EP0318903B1 - Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe - Google Patents

Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe Download PDF

Info

Publication number
EP0318903B1
EP0318903B1 EP88119848A EP88119848A EP0318903B1 EP 0318903 B1 EP0318903 B1 EP 0318903B1 EP 88119848 A EP88119848 A EP 88119848A EP 88119848 A EP88119848 A EP 88119848A EP 0318903 B1 EP0318903 B1 EP 0318903B1
Authority
EP
European Patent Office
Prior art keywords
flow
hydrogenation
gas
batch
hydrogenation gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88119848A
Other languages
English (en)
French (fr)
Other versions
EP0318903A3 (en
EP0318903A2 (de
Inventor
Wolfdieter Klein
Claus Strecker
Alfons Feuchthofen
Ulrich Bönisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel Technologie und Automatisierung GmbH
Original Assignee
Veba Oel Technologie und Automatisierung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel Technologie und Automatisierung GmbH filed Critical Veba Oel Technologie und Automatisierung GmbH
Publication of EP0318903A2 publication Critical patent/EP0318903A2/de
Publication of EP0318903A3 publication Critical patent/EP0318903A3/de
Application granted granted Critical
Publication of EP0318903B1 publication Critical patent/EP0318903B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions

Definitions

  • the invention relates to a process for the hydrogenation of liquid carbonaceous feedstocks such as heavy oils, oil residues, top or vacuum residues, syncrude from oil shale, tar sands, tars and pitches from hard coal or lignite, with hydrogen-containing gases as hydrogenation gas under the conditions of a phase-phase hydrogenation at elevated temperature and increased pressure in the presence of an additive or a catalyst with a downstream hot separator stage with separate heating of a feed stream formed from the feed materials and a partial stream of the hydrogenation gas and a second partial stream of the hydrogenation gas.
  • the feedstocks are liquid either at normal temperature or at elevated temperatures.
  • Temperatures in the bottom phase reactor of approximately 400 to 500 ° C. are typical, and the process pressure can be selected between 150 to 1200 bar.
  • the invention is based on a method as specified above, in which heavy oil is fed as a feed product to a preheater and in which a partial flow of the total amount of hydrogenation gas required in a gas heat exchanger through which the hot separator head product flows precedes the preheated mixture of heavy oil, possibly additive and hydrogenation gas Entry into the bottom phase reactor is added (see. DE 35 23 709 A1).
  • the publication DE 35 05 553 A1 relates to a process for pretreating the feed products for the coal hydrogenation and is otherwise analogous to the above Process according to DE 35 23 709 A1.
  • the feed products are heated to the temperature required for entry into the reaction system of the bottom phase hydrogenation by means of a heating furnace provided in the feed product stream.
  • This heating furnace is one of the most critical components of any sump phase hydrogenation system. This is due in particular to the operating conditions, which are characterized by high hydrogen partial pressure in the pipe, high pipe wall temperatures and high total pressure, and which set operational limits beyond the material that can be used.
  • tip preheaters are associated with procedural disadvantages which result from high pressure loss in the preheater, poor heat transfer and undefined conditions due to the three-phase system present in the tube.
  • the task of the invention is to improve the overall heat management of the process by recovering the heat of reaction.
  • DE 26 51 253 A1 it is stated that in a procedure similar to that at the beginning The specified process of the preheater heated by external heat can be considerably reduced or even completely omitted under certain circumstances, but it is intended that a distillate fraction to be returned to the feed product is reheated in a heat exchanger heated by external heat.
  • the additional heating of the distillates brings the advantage of the significantly lower tendency to coke compared to the heating of the coal pulp in a preheater.
  • the above object is achieved in the method of the type mentioned above in that the hot separator head product emits its heat to the feed streams mentioned in indirect heat exchange and that by further heating the separately conducted part of the hydrogenation gas in a hydrogenation gas heater and then combining it with the indirect heat exchange heated feed stream the necessary inlet temperature is reached in the bottom phase reactor.
  • the specified method is suitable for hydrating liquid carbon-containing feedstocks such as heavy oils, oil residues (top and vacuum residues), syncrude from e.g. B. oil shale, tar sands, heavy oils, tars and pitches from hard coal or lignite u. to process.
  • liquid carbon-containing feedstocks such as heavy oils, oil residues (top and vacuum residues), syncrude from e.g. B. oil shale, tar sands, heavy oils, tars and pitches from hard coal or lignite u. to process.
  • the present process is also advantageous Oils or heavy mineral oil residues
  • Mixtures of finely ground coal and the feedstocks provided according to the invention are supplied as so-called foreign oils ("co-processing").
  • Such a procedure has the advantage that the recycle streams required for the mashing of the finely ground coal are largely or completely eliminated.
  • Weight ratios of coal and foreign oil of 1 to 5 to 4 to 5 are preferred. All types of coal which can be economically hydrogenated, for example, are suitable as the coal to be used.
  • the process can be designed by recovering the thermal energy of the reaction products as far as possible so that a hydrogenation gas heater is sufficient for a separate partial flow of the hydrogenation gas in order to apply the start-up temperature of the hydrogenation reaction required when starting up into the hydrogenation reactor in the bottom phase and to compensate for heat losses .
  • This result could only be achieved by optimizing the process control of the reaction products and the feed products in countercurrent, and it is surprising that the thermal energy to be supplied can be introduced into the process via a partial stream of the hydrogenation gas without external heating of the liquid or solid-liquid feed products.
  • Circulation furnaces come as hydrogenation gas heaters, hereinafter also referred to as hydrogenation gas furnaces, but preferably also radiation ovens, in which heating to a temperature of 300 to 650 ° C., preferably 490 to 550 ° C. takes place.
  • stream (9) in the downstream direction comes into heat exchange relationship with the feed stream (3) in the heat exchanger (20) and the partial stream of the hydrogenation gas (5) in the heat exchanger (23) and passes through a reactor (27) for hydrogenation in the gas phase at a fixed bed contact .
  • the product stream refined in reactor (27) passes as stream (10) heat exchanger (19) and heat exchanger (22) in heat exchange relationship with stream (3) or stream (5) and an intermediate separator (28) with separation of a hot oil fraction (11).
  • the residual stream (12) drawn off by the separator (28) gives the rest of the heat exchangers (18) and (21) for heating the Use products utilizable heat to electricity (3) and electricity (5) and is fed to a cold separator (29), in which a separation of waste water and exhaust gas as well as the recovery of a cold oil fraction (13) and recycling of the cycle hydrogenation gas as stream (15) via compressor (30) done in the process.
  • part of the circulating gas stream (16) is advantageously kept available as a quench gas stream and fed in if necessary.
  • a gas scrubber can be provided in the usual way for working up the circulating hydrogen gas fraction. Such a work-up ensures a sufficient hydrogen partial pressure in the hydrogenation gas system by removing the C1 to C4 components which are soluble in the gas scrubbing by means of washing liquid.
  • the separate partial stream from the total amount of hydrogenation gas to be used can make up 20 to 95, preferably 40 to 80% of the total amount of hydrogenation gas required.
  • the stream of feedstocks (1) consisting of a suspension with the additive or catalyst is mixed with a partial stream of the hydrogenation gas (2) composed of cycle hydrogenation gas, stream (15), via compressor (30) while feeding in fresh hydrogen, stream (17). combined to form stream (3) and preheated to the conditions of stream (4) by means of indirect heat exchange in the apparatuses (18), (19) and (20).
  • the separate hydrogenation gas stream (5) is also preheated in indirect heat exchange in the apparatuses (21), (22) and (23) and heated to the necessary temperature in hydrogenation gas heater (24), so that in the mixture of material stream (6) with the Material flow (4) the required reactor inlet temperature in reactor (25) for stream (7) is reached.
  • the desired products are obtained in the reactor (25) or in a cascade of reactors connected in series, which are separated in the hot separator (26) into a residue stream (8) and into a top stream (9).
  • the top stream (9) is used for preheating in countercurrent to the feed stream (3) and hydrogenation gas stream (5) in the aforementioned apparatuses (18), (19), (20), (21), (22) and (23).
  • the circuit shown in the figure provides an integrated gas phase reactor (27) for the purpose of refining and further removal, in particular of the O, S and N-containing heteroatom components.
  • Gas phase reactor (27) is advantageously connected between apparatus (23) and apparatus (19).
  • the products condensed in the heat exchangers due to the removal of heat are collected in intermediate separators (28) and in cold separators (29).
  • the condensates are discharged from the high-pressure circuit as hot oil (11) and cold oil (13). After the hot oil has been drawn off, water can be injected in order to avoid the salinization of the downstream heat exchangers.
  • the water of reaction formed in the hydrogenation process is optionally separated together with the injection water in the cold separator (29) and discharged as stream (14) from the high-pressure circuit. It contains u. a. the heteroatom compounds removed by refining in the form of the simple hydrogen compounds H2S and in particular NH3 dissolved in the waste water.
  • the temperature in the intermediate separator can be freely selected within a certain range.
  • the residual gas going overhead in the cold separator (29) is returned with a circuit compressor (30), if necessary after a certain proportion has been discharged.
  • the return gas is cold gas as a stream for temperature control of the reactors and the hot separator (16) taken.
  • the fresh hydrogen required for the reaction is added as stream (17). Provision can also be made to add stream (2) as a fresh hydrogen stream.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe wie schwere Öle, Ölrückstände, Top- oder Vakuumrückstände, Syncrude aus Ölschiefer, Teersanden, Teeren und Pechen aus Steinkohle oder Braunkohle, mit wasserstoffhaltigen Gasen als Hydriergas unter den Bedingungen einer Sumpfphasenhydrierung bei erhöhter Temperatur und erhöhtem Druck in Anwesenheit eines Additivs oder auch eines Katalysators mit nachgeschalteter Heißabscheiderstufe unter getrennter Aufheizung eines aus den Einsatzstoffen und einem Teilstrom des Hydriergases gebildeten Einsatzstroms und eines zweiten Teilstroms des Hydriergases. Die Einsatzstoffe sind entweder bei Normaltemperatur oder bei erhöhten Temperaturen flüssig.
  • Hierbei sind Temperaturen im Sumpfphasereaktor von etwa 400 bis 500 °C typisch, und der Verfahrensdruck kann zwischen 150 bis 1200 bar gewählt werden.
  • Die Erfindung geht aus von einem Verfahren wie oben angegeben, bei dem Schweröl als Einsatzprodukt einem Vorheizer zugeführt wird und bei welchem ein in einem von dem Heißabscheiderkopfprodukt durchströmten Gaswärmetauscher aufgeheizter Teilstrom der insgesamt erforderlichen Hydriergasmenge dem vorgewärmten Gemisch von Schweröl, ggf. Additiv und Hydriergas vor Eintritt in den Sumpfphasereaktor zugegeben wird (vgl. DE 35 23 709 A1).
  • Die Druckschrift DE 35 05 553 A1 betrifft ein Verfahren zur Vorbehandlung der Einsatzprodukte für die Kohlehydrierung und ist ansonsten analog dem o. a. Verfahren nach der Druckschrift DE 35 23 709 A1.
  • Bei den bekannten Verfahren der eingangs angegebenen Art erfolgt die Aufheizung der Einsatzprodukte auf die für den Eintritt in das Reaktionssystem der Sumpfphasenhydrierung erforderliche Temperatur mittels eines im Einsatzproduktstrom vorgesehenen Aufheizofens. Dieser Aufheizofen ist eines der kritischsten Bauteile jeder Sumpfphasehydrieranlage. Dies liegt insbesondere an den, durch hohen Wasserstoffpartialdruck im Rohr, hohe Rohrwandtemperaturen und hohen Gesamtdruck gekennzeichneten, Betriebsbedingungen, die über den einsetzbaren Werkstoff betriebstechnische Grenzen setzen.
  • Nach "Die katalytische Druckhydrierung von Kohlen, Teeren und Mineralölen", Springer-Verlag, Berlin/Göttingen/Heidelberg 1950, Seite 232, erfolgte grundsätzlich die Aufheizung der Reaktionsteilnehmer in Wärmetauschern und im Spitzenvorheizer. Als Wärmeaustauscher wurden generell "Bündel"-Regeneratoren verwendet, und für die Spitzenvorheizung mittels des extern beheizten Aufheizofens wurden haarnadelförmige Druckrohre von 90 bzw. 110 mm lichtem Durchmesser und etwa 30 000 mm Gesamtlänge eingesetzt, wobei der Produkteinsatzstrom innerhalb der mittels Wälzgasbeheizung geheizten Rohre geführt wurde.
  • Die durch eine Mehrphasenströmung von Gasen und Dämpfen, Flüssigkeit sowie Feststoff im Rohr gekennzeichneten Verfahrensbedingungen ziehen erhebliche Unsicherheiten bei der Auslegung des Aufheizofens sowohl bei der Berechnung des Druckverlustes als auch des Wärmetransportes nach sich.
  • Der Einsatz derartiger Spitzenvorheizer ist mit verfahrenstechnischen Nachteilen behaftet, die sich aufgrund hohen Druckverlustes in dem Vorheizer, schlechter Wärmeübertragung sowie undefinierter Zustände wegen des im Rohr vorhandenen Dreiphasensystems ergeben.
  • Betriebstechnische Nachteile resultieren aus der Neigung zur Verkrustung der Innenseite der Ofenrohre und aus Verkokungsreaktionen des Produktes in den Rohren. Damit verbunden sind eine Laufzeitbegrenzung der Hydrieranlage insgesamt sowie auch sicherheitstechnische Probleme wie das Auftreten von sogenannten "hot spots", die zu Rohrreißern führen können.
  • Demgemäß besteht die Erfindungsaufgabe darin, die gesamte Wärmeführung des Prozesses unter Rückgewinnung der Reaktionswärme verfahrenstechnisch zu verbessern. In der Druckschrift DE 26 51 253 A1 ist zwar angegeben, daß bei einer Verfahrensweise ähnlich wie bei dem eingangs angegebenen Verfahren der durch Fremdwärme beheizte Vorerhitzer erheblich verkleinert oder unter Umständen sogar ganz weggelassen werden könne, dafür ist aber vorgesehen, daß eine in das Einsatzprodukt zurückzuführende Destillatfraktion in einem durch Fremdwärme beheizten Wärmetauscher erneut aufgeheizt wird. Die zusätzliche Aufheizung der Destillate bringe gegenüber der Aufheizung des Kohlebreis in einem Vorerhitzer den Vorteil der wesentlich geringeren Verkokungsneigung.
  • Eine ähnliche Arbeitsweise, nämlich Aufheizung eines Kohle-Öl-Gemisches im Quellbereich von 290 bis 340 °C mittels direkten Wärmeaustausches durch Zugabe eines Teiles des heißen flüssig-festen Hydrierrückstandes und des gesamten bei 390 bis 440 °C erhaltenen Kondensates der gas-dampfförmigen Hydrierprodukte kann auch der Druckschrift EP 0 058 327 A3 entnommen werden.
  • Gemäß der Erfindung wird die genannte Aufgabe bei dem Verfahren der eingangs angegebenen Art dadurch gelöst, daß das Heißabscheiderkopfprodukt im indirekten Wärmetausch seine Wärme an die genannten Einsatzströme abgibt und daß durch weitere Aufheizung des separat geführten Teiles des Hydriergases in einem Hydriergasaufheizer und anschließende Vereinigung mit dem durch indirekten Wärmetausch aufgeheizten Einsatzstrom die notwendige Eintrittstemperatur in den Sumpfphasereaktor erreicht wird.
  • Das angegebene Verfahren ist geeignet, hydrierbare flüssige kohlenstoffhaltige Einsatzstoffe wie schwere Öle, Ölrückstände (Top- und Vakuumrückstand), Syncrude aus z. B. Ölschiefer, Teersanden, Schwerölen, Teeren und Pechen aus Steinkohle bzw. Braunkohle u. dgl. zu verarbeiten.
  • Mit Vorteil werden dem vorliegenden Verfahren aber auch neben den als Einsatzstoffe vorgesehenen schweren Ölen oder schweren mineralölhaltigen Rückständen Gemische von feingemahlener Kohle und der erfindungsgemäß vorgesehenen Einsatzstoffe als sogenannte Fremdöle ("Co-processing") zugeführt. Eine solche Arbeitsweise hat den Vorteil, daß die bei der Kohlehydrierung erforderlichen recycle-Ströme zur Anmaischung der feingemahlenen Kohle weitgehend oder ganz entfallen. Bevorzugt werden Gewichtsverhältnisse von Kohle und Fremdöl von 1 zu 5 bis 4 zu 5. Als einzusetzende Kohle kommen alle Sorten in Betracht, die wirtschaftlich hydriert werden können, z. B. typische Gasflammkohlen des Ruhrgebiets.
  • Es wurde gefunden, daß das Verfahren durch weitestgehende Rückgewinnung der Wärmeenergie der Reaktionsprodukte so gestaltet werden kann, daß ein Hydriergasaufheizer für einen separaten Teilstrom des Hydriergases genügt, um die beim Anfahren erforderliche Anspringtemperatur der Hydrierreaktion beim Eintritt in den Hydrierreaktor in der Sumpfphase aufzubringen und Wärmeverluste auszugleichen. Dieses Ergebnis konnte nur durch Optimierung der Verfahrensführung der Reaktionsprodukte und der Einsatzprodukte im Gegenstrom erreicht werden, und es ist überraschend, daß es gelingt, die zuzuführende Wärmeenergie über einen Teilstrom des Hydriergases ohne Fremdbeheizung der flüssigen oder fest-flüssigen Einsatzprodukte in das Verfahren einzubringen.
  • Als Hydriergasaufheizer, nachfolgend auch als Hydriergasöfen bezeichnet, kommen Umwälzöfen, vorzugsweise aber auch Strahlungsöfen, in Betracht, in denen eine Aufheizung auf eine Temperatur von 300 bis 650 °C, vorzugsweise 490 bis 550 °C erfolgt.
  • In weiterer Ausgestaltung des vorgeschlagenen Verfahrens werden der Einsatzstrom (3) durch drei Wärmetauscher (18, 19, 20) und der separat aufzuheizende Hydriergasstrom (5) vor Eintritt in den Hydriergasofen (24) durch drei Wärmetauscher (21, 22, 23) im Gegenstrom zu dem Heißabscheiderkopfprodukt geführt.
  • Bei der Aufteilung der Gesamt-Hydriergasmenge auf die beiden Teilströme kann auch so vorgegangen werden, daß für den Einsatzstrom Frischwasserstoff als Feed und für den zweiten Teilstrom des Hydriergases das Kreislaufhydriergas vorgesehen werden.
  • Dabei tritt Strom (9) in Abstromrichtung nacheinander mit dem Einsatzstrom (3) in Wärmetauscher (20) und dem Teilstrom des Hydriergases (5) in Wärmetauscher (23) in Wärmetauschbeziehung und durchläuft einen Reaktor (27) zur Hydrierung in der Gasphase an einem Festbettkontakt. Der in Reaktor (27) raffinierte Produktstrom durchläuft als Strom (10) Wärmetauscher (19) und Wärmetauscher (22) in Wärmetauschbeziehung mit Strom (3) bzw. Strom (5) sowie einen Zwischenabscheider (28) mit Abtrennung einer Heißölfraktion (11). Der von Abscheider (28) abgezogene Reststrom (12) gibt in den Wärmetauschern (18) und (21) seine restliche für die Aufheizung der Einsatzprodukte verwertbare Wärme an Strom (3) und Strom (5) ab und wird einem Kaltabscheider (29) zugeführt, in dem eine Abtrennung von Abwasser und Abgas sowie die Gewinnung einer Kaltölfraktion (13) und Rückführung des Kreislaufhydrierungsgasanteils als Strom (15) über Kompressor (30) in den Prozeß erfolgen.
  • Zur Temperaturregelung im Sumpfphasereaktor (25) und im Heißabscheider (26) wird mit Vorteil ein Teil des Kreislaufgasstroms (16) als Quenchgasstrom zur Verfügung gehalten und im Bedarfsfall eingespeist.
  • Im Anschluß an den Kaltabscheider (29) kann in üblicher Weise eine Gaswäsche zur Aufarbeitung des Kreislaufhydriergasanteiles vorgesehen werden. Durch eine derartige Aufarbeitung wird durch Entfernung der in der Gaswäsche mittels Waschflüssigkeit löslichen C₁- bis C₄-Bestandteile ein ausreichender Wasserstoffpartialdruck in dem Hydriergassystem gewährleistet.
  • Der separate Teilstrom aus der insgesamt einzusetzenden Hydriergasmenge kann 20 bis 95, vorzugsweise 40 bis 80 % der insgesamt erforderlichen Hydriergasmenge ausmachen.
  • Das vorliegende Verfahren wird nachfolgend anhand des Schemas der Zeichnung mit den angegebenen Bezugszeichen weiter erläutert.
  • Der aus einer Suspension mit dem Additiv bzw. Katalysator bestehende Strom der Einsatzstoffe (1) wird mit einem aus Kreislaufhydriergas, Strom (15), über Kompressor (30) unter Einspeisung von Frischwasserstoff, Strom (17), zusammengesetzten Teilstrom des Hydriergases (2) zu Strom (3) vereinigt und mittels indirektem Wärmeaustausch in den Apparaten (18), (19) und (20) auf die Bedingungen von Strom (4) vorgewärmt.
  • Der separate Hydriergasstrom (5) wird ebenfalls im indirekten Wärmeaustausch in den Apparaten (21), (22) und (23) vorgewärmt und in Hydriergasaufheizer (24) auf die notwendige Temperatur erhitzt, so daß in der Mischung von Stoffstrom (6) mit dem Stoffstrom (4) die erforderliche Reaktoreintrittstemperatur in Reaktor (25) für Strom (7) erreicht wird.
  • Im Reaktor (25) bzw. einer Kaskade hintereinander geschalteter Reaktoren fallen die gewünschten Produkte an, die im Heißabscheider (26) in einen Rückstandsstrom (8) und in einen Kopfstrom (9) aufgetrennt werden.
  • Der Kopfstrom (9) wird zur Vorwärmung im Gegenstrom zu Einsatzstrom (3) und Hydriergasstrom (5) in den vorgenannten Apparaten (18), (19), (20), (21) , (22) und (23) genutzt. Die in der Figur gezeigte Schaltung sieht einen integrierten Gasphasereaktor (27) zwecks Raffination und weiterer Entfernung insbesondere der O-, S- und N-haltigen Heteroatomanteile vor. Gasphasereaktor (27) ist mit Vorteil zwischen Apparat (23) und Apparat (19) geschaltet.
  • Die aufgrund des Wärmeentzuges in den Wärmetauschern kondensierten Produkte werden in Zwischenabscheider (28) und in Kaltabscheider (29) gesammelt. Die Kondensate werden als Heißöl (11) und Kaltöl (13) aus dem Hochdruckkreislauf ausgeschleust. Nach dem Heißölabzug kann Wasser eingespritzt werden, um die Versalzung der nachgeschalteten Wärmeaustauscher zu vermeiden.
  • Das beim Hydrierprozeß gebildete Reaktionswasser wird gegebenenfalls zusammen mit dem Einspritzwasser im Kaltabscheider (29) abgetrennt und als Strom (14) aus dem Hochdruckkreislauf ausgeschleust. Es enthält u. a. die durch Raffination entfernten Heteroatomverbindungen in Form der in dem Abwasser gelösten einfachen Wasserstoffverbindungen H₂S und insbesondere NH₃.
  • Je nach Auslegung der Wärmeaustauscher bzw. Anordnung des Zwischenabscheiders kann die Temperatur im Zwischenabscheider innerhalb eines bestimmten Bereiches frei gewählt werden.
  • Das in Kaltabscheider (29) über Kopf gehende Restgas wird, ggf. nach Ausschleusung eines gewissen Anteils, mit einem Kreislaufkompressor (30) zurückgeführt. Dem Rückführgas wird zur Temperaturführung der Reaktoren und des Heißabscheiders Kaltgas als Strom (16) entnommen. Der für die Reaktion erforderliche Frischwasserstoff wird als Strom (17) zugegeben. Es kann auch vorgesehen werden, den Strom (2) als Frischwasserstoffstrom zuzugeben.

Claims (7)

  1. Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe wie schwere Öle, Ölrückstände, Top- oder Vakuumrückstände, Syncrude aus Ölschiefer, Teersanden, Teeren und Pechen aus Steinkohle oder Braunkohle, mit wasserstoffhaltigen Gasen als Hydriergas unter den Bedingungen einer Sumpfphasenhydrierung bei einer Temperatur von 400 bis 500 °C und einem Druck von 150 bis 1 200 bar ggf. in Anwesenheit eines Additivs oder auch eines Katalysators mit nachgeschalteter Heißabscheiderstufe unter getrennter Aufheizung eines aus den Einsatzstoffen und einem Teilstrom des Hydriergases gebildeten Einsatzstroms und eines zweiten Teilstroms des Hydriergases, wobei auf einen extern zu beheizenden Einsatzproduktofen zur Aufheizung des Einsatzstroms aus den kohlenstoffhaltigen Einsatzstoffen verzichtet wird, wobei das Heißabscheiderkopfprodukt im indirekten Wärmetausch seine Wärmeenergie an die genannten Einsatzströme abgibt, dadurch gekennzeichnet, daß durch weitere Aufheizung des zweiten Teilstromes des Hydriergases in einem Hydriergasaufheizer und anschließende Vereinigung mit dem durch indirekten Wärmetausch aufgeheizten Einsatzstrom die notwendige Eintrittstemperatur in den Sumpfphasereaktor erreicht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Einsatzstoffe im Gemisch mit feingemahlener Kohle eingesetzt werden.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aufheizung in dem Hydriergasaufheizer auf eine Temperatur von 300 bis 650 °C, vorzugsweise 490 bis 550 °C erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Einsatzstrom (3) durch Wärmetauscher (18), (19), (20) und der separat aufzuheizende zweite Teilstrom des Hydriergases (5) vor Eintritt in den Hydriergasofen (24) durch Wärmetauscher (21), (22), (23) im Gegenstrom zu dem Heißabscheiderkopfproduktstrom (9) geführt werden und daß Strom (9) in Abstromrichtung nacheinander mit dem Einsatzstrom (3) in einem Wärmetauscher (20) und dem Hydriergasstrom (5) in einem Wärmetauscher (23) dem Wärmeaustausch unterworfen wird, einen Reaktor (27) zur Hydrierung in der Gasphase an einem Festbettkontakt durchläuft, als Strom (10) einen Wärmetauscher (19) und einen Wärmetauscher (22) zwecks Wärmetausch mit Strom (3) bzw. Strom (5) sowie einen Zwischenabscheider (28) zur Abtrennung einer Heißölfraktion (11) durchläuft, um als Strom (12) einen Wärmetauscher (18) und einen Wärmetauscher (21) zwecks Wärmetausch mit Strom (3) bzw. Strom (5) sowie einem Kaltabscheider (29) zugeführt zu werden, wo eine Abtrennung von Abwasser und Abgas sowie die Gewinnung einer Kaltölfraktion und Rückführung eines Kreislaufhydriergasanteiles vorgenommen werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Teil des Kreislaufhydriergasstroms als Quenchgasstrom (16) zur Temperaturregelung in den Sumpfphasereaktor (25), den Heißabscheider (26) und in den Gasphasereaktor (27) eingespeist werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß nach dem Kaltabscheider (29) eine Gaswäsche zur Aufarbeitung des Kreislaufhydriergasanteiles vorgsehen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der separat aufgeheizte Teilstrom (5) 20 bis 95, vorzugsweise 40 bis 80 % der insgesamt einzusetzenden Hydriergasmenge ausmacht.
EP88119848A 1987-12-04 1988-11-29 Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe Expired - Lifetime EP0318903B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3741105 1987-12-04
DE19873741105 DE3741105A1 (de) 1987-12-04 1987-12-04 Verfahren zur hydrierung fluessiger kohlenstoffhaltiger einsatzstoffe

Publications (3)

Publication Number Publication Date
EP0318903A2 EP0318903A2 (de) 1989-06-07
EP0318903A3 EP0318903A3 (en) 1990-05-02
EP0318903B1 true EP0318903B1 (de) 1992-11-25

Family

ID=6341871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119848A Expired - Lifetime EP0318903B1 (de) 1987-12-04 1988-11-29 Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe

Country Status (8)

Country Link
US (1) US4983279A (de)
EP (1) EP0318903B1 (de)
JP (1) JPH01207386A (de)
AU (1) AU620056B2 (de)
CA (1) CA1316862C (de)
DE (2) DE3741105A1 (de)
PL (1) PL158169B1 (de)
ZA (1) ZA889071B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738779A (en) * 1996-07-18 1998-04-14 Texaco Inc. Hydrotreating process with two phase flow splitting and heat recovery
US8944069B2 (en) * 2006-09-12 2015-02-03 Vidacare Corporation Assemblies for coupling intraosseous (IO) devices to powered drivers
EP2792729A1 (de) 2013-04-17 2014-10-22 XTLgroup bv Verfahren zur Wasserverarbeitung einer Flüssigkeitszufuhr mit Kohlenwasserstoffen in Kraftstoffkomponenten

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU522767B2 (en) * 1979-08-24 1982-06-24 Gulf Research & Development Company Coal hydrogenation
AU522787B2 (en) * 1979-08-24 1982-06-24 Gulf Research & Development Company Coal liquefaction
DE2936008A1 (de) * 1979-09-06 1981-04-02 Saarbergwerke AG, 6600 Saarbrücken Verfahren zum hydrieren von kohle
DE3105030A1 (de) * 1981-02-12 1982-09-02 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von kohlenwasserstoffoelen aus kohle durch druckhydrierung in zwei stufen
CA1238287A (en) * 1984-08-04 1988-06-21 Werner Dohler Process for the production of reformer feed and heating oil or diesel oil from coal
DE3585485D1 (de) * 1984-09-13 1992-04-09 Ruhrkohle Ag Verfahren zur prozesseinstellung mit waermerueckgewinnung fuer die sumpfphasehydrierung mit integrierter gasphasehydrierung.
DE3505553C2 (de) * 1985-02-18 1987-04-30 Veba Oel Entwicklungs-Gesellschaft mbH, 4650 Gelsenkirchen Verfahren zur Vorbehandlung der Einsatzprodukte für die Kohlehydrierung
DE3523709A1 (de) * 1985-07-03 1987-01-08 Veba Oel Entwicklungs Gmbh Verfahren zur vorbehandlung der einsatzprodukte fuer die schweroelhydrierung

Also Published As

Publication number Publication date
AU2645888A (en) 1989-06-08
DE3741105A1 (de) 1989-06-15
AU620056B2 (en) 1992-02-13
US4983279A (en) 1991-01-08
DE3876219D1 (de) 1993-01-07
EP0318903A3 (en) 1990-05-02
DE3741105C2 (de) 1990-01-04
ZA889071B (en) 1989-08-30
PL158169B1 (en) 1992-08-31
JPH01207386A (ja) 1989-08-21
PL276160A1 (en) 1989-07-24
EP0318903A2 (de) 1989-06-07
CA1316862C (en) 1993-04-27

Similar Documents

Publication Publication Date Title
DE2521189C2 (de) Verfahren zur Herstellung eines methanreichen Gases
DE3504010C2 (de) Verfahren zur Umwandlung von Schwerölrückständen in Wasserstoff und gasförmige und destillierbare Kohlenwasserstoffe
DE2654635B2 (de) Verfahren zur kontinuierlichen Herstellung von Kohlenwasserstoffölen aus Kohle durch spaltende Druckhydrierung
DE69407858T2 (de) Stripping von Fuselöl
DE3344847C2 (de) Schnell-Pyrolyse von Braunkohlen und Anordnung zur Durchführung dieses Verfahrens
DE1545461A1 (de) Verfahren zur Herstellung von ueberwiegend Kohlenmonoxyd und bzw. oder Wasserstoff enthaltenden Gasen aus festen Brennstoffen
DE2259542A1 (de) Verfahren zur umwandlung von kohle
EP0318903B1 (de) Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe
DE3505553C2 (de) Verfahren zur Vorbehandlung der Einsatzprodukte für die Kohlehydrierung
DE2736083A1 (de) Kohleverfluessigung
DE2711105C2 (de) Verfahren zur Umwandlung von Kohle in unter Normalbedingungen flüssige Kohlenwasserstoffe
DE930223C (de) Verfahren und Vorrichtung zum Abbau von organischen Schwefel- und/oder Stickstoffverbindungen
DE60226156T2 (de) Verfahren zur hydrodesulfurierung mit einer strippung und einer fraktionierung
DE3242727A1 (de) Verfahren zur umwandlung von schweroelen oder petroleumrueckstaenden in gasfoermige und destillierbare kohlenwasserstoffe
DD147676A5 (de) Kohleverfluessigungsverfahren mit zusatz fremder mineralien
DE2803985C2 (de) Verfahren zum Verflüssigen von Kohle
DE2936008A1 (de) Verfahren zum hydrieren von kohle
EP0108198B1 (de) Verfahren zum Betreiben eines Reaktors zur Erzeugung von Synthesegas und Vorrichtung zur Durchführung des Verfahrens
EP0207502B1 (de) Verfahren zur Vorbehandlung der Einsatzprodukte für die Schwerölhydrierung
DE2830824A1 (de) Verfahren zum spalten von kohlenwasserstoffen
DE2349362C3 (de) Verfahren zur Erzeugung eines Brenn- oder Heizgases
EP0318694A2 (de) Verfahren zur Hydrierung fester kohlenstoffhaltiger Einsatzstoffe
DE975612C (de) Verfahren zum Vergasen von OEl, insbesondere Heizoel
DE1916301C3 (de) Verfahren zum Regenerieren ruBhaltiger Öle
DE3038309A1 (de) Kohleverfluessigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19900522

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VEBA OEL TECHNOLOGIE GMBH

17Q First examination report despatched

Effective date: 19901109

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921201

REF Corresponds to:

Ref document number: 3876219

Country of ref document: DE

Date of ref document: 19930107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961010

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961011

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961130

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

BERE Be: lapsed

Owner name: VEBA OEL TECHNOLOGIE G.M.B.H.

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST