EP0323990A1 - Verfahren zum herstellen eines bezüglich seiner dielektrischen, pyroelektrischen und/oder magnetischen eigenschaften vorgebbaren materials und dessen verwendung - Google Patents

Verfahren zum herstellen eines bezüglich seiner dielektrischen, pyroelektrischen und/oder magnetischen eigenschaften vorgebbaren materials und dessen verwendung

Info

Publication number
EP0323990A1
EP0323990A1 EP88905815A EP88905815A EP0323990A1 EP 0323990 A1 EP0323990 A1 EP 0323990A1 EP 88905815 A EP88905815 A EP 88905815A EP 88905815 A EP88905815 A EP 88905815A EP 0323990 A1 EP0323990 A1 EP 0323990A1
Authority
EP
European Patent Office
Prior art keywords
material produced
predetermined
dimensions
pyroelectric
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88905815A
Other languages
German (de)
English (en)
French (fr)
Inventor
Peter Marquardt
Günter NIMTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Deutsche Aerospace AG
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace AG, Licentia Patent Verwaltungs GmbH filed Critical Deutsche Aerospace AG
Publication of EP0323990A1 publication Critical patent/EP0323990A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • H10N15/15Thermoelectric active materials

Definitions

  • the invention relates to a method for materials according to the preambles of claims 1 and 2 and their use.
  • the invention is based on knowledge about the electrical conductivity of mutually insulated, electrically conductive particles, for example indium crystals, with diameters in the order of 1 nm to 1000 nm, which are in a non-conductive or diamagnetic material; this conductivity decreases rapidly with decreasing diameter approximately proportional to its third power, as shown in FIG. 1 for indium at a temperature of approximately 300 K., where x is the diameter and ⁇ is the electrical conductivity. Note the double logarithmic scale and the area of the experimental measurements designated "experiment".
  • the object of the invention is to make these phenomena technically usable in the production of materials with certain dielectric and / or magnetic properties that are desired in a wide range.
  • claims 1 and 2 specify the measures for preselecting predetermined dielectric, pyroelectric and magnetic properties in the production of materials separately from one another. While the subclaims deal with exemplary uses of these materials, although there are other uses of the same.
  • Mesoscopic here means a range of dimensions between macroscopic and microscopic, ie approximately between 1 nm and 1000 nm.
  • the result is a heterogeneous medium in the form of an indium colloid with, for example, 0.5% by volume of the metal components.
  • This can be increased to a filling factor f of approximately 0.20 to approximately 0.35 by subsequent centrifugation at approximately 70,000 times the acceleration due to gravity. If the colloids are heated, the particles start to aggregate, which leads to particle sizes of several 100 nm depending on the heating temperature and the heating time. Deep-melting materials are particularly suitable for this.
  • the particle growth can be arbitrarily interrupted by subsequent cooling and continued by reheating the samples in the sense of FIG. 2.
  • Other suitable systems are e.g. B. metal or semiconductor particles in a ceramic or plastic matrix (Trägermat.erial).
  • FIG. 3 shows the X-ray intensity J ⁇ k (in arbitrary units) as a function of the deflection vector k for an indium colloid with a fill factor of approximately 0.25, namely on the one hand square measuring points (curve A) in front of the Heating and on the other hand curve B after heating. If a sample with less indium than in (3) is used, curve C (triangular measuring points) results
  • FIG. 4 serves to explain the conductivity measurement of mesoscopic metal particles.
  • a microwave method is used for this.
  • the complex dielectric function and thus the electrical conductivity is obtained from the microwave absorption and the phase shift of a multilayer test specimen (sandwich).
  • the oscillation time of the used microwave measurement frequency of 10 GHz is 10 - 10 s and is therefore more than four orders of magnitude greater than a typical relaxation time of a metal at room temperature, whereby the measured microwave conductivity also approximately applies to direct current.
  • the effective conductivity of the entire heterostructure is measured taking into account the dielectric data of the pure oil matrix.
  • this method can also be used to measure components in other insulating matrices, for example water in oil in the form of a microeraulsion, indium in oil in colloidal form or platinum in ceramic.
  • FIG. 4 means ( ) the effective complex dielectric function of the metal particles in oil that is filled in Teflon washers.
  • This Teflon has a dielectric function ( ⁇ T ).
  • the size of the particles it is possible to specify any value of their conductivity that lies between that of insulators and metal, for example in the production of microwave absorbers.
  • the method according to the invention can also be used advantageously for materials that use resistors or other line components (capacitors, Transformers) in VLSI circuits and integrated microwave circuits.
  • the material produced according to the invention can optionally be selected according to the desired absorption factor, reflection factor and frequency range. This can be used in the directional antenna technology in many applications with great advantage an antenna cover, for. B. build a radome of a radar antenna, which is transparent for the operating wavelength, but not for enemy radiation incident in the military.
  • a radar camouflage is possible with the material produced by the method according to the invention in such a way that quasi total absorption takes place, but this can result in "hole formation" in large surroundings in an environment with radar reflecting properties, which makes the camouflage illusory.
  • it is more expedient to achieve certain radar echo structures for example to simulate a reflection image of the surrounding space or to consciously produce radar targets.
  • components such as, for. B. capacitors and resistors in a small space.
  • the invention can advantageously be used for components for beam guidance and beam filtering, such as, for example, because of the selectable dielectric properties.
  • FIG. 5 have uncooled pyroelectric IR detectors according to the prior art at low signal frequencies f a high detectivity D *, which, however, is disadvantageous
  • the frequency drop of D * can advantageously be shifted towards higher frequencies (dashed curve).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Aerials With Secondary Devices (AREA)
EP88905815A 1987-07-14 1988-07-08 Verfahren zum herstellen eines bezüglich seiner dielektrischen, pyroelektrischen und/oder magnetischen eigenschaften vorgebbaren materials und dessen verwendung Withdrawn EP0323990A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3723258 1987-07-14
DE3723258 1987-07-14
DE3802150A DE3802150A1 (de) 1987-07-14 1988-01-26 Verfahren zum herstellen eines bezueglich seiner dielektrischen, pyroelektrischen und/oder magnetischen eigenschaften vorgebbaren materials und dessen verwendung
DE3802150 1988-01-26

Publications (1)

Publication Number Publication Date
EP0323990A1 true EP0323990A1 (de) 1989-07-19

Family

ID=25857581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88905815A Withdrawn EP0323990A1 (de) 1987-07-14 1988-07-08 Verfahren zum herstellen eines bezüglich seiner dielektrischen, pyroelektrischen und/oder magnetischen eigenschaften vorgebbaren materials und dessen verwendung

Country Status (4)

Country Link
EP (1) EP0323990A1 (ja)
JP (1) JPH02500869A (ja)
DE (1) DE3802150A1 (ja)
WO (1) WO1989000754A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767492A (zh) * 2018-04-25 2018-11-06 北京邮电大学 可调太赫兹宽带吸波器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934811C1 (ja) * 1989-10-19 1991-04-25 Feldmuehle Ag, 4000 Duesseldorf, De
DE3938890C1 (ja) * 1989-11-24 1990-10-18 Feldmuehle Ag, 4000 Duesseldorf, De
DE4008215A1 (de) * 1990-03-15 1991-09-19 Daimler Benz Ag Basismaterial zur erzeugung von elektrischen leitstrukturen
DE4011580A1 (de) * 1990-04-10 1991-10-17 Feldmuehle Ag Herstellung von materialien mit verbesserten dielektrischen eigenschaften
DE4100990C2 (de) * 1991-01-15 1995-06-01 Fraunhofer Ges Forschung Verfahren zur Herstellung von dielektrischen Komposit-Materialien und deren Verwendung
DE4201871A1 (de) * 1991-03-07 1992-09-10 Feldmuehle Ag Stora Bauteil zur absorption elektromagnetischer wellen und seine verwendung
DE4223177C2 (de) * 1992-07-15 1994-06-16 Cerasiv Gmbh Werkstoff zur Absorption und Abschirmung elektromagnetischer Wellen, Verfahren zu dessen Herstellung und dessen Verwendung
DE4300197C2 (de) * 1993-01-07 2000-05-11 Zeiss Carl Jena Gmbh Bewegungseinrichtung
JP2956875B2 (ja) * 1994-05-19 1999-10-04 矢崎総業株式会社 電磁遮蔽用成形材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411947A (en) * 1964-06-29 1968-11-19 Ibm Indium oxide resistor composition, method, and article
US3385799A (en) * 1965-11-09 1968-05-28 Du Pont Metalizing compositions
DE1760260A1 (de) * 1968-04-25 1971-06-03 Bayer Ag Verfahren zur Herstellung von mit Polyurethanen beschichteten Textilien
US3746568A (en) * 1971-03-11 1973-07-17 Owens Illinois Inc Noble metal glass binder compositions and methods of using same
JPS5326996A (en) * 1976-08-26 1978-03-13 Tokyo Keiki Kk Compound dielectric body
US4289534A (en) * 1977-05-03 1981-09-15 Graham Magnetics, Inc. Metal powder paint composition
JPS5461239A (en) * 1977-10-25 1979-05-17 Kansai Paint Co Ltd Electric wave absorbing coating composition
CA1129560A (en) * 1978-09-01 1982-08-10 E. I. Du Pont De Nemours And Company Thick film silver conductor compositions for fine line electrodes
GB2074170B (en) * 1980-04-21 1984-03-14 Raychem Corp Electrically conductive polymer compositions
JPS60184577A (ja) * 1984-03-02 1985-09-20 Seiko Instr & Electronics Ltd 導電性高分子樹脂電着組成物
US4604229A (en) * 1985-03-20 1986-08-05 Ferrofluidics Corporation Electrically conductive ferrofluid compositions and method of preparing and using same
DE3525803A1 (de) * 1985-07-19 1987-01-22 Bayer Ag Verfahren zur herstellung von russgefuellten polycarbonatformkoerpern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8900754A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767492A (zh) * 2018-04-25 2018-11-06 北京邮电大学 可调太赫兹宽带吸波器
CN108767492B (zh) * 2018-04-25 2020-12-04 北京邮电大学 可调太赫兹宽带吸波器

Also Published As

Publication number Publication date
WO1989000754A1 (en) 1989-01-26
JPH02500869A (ja) 1990-03-22
DE3802150A1 (de) 1989-01-26
DE3802150C2 (ja) 1992-04-09

Similar Documents

Publication Publication Date Title
US7794629B2 (en) Composite materials
EP2087323B1 (de) Vorrichtung und verfahren zur bestimmung zumindest eines parameters eines mediums
DE19733574C2 (de) Supraleitender Hybrid-Resonator für den Empfang für NMR-Signalen
DE3802150C2 (ja)
US5096551A (en) Metallized tubule-based artificial dielectric
EP0657733A2 (de) Verfahren und Vorrichtung zur Messung der Dielektrizitätskonstante von Probenmaterialien
Venkataraman et al. Analysis of arbitrarily oriented microstrip transmission lines in arbitrarily shaped dielectric media over a finite ground plane
DE102012200726A1 (de) Schwebe-Substrat-Schaltungen und Kernmagnetische-Resonanz-Sonden, die dieselben verwenden
DE102006053472A1 (de) HF-Resonatorsystem und Verfahren zum Abstimmen eines HF-Resonatorsystems
WO1993016393A1 (de) Verfahren zur qualitätsbestimmung eines einzelnen supraleitenden filmes und vorrichtung zur durchführung dieses verfahrens
DE102006014106B3 (de) Vorrichtung und Verfahren zur Messung der Dichte eines Plasmas
Malyuskin et al. Near field enhancement and subwavelength imaging using resonantly loaded apertures
O'Brien et al. Miniaturization of microwave components and antennas using 3D manufacturing
Jafari et al. Frequency-selective surface to determine permittivity of industrial oil and effect of nanoparticle addition in x-band
EP0584866A2 (de) Abschirmhülle für SQUID-Magnetometer gegen elektromagnetische Störfelder
DE4014377A1 (de) Hochfrequenzverstaerker mit langsamwellen-verzoegerungsleitung
Pottel et al. Measurements for determining the dielectric relaxation rate of water and of an aqueous solution at high pressures
Ebrahimi et al. Radar cross-section reduction by tunable low-pressure gas discharge plasma
DE4213003C2 (de) Dielektrische Keramiken und elektronische Teile, die diese verwenden
CN104409804A (zh) 一种具有开关特性的频率选择表面和设计方法
DE60129854T2 (de) Magnetmaterial mit Maximum-Komplex-Permeabilität in quasi-Mikrowellenbereich und Herstellungsverfahren
DE1566148A1 (de) Diagnostikeinrichtung
Chen et al. Electrical conductivity of random silver-potassium chloride composites
Skuridin et al. Investigation of Filtering and Sensing Properties of Complementary Metamaterial Resonant Cells by Computer Simulation
Sidorenko et al. Radio-Absorbing Composite Materials Based on La0. 7Sr0. 3MnO3

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH

17Q First examination report despatched

Effective date: 19920128

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFUNKEN SYSTEMTECHNIK AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE AEROSPACE AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19930508