. Die Endfestigkeit wird durch Sintern bei hohen Temperaturen erreicht. Zur Erhöhung der Porosität werden den Ausgangsmischungen vor der Formgebung organische Materialien zugegeben, die bei Erhitzen ausbrennen. Dem gleichen Zweck dienen Salze, die nach der Formgebung herausgelöst werden. Mit diesen Ver¬ fahren können aber keine komplexen Poren und Material- Strukturen mit genauen Porendurchmessern in die Teile eingebracht werden.
Die Anwendung von Bindemitteln in Gestalt organi¬ scher Kleber ist nachteilig, weil diese die Körner u - hüllen und diese dann nur im geringen, direkten Kontakt
ER C. A' stehen und schlecht versintern. Anorganische Kleber bilden Phasen, die das Werkstoff erhalten beeinträch¬ tigen. Solche Kleber wirken somit bei keramischen Supraleitern in der Regel isolierend. Sofern als Kleber Wasserglas verwendet wird, wird die Anwendungs¬ grenztemperatur herabgesetzt.
Darstellung der Erfindung
Die vorliegende Erfindung geht von der Aufgabe aus, auf einfache Weise dünne keramische oder kera¬ misch-metallische Verbundkörper als vergleichsweise dünnwandige Körper mit möglichen verschiedenartigen Raumformen und mit vorhersehbaren Eigenschaften, ins¬ besondere Porosität, zu schaffen, die zugleich eine vielfache Verwendung, so insbesondere als Filter und diese Bindemittel als supraleitende keramische Gebilde o er als Armierung in feuerfesten Körpern Anwendung finden.
Zur Lösung dieser Aufgabe wird bei einem Verfahren zum Herstellen von keramischen oder keramisch-metal¬ lischen Verbundkörpern erfindungsgemäß vorgeschlagen, daß zwischen zwei dünnen Metallfolien ein keramischer Werkstoff eingebracht und dann dieser Verbund zusam¬ mengepreßt und anschließend gesintert wird.
Bei dem keramischen Werkstoff handelt es sich um anorganische, nichtmetallische Stoffe. Diese anorgani¬ schen Werkstoffe können pulverförmig, körnig, aber auch in Gestalt von Fasern vorliegen. Sofern sie in Gestalt von Fasern vorliegen, können sie zwischen den Metallfolien in Gestalt von Matten eingelegt werden. Die Metallfolien können aus Eisenlegierungen, aber auch Metallegierungen bestehen, sofern sie nicht reine Metalle darstellen. In der Regel bestehen sie aus Aluminium, Kupfer oder Zirkonium. Sie haben als Folien eine geringe Dicke, so sind sie in der Regel 0,5 bis 200 μm, insbesondere 20 bis 40 um dick.
In weiterer erfindungsgemäßer Ausgestaltung wird vorgeschlagen, daß mit dem Pressen eine grundsätzlich andere Raumform geschaffen wird. So können mit dem Pressen in das Gebilde Vertiefungen, beispielsweise als Rinnen, eingebracht werden. Mit dem Pressen kann aber auch eine sonstige grundsätzliche Änderung der Raumform erfolgen in der Weise, daß ein flacher Ver- bundkörper mit dem Pressen eine gewölbte oder runde Querschnittsform erhält.
Besonders vorteilhaft ist das Verfahren, daß auf eine erste Metallfolie der keramische Stoff aufge- bracht, dann auf diesen eine weitere Metallfolie ein weiterer gleicher oder anderer keramischer Stoff aufgebracht wird und dieser Verbund bei Raumtempera¬ tur zusammengepreßt und anschließend gesintert wird.
Es ist auch möglich, den losen Verbundkörper bei
Raumtemperatur einer ersten Pressung zu unterwerfen, dann diesen vorgepreßten Verbundkörper zu erhitzen und dann in hocherhitztem Zustand zu pressen, um beispielsweise ein dichteres Gefüge zu erhalten. Anschließend wird der auf solche Weise mehrfach ge¬ preßte Körper auf die hohe Sintertemperatur gebracht, damit durch die Sinterung eine weitere innige Ver¬ bindung der den Verbundkörper bildenden Stoffe erreicht wird. Die Sinterung kann in oxidierender Atmosphäre vorgenommen werden. Dabei ergibt sich dann in der Regel, daß auch die Metallfolie teilweise oder ganz oxidiert, so daß die Metallfolie sich in einen kerami- sehen Werkstoff umwandelt, der mit dem anderen kerami¬ schen Werkstoff durch die Sinterung eine innige Ver¬ bindung eingeht.
Die Sinterung kann jedoch auch in neutraler Atmos- phäre erfolgen. Dies erfolgt beispielsweise, sofern die Metallfolie erhalten bleiben soll. Es kann auch die Maßnahme vorgesehen sein, daß den keramischen Stoffen Sauerstoff abgebende Stoffe zugegeben sind, die auf den Innenseiten der Metallfolien eine Oxid- schicht ergeben, um damit die Bindung mit den kerami¬ schen Stoffen zu verbessern.
Die Verbundkörper können mit dem Pressen oder nach dem ersten Pressen zu Drähten zusammengepreßt werden, um als elektrisch supraleitende keramische
Gebilde Anwendung finden zu können. Dazu werden vor¬ teilhaft lange Streifen, gegebenenfalls hergestellt aus einem plattgewalzten Draht, in Verbindung mit den keramischen Stoffen gepreßt und dann gesintert. Das Pressen, insbesondere zu einem Draht, kann jedoch auch durch Walzen oder in einer Düse vorgenommen werden.
In weiterer erfindungsgemäßer Ausgestaltung wird vorgeschlagen, daß die keramischen oder metall¬ keramischen Verbundkδrper mit flüssigem Kunststoff, flüssigem Metall oder schmelzflüssigem Oxid behandelt oder von diesen flüssigen Stoffen umgeben werden. Im letzteren Fall sind sie dann Armierungen in Kunst- Stoff, Metall oder einem aus schmelzflüssigem Oxid erhaltenen Stein, der als feuerfester Stein bei¬ spielsweise in Schmelzöfen oder in Feuerungen Anwen¬ dung findet. Ein fertiger Verbundkörper ist erfindungsgemäß gekennzeichnet durch eine oder mehrere Metallfolien, zwischen denen keramische Stoffe angeordnet sind, mit denen sie durch Pressung und Sintern in inniger Verbindung sind.
In weiterer erfindungsgemäßer Ausgestaltung wird vorgeschlagen, daß eine oder mehrere Metallfolien, ins¬ besondere die innenliegende Metallfolie, mit Durch- brechungen versehen sind. Dabei können, insbesondere zur Anwendung als Filter, die äußeren Metallfolien Durchbrechungen aufweisen. Vielfach ist es auch zweck¬ mäßig, die inneren Metallfolienlagen mit Durchbrechun¬ gen zu versehen oder mit dem Pressen durch grobe keramische Körner die Durchbrechungen zu schaffen.
Die keramischen Stoffe als Körner oder Fasern können eine annähernd gleiche Korngröße haben. Sie können aber auch unterschiedliche Korngrößen haben. Nach der vorliegenden Erfindung ist es möglich, durch die Wahl der Korngrößen in den einzelnen Schichten eine einstellbare oder vorhersehbare Porosität zu schaffen. Zugleich kann eine vorhersehbare Festigkeit geschaffen werden. Daher ist der keramische Verbund- werkstoff, in der Regel von geringer Gesamtdicke vielfach anwendbar, so beispielsweise als Armierung in einem feuerfesten Stein.
Als Draht erfüllt der keramische Verbundwerkstoff die Anforderungen an einen Supraleiter. Beschreibung der Zeichnung
Die Erfindung ist in den Zeichnungen beispielhaft dargestellt.
Es zeigen:
FIGUR 1 im wesentlichen schematisch den zwischen zwei Metallfolien vorhande¬ nen keramischen Stoff vor dem Pressen,*
FIGUR 2 den Körper nach FIGUR 1 nach dem Pressen,
FIGUR 3 den Körper nach FIGUR 2 nach dem Sintern,
FIGUR 3A einen Teilausschnitt aus FIGUR 3 in größerer Darstellung,
FIGUR 4 im wesentlichen schematisch die grundlegende Änderung der Raumform mit dem Pressen,
FIGUR 5 einen keramischen Körper mit drei Metallfolienlagen und zwischen diesen angeordneten keramischen Körnern unterschiedlicher Korngröße vor dem Pressen,
FIGUR 6 den Körper nach FIGUR 5 nach dem Pressen,
FIGUR 7 eine Abwandlung mit vier Metall¬ folien, FIGUR 8 einen weiteren Aufbau vor dem Pressen,
FIGUR 9 den Körper nach FIGUR 8 nach dem Pressen,
FIGUR 10 in prinzipieller Darstellung den Aufbau für einen Supraleiter vor dem Pressen,
FIGUR 11 die Anordnung nach FIGUR 10 nach dem Pressen,
FIGUR 12 einen weiteren Aufbau für einen Supraleiter vor dem Pressen,
FIGUR 13 die Anordnung nach FIGUR 12 nach dem Pressen,
FIGUR 14 einen vertikalen Schnitt durch ein Gehäuse mit Filtern aus keramischen Elementen,
FIGUR 15 eine Platte aus Metallfolien mit dazwischen angeordnetem keramischen Stoff vor dem Pressen,
FIGUR 16 die Anordnung nach FIGUR 15 nach dem Pressen,
FIGUR 17 den Einbau der gepreßten und gesin¬ terten Körper in einem schmelzge¬ gossenem oxidischen Stein. Beste Wege zur Ausführung der Erfindung.
Figur 1 zeigt die Ausgangssituation zum Herstellen eines keramischen bzw. metall-keramischen Körpers. Zwischen die beiden Metallfolien 11 und 12 mit einer Stärke von 0,5 bis 200 μm, vorzugsweise aus Aluminium oder Zirkonium, wird ein keramischer Stoff 13 einge¬ bracht, der nach dem Ausführungsbeispiel aus Körnern annähernd gleicher Korngröße besteht. Es kann aber auch, abhängig von der gewünschten Porosität, ein Korn¬ aufbau mit unterschiedlichen Körnern vorhanden sein. Die erfindungsgemäße Lösung, in der Dicke geringe Verbundkörper zu schaffen, läßt hier eine sehr feine Abstufung zu.
Figur 2 zeigt den Verbund nach dem Pressen. Er hat nach dem Ausführungsbeispiel eine Gesamtdicke von 100 μm, d. h. 0,1 mm.
Figur 3 zeigt den Verbund nach dem Sintern mit der Maßgabe, daß durch die angegebene Schraffur die Einheit der Metallfolien mit dem keramischen Stoff nach dem Sintern dargestellt werden soll. Abhängig von den Metallfolien und den Bedingungen bei dem Sintern, beispielsweise ob in neutraler oder oxidieren- der Atmosphäre, bleiben die Metallfolien erhalten oder sie oxidieren ebenfalls zu einem keramischen Stoff, so daß dadurch die Bindung zu den zwischen den ur¬ sprünglichen Folien vorhandenen keramischen Stoff verbessert wird. Die chemische Beschaffenheit der
Metallfolien und des keramischen Stoffes, die Folien¬ dicke und Korngröße läßt viele Abwandlungen zu, so daß genau vorherbestimmbare Eigenschaften zu erreichen sind. Figur 4 zeigt die Verformung nach dem Pressen.
Figur 5 zeigt, daß zwischen den äußeren Metall¬ folien 11 und 12 eine mittige Metallfolie 14 angeordnet ist. Die Körner haben unterschiedliche Korngrößen, so die groben Körner 13a und die feinen Körner 13b. Mit dem Pressen durchstoßen die groben Körner 13 teilweise die mittlere Metallfolie oder graben sich teilweise in die Innenseiten der äußeren Metallfolien ein, so daß bereits mit dem Pressen eine innige Verbindung durch Verankerung stattfindet. Diese innige Verbindung wird erhöht durch das Sintern bei der entsprechend angepaßten Sintertemperatur.
Figur 7 zeigt, daß die obere Metallfolie mit zahlreichen Durchbrechungen 15, 15a versehen ist. In gleicher Weise kann auch die untere Metallfolie 11 mit diesen Durchbrechungen versehen sein. Solche Durch¬ brechungen sind vorhanden beispielsweise bei der Ver- wendung der fertigen keramischen oder metall-kerami- schen Körpern als Filter in einem Gehäuse. Nach dem Pressen und Sintern ist bei dem Ausführungsbeispiel eine Gesamtdicke von 400 μm, d. h. 0,4 mm vorhanden.
Figur 8 zeigt das Ausgangsprodukt in der Weise, daß die mittlere Metallfolie 14 mit anfänglichen Durchbrechungen versehen ist, um den Verbund zu er¬ höhen. Figur 9 zeigt nach dem Pressen die innige Verbindung.
Gewerbliche Anwendbarkeit
Figur 10 zeigt steifenförmige Metallfolien 11, 12, zwischen denen keramische Stoffe 13, beispiels¬ weise in Gestalt von Fasern, angeordnet sind. Mit dem Pressen werden die Randbereiche der Folien 11, 12 und 13 miteinander verbunden. Dies kann durch Anwendung eines Klebstoffes erfolgen, der bei Supraleitern somit nicht in der Keramik vorhanden ist. Es kann eine Schweißung oder Lötung erfolgen. Schließlich kann die Verbindung der Metallfolien beim Sintern erfolgen.
Figur 12 zeigt einen im Querschnitt meander- förmigen metallischen Streifen, damit zwischen die Folienlagen der keramische Stoff 13 eingebracht werden kann. Auch bei dieser Ausbildungsform erfolgt mit dem Pressen eine Verbindung der metallischen Lagen. Mit dem Pressen kann auch, wie Figur 13a in einem Querschnitt zeigt, eine Abbiegung zu einer drahtförmigen Ausbildung erfolgen.
Figur 14 zeigt ein Filtergehäuse 16 mit dem Einlaß 17 und dem Auslaß 18. Innen sind die metall¬ keramischen oder keramischen plattenformigen Gebilde 10a, 10b vorhanden. Sofern die Metallfolien erhalten geblieben sind, dann haben sie die in Figur 7 be¬ schriebenen Durchbrechungen 15, 15a, um für das Fil¬ termedium einen entsprechenden Durchlaß zu geben. Es kann aber auch die Maßgabe vorgesehen sein, daß die Metallfolien durch Oxidation zu einem keramischen Stoff geworden sind und dann die Filterstruktur im Bereich der früheren Metallfolien ebenfalls vor¬ handen ist.
Figur 15 zeigt eine Platte 13, die nach dem Pressen, wie Figur 16 zeigt, rinnenartige Vertie¬ fungen 19, 19a und 19b hat, die abwechselnd an der einen und anderen Seite vorhanden sind. Der metall¬ keramische oder keramische Körper 10 ist dann einge¬ baut in einem feuerfesten Stein 20. Vorzugsweise handelt es sich um einen schmelzgegossenen Stein. Figur 17 zeigt die von der Temperatur hoch bean¬ spruchte Vorderseite 23, so daß sich das keramische Gebilde in Längsrichtung des Temperaturgefälles er¬ streckt.
Es können aber auch sonstige räumliche Anordnun¬ gen vorhanden sein.
Da die metall-keramischen und keramischen platten- förmigen Elemente eine vorbestimmte Porosität haben, ergibt sich, daß in dem Stein bei hoher Temperatur¬ beanspruchung auftretende Risse sich nicht fortpflan¬ zen können, weil sie an den porösen Einlagen enden.
Die erfindungsgemäße Lösung läßt es zu, daß die metall-keramischen oder die keramischen Platten, insbesondere als dünne Platten oder Streifen selbst eine Feuerfestigkeit haben, die größer ist als das Steinmaterial, in dem sie eingebaut sind. Durch die Erfindung läßt sich hier eine Auswahl treffen, die optimalen Anforderungen und Besonderheiten entspricht.
Die keramischen oder metall-keramischen Platten oder Drähte bzw. dergleichen Gebilde haben nach dem Sintern eine Gesamtdicke, die vorzugsweise den
Betrag von 1000 μm, d. h. 1 mm nicht übersteigen sollen.

Claims

Patentansprüche
1. Verfahren zum Herstellen von keramischen oder keramisch-metallischen Verbundkörpern, d a d u r c h g e k e n n z e i c h n e t , daß zwischen zwei dünnen Metallfolien (12, 13) ein lockerer keramischer Werkstoff (13) eingebracht und dann dieser Verbund zusammengepreßt und dann gesintert wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Metallfolien (12, 13) einer Dicke von 0,5 bis 200 μm verwendet werden.
3. Verfahren nach den Ansprüchen 1 und 2, d a d u r c h g e k e n n z e i c h n e t , daß Metallfolien aus Aluminium und / oder Zirkonium verwendet werden.
4. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß mit dem Pressen eine grundsätzliche Änderung der Raumform geschaffen wird.
5. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß auf eine erste Metallfolie (13) ein keramischer körniger oder faseriger Stoff (13) aufgebracht, dann auf diesen eine weitere Metallfolie (12) aufgelegt und auf diese Metallfolie ein weiterer keramischer körniger oder faseriger Stoff aufgebracht wird und dieser Verbund bei vorzugsweise Raumtemperatur zusammen¬ gepreßt und anschließend gesintert wird.
6. Verfahren nach den Ansprüchen 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Sinterung in oxidierender Atmosphäre vorgenommen wird.
7. Verfahren nach den Ansprüchen 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Sinterung in neutraler Atmosphäre vorgenommen wird,
8. Verfahren nach den Ansprüchen 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß der langgestreckte Verbundkörper zu einem Draht zusammengepreßt wird.
9. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß der Draht nach seiner Herstellung verdrillt und danach die Sinterung vorgenommen wird.
0- Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß die Lagen (11, 12) aus Metallfolien und des keramischen Stoffes (13) verdrillt und dann das Pressen vorgenommen wird.
11. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Pressen durch Walzen oder in einer Düse vorgenommen wird.
12. Verfahren nach Anspruch 1 und einem oder mehreren der Ansprüche 2 bis 11, d a d u r c h g e k e n n z e i c h n e t , daß die Verbundkörper mit flüssigem Kunststoff, flüssigem Metall oder schmelzflüssigem Oxid behandelt oder umgeben werden.
1 13. Verbundkörper, hergestellt nach einem oder mehreren der Verfahren 1 bis 12, g e k e n n ¬ z e i c h n e t d u r c h eine oder mehrere Metallfolien (11, 12) , zwischen denen ein keramischer Stoff (13) angeordnet ist, mit dem sie durch Pressen und Sintern in inniger Verbindung sind.
14. Verbundkörper nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , daß eine oder mehrere Metallfolien (11, 12) , insbesondere die innenliegende Metallfolie (14) mit Durchbrechungen (15, 15a) ver¬ sehen sind.
15. Verbundkörper nach Anspruch 13, d a d u r c h 5 g e k e n n z e i c h n e t , daß der keramische
Werkstoff (13) aus Körnern von im wesentlichen gleicher Korngröße besteht.
16. Verbundkörper nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , daß zwischen groben
Körnern (13a) annähernd gleicher Korngröße feine Körner (13b) aus einem keramischen Werkstoff angeordnet sind.
°
17. Verbundkörper nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , daß der keramische Werkstoff aus Fasern besteht.
18. Verbundkörper nach Anspruch 14, d a d u r c h 0 g e k e n n z e i c h n e t , daß die Körner (13a, 13b) verschiedener Korngrößen von gleicher oder annähernd gleicher chemischer Beschaffenheit sind.
19. Verbundkörper nach Anspruch 13, d a d u r c h 5 g e k e n n z e i c h n e t , daß er ein supraleiten¬ der Draht ist.
20. Verbundkörper nach Anspruch 19, d a d u r c h g e k e n n z e i c h n e t , daß der Draht aus mindestens zwei Metallfolienstreifen (11, 12) besteht, die an ihren längsverlaufenden Rändern miteinander verbunden sind und den keramischen Werkstoff (13) umschließen.
21. Verbundkörper nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , daß er als gesinterter Körper eine Dicke von weniger als 1,5 mm, vorzugs¬ weise 0,1 mm bis 0,5 mm hat.
22. Verwendung der Verbundkörper nach Anspruch 13 und einem oder mehreren der Ansprüche 14 bis 19, d a d u r c h g e k e n n z e i c h n e t , daß ein oder mehrere Verbundkörper (10, 10a usw.) in einem schmelzgegossenen oxydischen Stein (20) angeordnet sind.
23. Verwendung der Verbundkörper nach Anspruch 13 und einem oder mehreren der Ansprüche 14 bis 18, d a d u r c h g e k e n n z e i c h n e t , daß sie als Filterelemente (10a, 10b) in einem Filter¬ gehäuse (16) angeordnet sind.
24. Verwendung der Verbundkörper nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß sie als supraleitende keramische oder metall¬ keramische Körper Anwendung finden.
EP87906185A 1986-10-01 1987-09-29 Verfahren zum herstellen von keramisch-metallischen verbundkörpern, sowie nach dem verfahren hergestellte verbundkörper und deren verwendung Withdrawn EP0325600A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3633406 1986-10-01
DE19863633406 DE3633406A1 (de) 1986-10-01 1986-10-01 Verfahren zur herstellung geformter teile aus keramischen materialien und keramisch-metallischen verbundmaterialien

Publications (1)

Publication Number Publication Date
EP0325600A1 true EP0325600A1 (de) 1989-08-02

Family

ID=6310814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87906185A Withdrawn EP0325600A1 (de) 1986-10-01 1987-09-29 Verfahren zum herstellen von keramisch-metallischen verbundkörpern, sowie nach dem verfahren hergestellte verbundkörper und deren verwendung

Country Status (4)

Country Link
EP (1) EP0325600A1 (de)
AU (1) AU8027987A (de)
DE (1) DE3633406A1 (de)
WO (1) WO1988002355A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822684A1 (de) * 1988-07-05 1990-01-11 Asea Brown Boveri Elektrischer leiter in draht- oder kabelform, bestehend aus einem ummantelten draht oder aus einem mehrfach-filmentleiter auf der basis eines keramischen hochtemperatur-supraleiters
DE3822685A1 (de) * 1988-07-05 1990-01-11 Asea Brown Boveri Elektrischer leiter in draht- oder kabelform, bestehend aus mindestens zwei einzelheiten in form eines ummantelten drahtes oder eines mehrfachfilamentleiters oder eines koaxialkabels auf der basis eines keramischen hochtemperatur-supraleiters
JPH0676266B2 (ja) * 1988-07-13 1994-09-28 日本碍子株式会社 酸化物超電導焼結体およびその製造方法
US5759219A (en) * 1995-09-22 1998-06-02 Morton International, Inc. Unitary drop-in airbag filters

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922769A (en) * 1974-06-07 1975-12-02 Gte Sylvania Inc Method for making composite wire
US4027377A (en) * 1975-06-25 1977-06-07 Brooks & Perkins, Incorporated Production of neutron shielding material
US4325183A (en) * 1976-09-07 1982-04-20 Welwyn Electric Limited Process for producing an electrical resistor having a metal foil bonded to a ceramic or glass-ceramic substrate
US4411959A (en) * 1981-08-17 1983-10-25 Westinghouse Electric Corp. Submicron-particle ductile superconductor
JPS591681A (ja) * 1982-06-25 1984-01-07 Narumi China Corp 金属体上に絶縁層を有する複合体の製造方法
EP0097944B1 (de) * 1982-06-29 1988-06-01 Kabushiki Kaisha Toshiba Verfahren zum direkten Verbinden von keramischen- und Metallkörpern und derartiger Verbundkörper
JPS5978980A (ja) * 1982-10-22 1984-05-08 臼井国際産業株式会社 金属基体表面とセラミツク素材との接合構造
JPS59182283A (ja) * 1983-03-29 1984-10-17 株式会社東芝 導電性セラミツクス焼結体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8802355A1 *

Also Published As

Publication number Publication date
AU8027987A (en) 1988-04-21
DE3633406A1 (de) 1988-04-14
WO1988002355A1 (en) 1988-04-07

Similar Documents

Publication Publication Date Title
DE2917773C2 (de) Verfahren zur Herstellung großer Körper mit keramischer Wabenstruktur
CH645285A5 (de) Gesinterte, poroese metallplatte und verfahren zu deren herstellung.
DE2912861C2 (de) Verfahren zur Herstellung eines Sinterhartmetallkörpers
DE1471078C2 (de) Verfahren zum verbinden eines sinterhartmetalls mit einem metallischen koerper
DE1951074A1 (de) Verfahren zur Herstellung eines Verbundgebildes aus Metall und einem Kernstueck aus Zellmaterial
DE1583748A1 (de) Herstellung von poly-poroesen Mikrostrukturen
DE1758162A1 (de) Verfahren zum Herstellen von mit einer korrosionsbestaendigen Plattierung versehenen Gegenstaenden aus unedlen Metallen
DE618063C (de) Verfahren zur Herstellung von Verbundmetallen
EP0213410B1 (de) Verfahren zur Herstellung eines metallischen Körpers aus einer insbesondere amorphen Legierung mit zumindest teilweise magnetischen Komponenten
DE2907224C2 (de) Verfahren zur Herstellung eines Verbundkörpers
CH657793A5 (de) Verfahren zur herstellung eines sintererzeugnisses.
EP0325600A1 (de) Verfahren zum herstellen von keramisch-metallischen verbundkörpern, sowie nach dem verfahren hergestellte verbundkörper und deren verwendung
AT406238B (de) Formkörper aus mmc mit modulartigem aufbau
AT148456B (de) Aus mindestens zwei Metallen zusammengesetzter Werkstoff, wie Verbund- oder Formkörper, insbesondere für elektrische Zwecke, sowie Verfahren zu deren Herstellung.
DE3421858C2 (de)
DE3537672C1 (en) Filter body
DE858835C (de) Vorrichtung zum Filtrieren und Entkeimen von Fluessigkeiten und Gasen aller Art
DE2911582C2 (de)
DE1608121A1 (de) Korrosionsbestaendige Kupfer-Nickel-Legierung
AT211219B (de) Basischer feuerfester Stein mit mitverpreßten Außenplatten und Innenplatten
DE19745283C2 (de) Verfahren zur Herstellung von Bauteilen aus Pulvern
DE10205877A1 (de) Keramisches Vielschichtbauelement, Verfahren zu dessen Herstellung und Haltevorrichtung
DE2636279B1 (de) Verfahren zur Herstellung von poroesen Anodenkoerpern
DE2139386C3 (de) Verfahren zum Herstellen eines Reibkörpers
DE102007004243B4 (de) Verfahren zum Herstellen eines Verbundkörpers und Verbundkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900403