EP0316978B1 - Heteroporöses Formwerkzeug zur Herstellung von Gussformen aus Formsand und Verfahren zu dessen Herstellung - Google Patents

Heteroporöses Formwerkzeug zur Herstellung von Gussformen aus Formsand und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP0316978B1
EP0316978B1 EP88202375A EP88202375A EP0316978B1 EP 0316978 B1 EP0316978 B1 EP 0316978B1 EP 88202375 A EP88202375 A EP 88202375A EP 88202375 A EP88202375 A EP 88202375A EP 0316978 B1 EP0316978 B1 EP 0316978B1
Authority
EP
European Patent Office
Prior art keywords
form tool
tool according
pore
mold
pored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88202375A
Other languages
English (en)
French (fr)
Other versions
EP0316978A1 (de
Inventor
Walter Dipl.-Ing. Knöss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Priority to AT88202375T priority Critical patent/ATE71862T1/de
Publication of EP0316978A1 publication Critical patent/EP0316978A1/de
Application granted granted Critical
Publication of EP0316978B1 publication Critical patent/EP0316978B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • B22C9/123Gas-hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/06Core boxes

Definitions

  • the invention relates to a gas-permeable mold for the production of casting and core molds from hardenable molding sand, as well as a method for its production and an advantageous use of such tools.
  • Molds made from molding sand are widely used in the manufacture of cast metal parts. These are solid or bowl-shaped shapes that can only be used once.
  • fine-grained molding sand is provided with hardenable binder additives, placed in a mold via a sand inlet opening and cured there.
  • the curing takes place thermally - high energy expenditure - or more recently alternatively also by means of reaction gases, which are pressed under pressure through the molding sand in the molding tool.
  • the gas is pressed into the sand at the sand inlet opening and must exit the molding tool through bores, nozzles or other channels and openings mechanically introduced into the mold wall.
  • the object of the present invention is therefore to produce a mold with a wall which is homogeneously gas-permeable in the micro range.
  • the methods and techniques described at the beginning are thus ruled out.
  • the task is to create a heteroporous mold wall using a suitable combination of techniques known per se for producing porous materials, which has a suitable microporosity in its area adjacent to the molding sand and forms a coarse-pored, skeletal support structure in its adjacent area .
  • the molding tools produced in this way are intended to permit the production of casting molds from molding sand in large numbers, in particular also as a non-massive, shell-shaped casting mold.
  • the surface of the molding tool exposed to the molding sand must be particularly wear-resistant. Pore clogging by molding sand should no longer be a major cause of failure of the molding tool. Pores which may be blocked by molding sand have to regenerate with little effort, i.e. H. get exposed again.
  • the object of creating a gas-permeable molding tool is achieved according to the invention in that the tool consists of heteroporous, open-pore material, the wall of the molding tool having a first, fine-pored layer area of 0.2-2 mm thickness, 75-95, adjacent to the molding sand % theoretical material density and pore diameter ⁇ 50 ⁇ m, to which a second, massive area in the form of a large-pore support skeleton with ⁇ 80% theoretical material density and an average pore diameter> 100 ⁇ m is materially adjacent.
  • the molding tools include both casting and core forms, i. H. both molds for the production of massive and hollow castings.
  • metallic and / or ceramic materials and / or plastics come into consideration as materials for the mold wall.
  • Up to 60,000 sand molds can be produced in a single mold of known designs.
  • the sand is filled into the mold at high speed and under high pressure.
  • the wear requirements for the surface of the mold coming into contact with the molding sand are correspondingly high. This fact must be taken into account by the selection of the material for the fine-pored layer of the molding tool.
  • Wear-resistant steel grades as well as wear-resistant ceramics as well as metallic and non-metallic hard materials e.g. As silicon nitride, boron nitride, titanium carbide, titanium nitride, silicon carbide.
  • the heteroporous wall of the molding tool can either be formed by viscous, foamed and then solidified material, or the wall is formed by means of a powdery starting material to be solidified.
  • the layer of the mold wall that comes into contact with the molding sand can be formed by isostatically pressing powder onto a jig mold corresponding to the casting.
  • the powder, mixed with a volatile solvent, can be applied as a paste or sprayed onto the gauge.
  • Galvanic processes and gas deposition processes (PVD processes) for forming such layers have also proven successful.
  • the layer can be placed on the gauge shape in the form of a flexible metallic or ceramic film.
  • the flexibility of such foils is given by volatile, highly flexible thermoplastic components in solid form during subsequent heat treatment. Otherwise, the foils consist of powdery metals, hard materials or ceramics.
  • the gauge form covered with the layer material is then either foamed or, after embedding in a corresponding outer form, backfilled with coarse-grained powder material and preferably isostatically pressed.
  • the finished composite body is produced by thermal or chemical curing, firing or sintering of the compacted composite materials.
  • the granules pretreated in this way can be poured into a mold and / or pressed and then chemically or thermally cured.
  • Molding tools according to the present invention have a number of advantages.
  • the molding sand enclosed in the molding tool can be pressurized through the heteroporous wall.
  • the gas pressure and time it is possible to effect curing of the enclosed molding sand only in an edge zone to a desired depth.
  • An even finer dosage can be achieved by soaking the mold with a suitable liquid.
  • a defined capillary pressure builds up in the fine pores of the tool wall, which releases the reaction gas only when this pressure is exceeded.
  • the core of the enclosed sand remains free-flowing if the gas is dosed stoichiometrically and can be removed and reused after the edge zone has hardened through the sand inlet opening.
  • a major advantage of molds according to the present invention lies in the possibility of adapting their surface facing the molding sand to the desired casting mold, but the rear surface of which with a few flat surfaces, e.g. B. cuboid or cylindrical. Due to the gas loading of the molding sand through the porous wall of the molding tool, a fine gas layer regularly forms between the wall of the molding tool and the molding sand. This prevents the molding sand from sticking to the mold wall during the sand curing process. The sand mold easily detaches from the mold after the hardening process.
  • Figure 1 shows the design of a half-shell of a mold, in section, and devices for producing the mold according to a preferred method.
  • 1 shows the model plate -1- with the gauge shape for the half-shell of a molding tool.
  • the area of the model plate which gives off the sand inlet opening of the molding tool -1a- during later use is particularly marked.
  • a sealing plate -2- lies on the model plate, or is screwed or clamped to it. It has a central cutout corresponding to the geometric shape of the molding tool to be produced.
  • the fine-pore layer area -3- of the mold adjoining the molding sand has a constant layer thickness over the entire surface area, with the exception of a narrow area at the separating surface of the two half-shells.
  • the open-pore support skeleton -4- is materially adjacent to the fine-pore layer area of the molding tool.
  • the external geometric shape of the mold is specified by a mold box -5- or mold frame screwed onto the model plate.
  • the molding box is not completely filled with the material, but where an air space -6- remains between the support skeleton and the top of the molding box when filling in a flowable or spreadable material.
  • a model plate with the gauge shape of one half of the cast part to be manufactured is first produced from a metallic and / or ceramic material or from plastic by customary methods. In the majority of cases, it is advisable for core and casting molds to produce the mold from two half-shells. After applying a release agent, a sealing plate, preferably made of steel or ceramic, is applied to the model plate and screwed to the model plate. The central recess in the sealing plate is to be dimensioned such that in the area of the separating surface of the two half-shells of the mold between the gauge surface (model plate) and the sealing plate there remains a gap at least as thick as the fine-pored layer area of the mold.
  • the fine-pored layer of the molding tool is first applied to the gauge surface of the model plate - if necessary after applying a release agent on the gauge surface.
  • a paste is spread or sprayed on.
  • the paste consists of fine-grained, corrosion-resistant ceramic powder with an average grain size of 10 - 100 ⁇ m, to which 10 - 20% by volume titanium carbide powder (measured by the proportion of ceramic powder) of approximately the same grain size is added to increase the surface wear resistance of the mold.
  • the powder is mixed with a volatile or thermally evaporable binders processed into a paste. If appropriate, non-volatile metallic and / or non-metallic components and / or pore formers are added to the binder.
  • the fine-pore layer is advantageously applied in several layers until the desired total layer thickness is reached.
  • the layer application according to FIG. 1 also takes place over the edge of the sealing plate.
  • the fine-pored layer applied in this way is dried or cured.
  • a molding box or molding frame according to FIG. 1 is screwed onto the model plate or sealing plate and the material for forming the wall area is introduced into the molding box with an open-pore support skeleton.
  • It is a coarse-grained ceramic powder to which volatile pore-forming materials have been added, such as are used, for example, in the production of porous ceramic filters.
  • the ceramic powder is mixed with volatile binders to form a paste, which is then brushed into the molding box and cured there.
  • the mold is then separated from the model plate and sintered or fired in high-temperature furnaces. In this way, wear-resistant, mountable mold half-shells with flat parting surfaces are obtained.
  • the mold surface does not require any surface treatment.
  • the area of the sand inlet opening of the mold is finally sealed with a pore filler, so that no reaction gas can pass through this area of the mold wall during later operation and the molding sand cannot harden in this area.
  • This pressure jump can still be stabilized by impregnating the molding tool with a suitable sealing liquid, as a result of which a very homogeneous capillary pressure builds up in the pores of the fine-pored layer over the entire surface area of the molding tool.
  • the production of a casting mold from hardenable molding sand using a molding tool according to the present invention then proceeds as follows. After the molding sand has been filled in, the molding tool is pressurized with reaction gas from the outside at a pressure of> 2 bar. This presses the liquid out of the capillaries of the fine-pored layer of the molding tool and reaches the molding sand or an edge zone of the sand mold with precisely metered gas pressure.
  • the core area of the filled molding sand remains free-flowing. It can be removed and reused via the sand inlet after curing is complete. When the gas pressure drops below 2 bar, the barrier liquid is drawn back into the pores of the fine-pored layer by wicking. This means short production times for the individual sand molds as well as low susceptibility to faults and reject rates.
  • a jig mold or model plate is produced for a half-shell of a molding tool. Similarly to Example 1, a sealing plate is clamped onto the model plate.
  • the mold wall material for the fine-pored layer is placed on the gauge shape in the form of a flexible metallic foil.
  • the separately manufactured metallic foil consists of a homogeneous mixture of corrosion-resistant steel particles with a grain size distribution of 10 - 100 ⁇ m, possibly enriched with a few volume percent wear-resistant titanium carbide particles of comparable grain size, possibly supplemented by powdered fillers and pore-forming materials as well as a thermoplastic that evaporates at higher temperatures Plastic.
  • a rubber or plastic "tube” is then clamped to the bottom of the model plate and filled with a coarse-grained powder mixture consisting of alloyed iron powder and pore former - covering the fine-pored layer.
  • the inside of the hose is then evacuated and the hose is closed.
  • the complete unit is cold isostatically pressed.
  • the green compact of the molding tool that is produced in this way can be separated from the model and processed further using customary sintering processes.
  • the sintered molding tool can - if necessary - be mechanically processed and, for example, be dimensionally adapted for inclusion in tool holders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Mold Materials And Core Materials (AREA)
  • Earth Drilling (AREA)

Description

  • Die Erfindung betrifft ein gasdurchlässiges Formwerkzeug zur Herstellung von Guß- und Kernformen aus aushärtbarem Formsand sowie ein Verfahren zu dessen Herstellung und eine vorteilhafte Verwendung derartiger Werkzeuge.
  • Gußformen aus Formsand haben eine große Verbreitung bei der Herstellung von Metallguß-Massenteilen. Es handelt sich dabei um nur einmal verwendbare, massive oder schalenförmige Formen. Zur Herstellung der Gußform wird feinkörniger Formsand mit aushärtbaren Binderzusätzen versehen, über eine Sandeinlaßöffnung in ein Formwerkzeug gebracht und dort ausgehärtet. Die Aushärtung erfolgt thermisch - hoher Energieaufwand - oder in jüngerer Zeit alternativ auch mittels Reaktionsgasen, welche unter Druck durch den Formsand im Formwerkzeug gepreßt werden. Bei letzterer Variante wird das Gas an der Sandeinlaßöffnung in den Sand eingepreßt und muß durch Bohrungen, Düsen bzw. sonstige, mechanisch in die Formwerkzeugwand eingebrachte Kanäle und Öffnungen aus dem Formwerkzeug austreten.
    Nach einer bekannten Ausführung (DE 24 03 199, DE 30 39 394) werden Bohrungen in der Wand des Formwerkzeuges an der Form-Außenseite durch Überdruckventile verschlossen. Derartige Formwerkzeuge haben den Nachteil hoher Werkzeugkosten. Die Ventile verstopfen häufig durch vom Gas mitgerissene Formsandkörner und müssen gereinigt werden. Vor allem aber weist die Formwerkzeugwand keine homogene Gasdurchlässigkeit auf, so daß die Reaktionsgase den Formsand nicht homogen durchströmen können und demzufolge der Formsand nicht gleichmäßig aushärtet. Kernformen lassen sich nur in massiver Ausführung herstellen.
  • In der DE 30 02 939 ist ein Formwerkzeug mit einer Wandung beschrieben, in welche Rippen und Schlitze unterschiedlicher Abmessungen mechanisch eingebracht sind. Das durch einen Einlaß in den Formsand gelangende Reaktionsgas wird durch die Schlitze abgesaugt.
    Doch die Schlitze versanden. Zudem ist die Herstellung sehr kostspielig und erlaubt nicht die Fertigung eines wirklich engmaschigen Netzwerkes von Schlitzen und Bohrungen. Der Sand wird auch bei dieser Ausführung eines Formwerkzeuges vom Reaktionsgas nur ungleichmäßig durchströmt. Weiterhin wird Reaktionsgas im Überschuß verbraucht, das heißt, in weit größeren Mengen als nach der Stöchiometrie der gewünschten Reaktion erforderlich.
  • Es wurde auch bereits gefordert, das Formwerkzeug aus porösen und gasdurchlässigen Werkstoffen herzustellen. Die Umsetzung dieser Forderung scheiterte bisher jedoch an den zu erwartenden technischen Schwierigkeiten, komplexe Geometrien von Gußteilen in einem Formwerkzeug aus porösen Werkstoffen umzusetzen, dabei sowohl dem Anspruch einer homogenen Gasdurchlässigkeit der Wand im Mikrobereich als auch deren mechanische Festigkeit gerecht zu werden und gleichzeitig sicherzustellen, daß der Formsand bei der Druckbeaufschlagung mit Reaktionsgas nicht die Formwerkzeugporen verstopft oder sogar durch die Poren der Formwerkzeugwand hindurchtritt.
  • Die Aufgabe vorliegender Erfindung besteht demzufolge darin, ein Formwerkzeug mit im Mikrobereich homogen gasdurchlässiger Wand herzustellen. Damit scheiden die eingangs geschilderten Verfahren und Techniken aus. Die Aufgabe besteht im einzelnen darin, durch geeignete Kombination von an sich bekannten Techniken zur Herstellung poröser Materialien eine heteroporöse Formwerkzeugwand zu schaffen, welche in ihrem, an den Formsand angrenzenden Bereich eine geeignete Mikroporösität aufweist und in ihrem daran angrenzenden Bereich ein grobporiges, skelettartiges Stützgerüst bildet. Die derart hergestellten Formwerkzeuge sollen die Anfertigung von Gußformen aus Formsand in großer Stückzahl erlauben, insbesondere auch als nichtmassive, schalenförmige Gußform. Dazu muß die dem Formsand ausgesetzte Oberfläche des Formwerkzeuges besonders verschleißfest sein. Porenverstopfung durch Formsand soll keine wesentliche Ausfallursache des Formwerkzeuges mehr sein. Eventuell durch Formsand verstopfte Poren müssen sich mit geringem Arbeitsaufwand regenerieren, d. h. wieder freilegen lassen.
  • Die Aufgabe zur Schaffung eines gasdurchlässigen Formwerkzeuges wird erfindungsgemäß dadurch gelöst, daß das Werkzeug aus heteroporös aufgebautem, offenporigem Material besteht, wobei die Wand des Formwerkzeuges einen ersten, an den Formsand angrenzenden feinporigen Schichtbereich von 0,2 - 2 mm Dicke, von 75 - 95 % theoretischer Materialdichte und Porendurchmesser <50 µm aufweist, an welchen ein zweiter, massiver Bereich in Form eines großporigen Stützskeletts mit <80 % theoretischer Materialdichte und einem mittleren Porendurchmesser >100 µm materialschlüssig angrenzt.
  • Für das gasdurchlässige Formwerkzeug, sowie Verfahren zu deren Herstellung und deren vorteilhafte Verwendung, haben sich Ausführungen entsprechend der Unteransprüche 2 - 10 besonders bewährt.
  • Zu den Formwerkzeugen gehören sowohl Guß- als auch Kernformen, d. h. sowohl Formen zur Herstellung massiver wie innen hohler Gußteile.
  • Zur Erreichung der geforderten Material- und Struktureigenschaften der Formwerkzeugwand entsprechend vorliegender Erfindung stehen dem Durchschnittsfachmann für die Herstellung von porösen Werkstoffen eine Reihe von Einzelverfahren zur Verfügung, welche sinnvoll zu kombinieren sind.
  • Als Materialien für die Formwerkzeugwand kommen grundsätzlich metallische und/oder keramische Materialien und/oder Kunststoffe in Frage. In einem einzigen Formwerkzeug bekannter Ausführungen werden bis zu größenordnungsmäßig 60.000 Sandformen hergestellt. Aus Wirtschaftlichkeitsgründen wird der Sand jeweils mit großer Geschwindigkeit und unter hohem Druck in die Form eingefüllt. Entsprechend hoch sind die Verschleißanforderungen an die mit dem Formsand in Berührung kommende Oberfläche des Formwerkzeuges. Diesem Umstand ist durch die Auswahl des Materials für die feinporige Schicht des Formwerkzeuges Rechnung zu tragen. Es haben sich für diese Schicht verschleißfeste Stahlsorten ebenso bewährt wie verschleißfeste Keramiken sowie metallische und nichtmetallische Hartstoffe, z. B. Siliziumnitrid, Bornitrid, Titankarbid, Titannitrid, Siliziumkarbid.
  • Die heteroporös aufgebaute Wand des Formwerkzeuges läßt sich entweder durch zähflüssiges, aufgeschäumtes und anschließend verfestigtes Material bilden oder aber die Wand wird mittels pulverförmiger, zu verfestigender Ausgangswerkstoff geformt.
  • Die mit dem Formsand in Berührung kommende Schicht der Formwerkzeugwand kann gebildet werden, indem Pulver isostatisch auf eine Lehrenform entsprechend dem Gußteil aufgepreßt wird. Das Pulver kann, mit einem flüchtigen Lösungsmittel vermischt, als Paste auf die Lehrenform aufgetragen bzw. aufgespritzt werden. Es haben sich auch galvanische Verfahren und Gasabscheide-Verfahren (PVD-Verfahren) zur Bildung derartiger Schichten bewährt. Schließlich kann die Schicht in Form einer flexiblen metallischen oder keramischen Folie auf die Lehrenform aufgelegt werden. Die Flexibilität derartiger Folien ist gegeben durch bei späterer Wärmebehandlung flüchtige, in fester Form hochflexible thermoplastische Komponenten. Im übrigen bestehen die Folien aus pulverförmigen Metallen, Hartstoffen oder Keramiken.
  • Die mit dem Schichtmaterial belegte Lehrenform wird anschließend entweder umschäumt oder nach Einbettung in eine entsprechende äußere Form mit grobkörnigem Pulvermaterial hinterfüllt und vorzugsweise isostatisch verpreßt.
  • Der fertige Verbundkörper wird durch thermisches oder chemisches Aushärten, Brennen oder Sintern der kompaktierten Verbundwerkstoffe erzeugt.
  • Zur Herstellung des offenporigen Stützgerüstes hat es sich bewährt, Sand-, Glas- oder Keramik-Körner durch Tauchen in entsprechende Dispersionen oder Lösungen zunächst mit einer dünnen Kunststoffschicht zu überziehen.
  • Das derart vorbehandelte Granulat läßt sich in eine Form einschütten und/oder verpressen und anschließend chemisch oder thermisch aushärten.
  • Die Techniken zur Erzielung feinporiger bzw. grobporiger und offenporiger Materialien sind bekannt. So sind beispielsweise bei der Herstellung von Diaphragmen für Elektroden in der Elektrochemie Techniken unter Verwendung spezieller Porenbildner erarbeitet worden, welche eine Materialstruktur mit definierter Gasdurchlässigkeit ergeben, wie sie auch im vorliegenden Fall gefordert sind. Techniken zur Herstellung grob- und offenporiger Materialien sind im weiten Anwendungsbereich der mechanischen Filter ebenso erarbeitet worden wie beispielsweise auf dem Gebiet selbstschmierende Gleitlager oder auf dem Gebiet der elektrischen Kontaktwerkstoffe, bestehend aus porösem Skelett eines Werkstoffes A, in welches ein Werkstoff B infiltriert wird.
  • Formwerkzeuge gemäß vorliegender Erfindung weisen eine Vielzahl von Vorteilen auf.
  • Sie weisen einen bis in den Mikrobereich völlig homogenen, offenporigen Wandaufbau mit definiertem Druckabfall auf. Dieser erlaubt einen gleichmäßigen Gasdurchtritt durch die Wand und damit homogene Aushärtung des Formsandes. Die Poren im feinporigen Bereich der Formwerkzeugwand sind so beschaffen, daß sich nur in Ausnahmefällen Sandkörner in der Formwerkzeugwand festsetzen können. Entscheidend ist aber, daß diese Sandkörner mit geringem Aufwand in der Regel wieder aus den Poren entfernt werden können, indem Luft unter hohem Druck, evtl. in Verbindung mit Lösungsmitteldämpfen, aus Richtung des grobporigen Skelettes der Formwerkzeugwand durch die feinporige Wandschicht geblasen wird.
  • Im Unterschied zu bekannten Verfahren, bei denen die Gasaushärtung des Formsandes durch Gaseinblasen über die Sandeinlaßöffnung erfolgt, kann bei Anwendung der erfindungsgemäßen Formwerkzeuge die Druckbeaufschlagung des im Formwerkzeug eingeschlossenen Formsandes durch die heteroporöse Wand erfolgen. Durch entsprechende Einstellung von Gasdruck und Zeit ist es möglich, das Aushärten des eingeschlossenen Formsandes nur in einer Randzone bis zu einer gewünschten Tiefe zu bewirken. Eine noch feinere Dosierung läßt sich dadurch erreichen, daß man das Formwerkzeug mit einer geeigneten Flüssigkeit tränkt. Dadurch baut sich in den feinen Poren der Werkzeugwand ein definierter Kapillardruck auf, der erst bei Überschreiten dieses Druckes das Reaktionsgas freigibt. Der Kern des eingeschlossenen Sandes bleibt bei entsprechend stöchiometrischer Dosierung des Gases rieselfähig und kann nach Aushärten der Randzone durch die Sandeinlaßöffnung entfernt und wiederverwendet werden.
  • Ein wesentlicher Vorteil von Formwerkzeugen gemäß vorliegender Erfindung liegt in der Möglichkeit, deren dem Formsand zugewandte Oberfläche der gewünschten Gußform anzupassen, deren rückseitige Oberfläche aber mit wenigen ebenen Flächen, z. B. quaderförmig oder zylindrisch, auszugestalten. Aufgrund der Gasbeaufschlagung des Formsandes durch die poröse Wand des Formwerkzeuges bildet sich regelmäßig eine feine Gasschicht zwischen der Wand des Formwerkzeuges und dem Formsand. Dadurch wird das Verkleben des Formsandes mit der Formwerkzeugwand während des Sand-Aushärt-Prozesses ausgeschlossen. Die Sandform löst sich nach dem Aushärt-Prozeß leicht vom Formwerkzeug. Besondere Maßnahmen gegen das Verkleben von Formsand und Formwerkzeug (Besprühen der Formwerkzeugwand, Einlegen einer Folie), wie sie bei bekannten Werkzeugen und Verfahren zur Herstellung von Gußformen erforderlich sind, können daher in der Regel unterbleiben. Die Technik des aufeinanderfolgenden Auftragens von feinporiger Schicht und Skelettmaterialien auf die Lehrenform erlaubt es, dem Formwerkzeug unmittelbar die endgültige Gestalt, Oberflächenbeschaffenheit und Verschleißfestigkeit zu geben. Es ist somit weder eine kostenintensive mechanische Nachbearbeitung der Oberfläche der Formwerkzeugwand zur Erzeugung der gewünschten Geometrie und Oberflächenrauhigkeit, noch eine Nachbehandlung, insbesondere thermische Härteverfahren, zur Erzielung der erforderlichen Oberflächenhärte bzw. -verschleißfestigkeit erforderlich - im Unterschied zu den bisherigen Herstellverfahren von Formwerkzeugen, welche nicht von porösen Materialien ausgehen.
  • Die Erfindung wird an Hand der Figur 1 sowie mittels zweier Ausführungsbeispiele näher erläutert.
  • Figur 1 zeigt die Ausgestaltung einer Halbschale eines Formwerkzeuges, im Schnitt, sowie Einrichtungen zur Herstellung des Formwerkzeuges nach einem bevorzugten Verfahren. Im einzelnen zeigt das Schnittbild nach Figur 1 die Modellplatte -1- mit der Lehrenform für die Halbschale eines Formwerkzeuges. Dabei ist derjenige Bereich der Modellplatte besonders gekennzeichnet, welcher bei der späteren Verwendung die Sandeinlaßöffnung des Formwerkzeuges -1a- abgibt. Eine Dichtplatte -2- liegt auf der Modellplatte auf, bzw. ist mit dieser verschraubt oder verklemmt. Sie besitzt eine zentrale Aussparung entsprechend der geometrischen Form des herzustellenden Formwerkzeuges. Der an den Formsand angrenzende, feinporige Schichtbereich -3- des Formwerkzeuges weist eine konstante Schichtdicke über den gesamten Oberflächenbereich auf, ausgenommen ein schmaler Bereich an der Trennfläche der beiden Halbschalen. An den feinporigen Schichtbereich des Formwerkzeuges grenzt das offenporige Stützskelett -4- materialschlüssig an. Die äußere geometrische Form des Formwerkzeuges wird durch einen, auf die Modellplatte aufgeschraubten Formkasten -5- bzw. Formrahmen vorgegeben. Dabei sind Herstellungsvarianten möglich, wo der Formkasten nicht vollständig mit dem Material ausgefüllt wird, sondern wo beim Einfüllen eines fließ- oder streichfähigen Materials ein Luftraum -6- zwischen Stützskelett und Formkastenoberseite verbleibt.
  • Beispiel 1
  • Entsprechend der in Figur 1 gezeigten Technik (für die Herstellung des Formwerkzeuges) wird zunächst eine Modellplatte mit der Lehrenform einer Hälfte des zu fertigenden Gußteiles aus einem metallischen und/oder keramischen Werkstoff oder aus Kunststoff nach gebräuchlichen Verfahren hergestellt. In der Mehrzahl der Fälle bietet es sich bei Kern- und Gußformen an, das Formwerkzeug aus zwei Halbschalen herzustellen. Auf die Modellplatte wird nach vorherigem Aufbringen eines Trennmittels eine Dichtplatte, vorzugsweise aus Stahl oder Keramik, aufgebracht und mit der Modellplatte verschraubt. Dabei ist die zentrale Aussparung in der Dichtplatte so zu bemessen, daß im Bereich der Trennfläche der beiden Halbschalen des Formwerkzeuges zwischen Lehrenoberfläche (Modellplatte) und Dichtplatte ein Spalt mindestens von der Dicke des feinporigen Schichtbereiches des Formwerkzeuges bestehen bleibt.
  • Auf die Lehrenoberfläche der Modellplatte wird zunächst die feinporige Schicht des Formwerkzeuges aufgetragen - gegebenenfalls nach vorheriger Auftragung eines Trennmittels auf der Lehrenoberfläche. Hierzu wird eine Paste aufgestrichen bzw. aufgespritzt. Die Paste besteht aus feinkörnigem, korrosionsfestem Keramikpulver von durchschnittlich 10 - 100 µm Korngröße, welchem zur Erhöhung der Oberflächenverschleißfestigkeit des Formwerkzeuges 10 - 20 Vol.% Titankarbidpulver (gemessen am Anteil Keramikpulver) etwa gleicher Korngröße zugegeben sind. Das Pulver wird mit einem flüchtigen bzw. thermisch ausdampfbaren Bindemittel zu einer Paste verarbeitet. Dem Bindemittel sind gegebenenfalls nicht verflüchtigbare metallische und/oder nichtmetallische Komponenten und/oder Porenbildner beigegeben. Die Auftragung der feinporigen Schicht erfolgt vorteilhafterweise in mehreren Lagen bis zum Erreichen der gewünschten Gesamtschichtdicke. Dabei erfolgt die Schichtauftragung entsprechend Figur 1 auch über den Rand der Dichtplatte hinweg.
  • Die derart aufgebrachte, feinporige Schicht wird getrocknet bzw. ausgehärtet. Daran anschließend wird ein Formkasten oder Formrahmen entsprechend Figur 1 auf die Modellplatte bzw. Dichtplatte aufgeschraubt und das Material zur Bildung des Wandbereiches mit offenporigem Stützskelett in den Formkasten eingebracht. Es handelt sich dabei um ein grobkörniges Keramikpulver, welchem flüchtige Porenbildnermaterialien zugesetzt sind, wie sie beispielsweise bei der Herstellung poröser keramischer Filter verwendet werden. Das keramische Pulver wird mit flüchtigen Bindemitteln zu einer Paste angerührt, diese wird in den Formkasten eingestrichen und dort ausgehärtet. Daran anschließend wird das Formwerkzeug von der Modellplatte getrennt und in Hochtemperaturöfen gesintert bzw. gebrannt. Man erhält auf diese Weise verschleißfeste, montagefähige Formwerkzeug-Halbschalen mit ebenen Trennflächen. Die Formenoberfläche bedarf in der Regel keiner Oberflächennachbehandlung. Der Bereich der Sandeinlaßöffnung des Formwerkzeuges wird abschließend mit einem Porenfüller abgedichtet, so daß im späteren Betrieb kein Reaktionsgas durch diesen Bereich der Formwerkzeugwand hindurchtreten und der Formsand in diesem Bereich nicht aushärten kann.
  • Die Prüfung derart hergestellter Formwerkzeuge mit erfindungsgemäßem Wandaufbau hat ergeben, daß sich an der Grenze zwischen grob- und feinporiger Schicht ein Druckunterschied von 1 - 2 bar aufbauen läßt. Dabei liegt die Schwankungsbreite des absoluten Gasdruckes vor der Grenze im grobporigen Teil der Wand in verschiedenen Abschnitten der Formwerkzeugwand bzw. in verschiedenen, nach gleichem Verfahren hergestellten Formwerkzeugen zwischen 0,1 - 0,2 bar und ist somit in weitem Umfang unabhängig davon, wie dick das grobporige Stützskelett der Formwand tatsächlich ist. Der besagte Sprung des Gasdruckes an der Grenze zwischen grob- und feinporiger Schicht stellt sich praktisch allein aufgrund der Struktur der feinporigen Schicht ein. Dieser Drucksprung läßt sich noch verstetigen, indem das Formwerkzeug mit einer geeigneten Sperrflüssigkeit getränkt wird, wodurch sich in den Poren der feinporigen Schicht ein sehr homogener Kapillardruck über den gesamten Oberflächenbereich des Formwerkzeuges aufbaut.
    Die Herstellung einer Gußform aus aushärtbarem Formsand unter Verwendung eines Formwerkzeuges entsprechend vorliegender Erfindung läuft danach wie folgt ab. Nach dem Einfüllen des Formsandes wird das Formwerkzeug mit Reaktionsgas eines Druckes von > 2 bar von außen beaufschlagt. Dieses drückt die Flüssigkeit aus den Kapillaren der feinporigen Schicht des Formwerkzeuges und gelangt mit exakt dosierbarem Gasdruck in den Formsand bzw. in eine Randzone der Sandform. Das ermöglicht die Aushärtung des Formsandes bis in eine gewünschte, gut dosierbare Tiefe. Der Kernbereich des eingefüllten Formsandes bleibt rieselfähig. Er kann nach Abschluß des Aushärtens über die Sandeinlaßöffnung entfernt und wiederverwendet werden. Mit dem Absenken des Gasdruckes unter 2 bar wird die Sperrflüssigkeit durch Dochtwirkung wieder in die Poren der feinporigen Schicht zurückgezogen. Das bedeutet kurze Fertigungszeiten für die einzelnen Sandformen sowie geringe Störanfälligkeit und Ausschußquote.
  • Beispiel 2
  • Analog zu Beispiel 1 wird eine Lehrenform bzw. Modellplatte für eine Halbschale eines Formwerkzeuges hergestellt. Ebenfalls entsprechend Beispiel 1 wird eine Dichtplatte auf die Modellplatte aufgeklemmt. Das Formwerkzeug-Wandmaterial für die feinporige Schicht wird in Form einer flexiblen metallischen Folie auf die Lehrenform aufgelegt. Die separat gefertigte metallische Folie besteht aus einer homogenen Mischung aus korrosionsfesten Stahlteilchen einer Korngrößenverteilung von 10 - 100 µm, ggf. angereichert mit einigen Volumprozenten verschleißfester Titankarbidteilchen vergleichbarer Korngröße, ggf. ergänzt um pulverförmige Füllstoffe und Porenbildner-Materialien sowie aus einem bei höheren Temperaturen verflüchtigenden thermoplastischen Kunststoff. Mittels für das isostatische Pulver-Schlauchpressen bekannter Techniken wird sodann ein Gummi- oder Plastik-"Schlauch" an den Boden der Modellplatte angeklemmt und mit einer grobkörnigen Pulvermischung, bestehend aus legiertem Eisenpulver und Porenbildner gefüllt - die feinporige Schicht überdeckend. Das Schlauchinnere wird daraufhin evakuiert, der Schlauch verschlossen. Die komplette Einheit wird kaltisostatisch gepreßt. Der so erzeugte Grünling des Formwerkzeuges läßt sich vom Modell trennen und mittels gebräuchlicher Sinterverfahren weiterverarbeiten. Das gesinterte Formwerkzeug kann - soweit erforderlich - mechanisch bearbeitet und beispielsweise für die Aufnahme in Werkzeughalterungen maßlich angepaßt werden.
    Beim isostatischen Pulverpressen in Plastik- bzw. Gummihüllen ist es üblich, der Gummihülle die Grobform bzw. Grobkonturen des zu pressenden Formteiles zu geben. Entsprechend lassen sich auf den vorliegenden Fall angewendet Halbschalen von Formmerkzeugen mit näherungsweise homogener Formwerkzeug-Wandstärke erzielen.
  • Wie weiter oben bereits angeführt, sind entsprechend dem breiten Anwendungsfeld für poröse Formkörper eine Vielzahl von Techniken bekannt, um feinporige und/oder großporige Formkörper ausgehend von pulverförmigen Materialien herzustellen. Die Beschreibung zur Herstellung von Formwerkzeugen entsprechend vorliegender Erfindung erfolgt daher unter Hinweis auf jene Produktgruppen nicht abschließend.

Claims (12)

  1. Gasdurchlässiges Formwerkzeug zur Herstellung von Guß- und Kernformen aus aushärtbarem Formsand,
    dadurch gekennzeichnet,
    daß das Werkzeug aus heteroporös aufgebautem, offenporigem Material besteht, wobei die Wand des Formwerkzeuges einen ersten, an den Formsand angrenzenden feinporigen Schichtbereich von 0,2 - 2 mm Dicke, 75 - 95 % der theoretischen Materialdichte und Porendurchmesser <50 µm aufweist, an den ein zweiter, massiver Bereich in Form eines großporigen Stützskeletts von <80 % der theoretischen Materialdichte und einem mittleren Porendurchmesser >100 µm materialschlüssig angrenzt.
  2. Formwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß das Material ein offenporiger, verfestigter Schaum ist.
  3. Formwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß dieses aus einem keramischen Werkstoff besteht.
  4. Formwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß dieses aus einem metallischen Werkstoff besteht.
  5. Formwerkzeug nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der erste und/oder der zweite Bereich aus jeweils zwei oder mehreren Lagen mit in sich homogener Struktur und Materialzusammensetzung besteht.
  6. Formwerkzeug nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Wandbereiche verschiedener Porengröße aus unterschiedlichen Materialien bestehen.
  7. Formwerkzeug nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die innere Werkzeugoberfläche die komplexe Geometrie des zu erzeugenden Gußteiles aufweist und die äußere Werkzeugoberfläche aus wenigen ebenen Flächen besteht.
  8. Formwerkzeug nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß das Formwerkzeug zwei- oder mehrteilig ist.
  9. Verfahren zur Herstellung eines Formwerkzeuges nach einem der Ansprüche 1, sowie 3 bis 8, gekennzeichnet durch die folgenden Verfahrensschritte,
    - Aufbringen einer Schicht aus eines feinkörnigen Pulver aus einem Material A auf eine Lehrenform des Gußkörpers,
    - Auftragen, insbesondere Aufpressen, eines grobkörnigen Pulvers aus einem Material B auf die Schicht
    - Verfestigen des so geformten Verbundkörpers in einem einzigen Arbeitsgang, insbesondere bei sich stufenweise ändernden Verfahrensbedingungen.
  10. Verfahren zur Herstellung eines Formwerkzeuges nach Anspruch 9, dadurch gekennzeichnet, daß mindestens einem der pulverförmigen Materialien vor dem Auftragen Porenbildner zugegeben wird.
  11. Verfahren zur Herstellung eines Formwerkzeuges nach Anspruch 10, dadurch gekennzeichnet, daß die Verfestigung des Verbundkörpers durch Sintern erfolgt.
  12. Verwendung des Formwerkzeuges nach einem der Ansprüche 1 bis 11 zur Herstellung von nicht massiven, schalenförmigen Gußformen aus Formsand.
EP88202375A 1987-10-22 1988-10-20 Heteroporöses Formwerkzeug zur Herstellung von Gussformen aus Formsand und Verfahren zu dessen Herstellung Expired - Lifetime EP0316978B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88202375T ATE71862T1 (de) 1987-10-22 1988-10-20 Heteroporoeses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873735751 DE3735751A1 (de) 1987-10-22 1987-10-22 Heteroporoeses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung
DE3735751 1987-10-22

Publications (2)

Publication Number Publication Date
EP0316978A1 EP0316978A1 (de) 1989-05-24
EP0316978B1 true EP0316978B1 (de) 1992-01-22

Family

ID=6338850

Family Applications (2)

Application Number Title Priority Date Filing Date
EP88908950A Pending EP0342209A1 (de) 1987-10-22 1988-10-20 Heteroporöses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung
EP88202375A Expired - Lifetime EP0316978B1 (de) 1987-10-22 1988-10-20 Heteroporöses Formwerkzeug zur Herstellung von Gussformen aus Formsand und Verfahren zu dessen Herstellung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP88908950A Pending EP0342209A1 (de) 1987-10-22 1988-10-20 Heteroporöses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung

Country Status (8)

Country Link
US (1) US5190094A (de)
EP (2) EP0342209A1 (de)
JP (1) JP2851293B2 (de)
KR (1) KR890701245A (de)
AT (1) ATE71862T1 (de)
DE (2) DE3735751A1 (de)
ES (1) ES2029000T3 (de)
WO (1) WO1989003736A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015518A (en) * 1994-11-02 2000-01-18 Unipor Ag Method of making a device for conducting a fluid between a space bounded by a fixed surface and a duct
US5686038A (en) * 1995-06-06 1997-11-11 The Boeing Company Resin transfer molding of composite materials that emit volatiles during processing
US5709893A (en) * 1995-06-06 1998-01-20 The Boeing Company Breathable tooling for forming parts from volatile-emitting composite materials
DE10326788B4 (de) * 2003-06-13 2005-05-25 Robert Bosch Gmbh Kontaktoberflächen für elektrische Kontakte und Verfahren zur Herstellung
US7416401B2 (en) * 2005-06-13 2008-08-26 The Boeing Company Lightweight composite fairing bar and method for manufacturing the same
DE102007001303B4 (de) * 2007-01-02 2008-09-18 Quadriga Gbmh Verfahren zur Herstellung eines Füllkörpers für einen Kernkasten
US8465607B1 (en) 2008-09-18 2013-06-18 The United States Of America As Represented By The Secretary Of The Navy Higher-performance solid-rocket propellants and methods of utilizing them
AT518323B1 (de) * 2016-02-29 2018-03-15 Wienerberger Ag Pressform für Dachziegel
DE102017217098B3 (de) 2016-12-06 2018-04-05 Wolfram Bach Verfahren und Form- oder Kernwerkzeug zur Herstellung von Formen oder Kernen
DE202018106268U1 (de) 2018-11-04 2018-11-28 Wolfram Bach Werkzeug zur Herstellung von Formen oder Kernen durch elektrische Widerstandserwärmung eines kunststoffbasierten Materials
GB2600700B (en) * 2020-11-04 2023-07-12 Diageo Great Britain Ltd A system and method for forming a moulded article

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1070347B (de) * 1959-12-03
DE1026049B (de) * 1956-11-08 1958-03-13 Heinz Eyckeler Dr Ing Form, Kernkasten oder Modellplatte aus luftdurchlaessigem Material
DE1058226B (de) * 1958-03-08 1959-05-27 Rheinische Maschinenfabrik Form zur Herstellung von Formlingen fuer Giessereizwecke
US3101514A (en) * 1961-12-04 1963-08-27 Int Harvester Co Sintered powder metal mold
GB1043174A (en) * 1962-08-07 1966-09-21 Gruenzweig & Hartmann A core box and a method of producing the same
US3550673A (en) * 1968-06-10 1970-12-29 Foundry Allied Ind Inc Polyurethane mold articles
DE2361820C3 (de) * 1973-01-29 1975-07-03 Eugen Dipl.-Ing. 8871 Burtenbach Buehler Verfahren und Vorrichtung zum Weitertransportieren eines aus horizontal geteilten kastenlosen Gießformen gebildeten Formstranges längs einer GIeB- und Kühlstrecke
DE2437328A1 (de) * 1974-08-02 1976-02-12 Buderus Eisenwerk Giessereimodell
JPS5414212A (en) * 1977-07-02 1979-02-02 Otani Moriyuki Circular magnetic card
JPS5852528B2 (ja) * 1979-04-10 1983-11-24 葛城産業株式会社 金属の多孔質焼結板状体およびその製造法
US4473526A (en) * 1980-01-23 1984-09-25 Eugen Buhler Method of manufacturing dry-pressed molded articles
DE3002939A1 (de) * 1980-01-28 1981-07-30 Gottfried 6335 Lahnau Zimmermann Duese zum entlueften, belueften oder bedampfen von formen
US4291740A (en) * 1980-05-28 1981-09-29 Anatol Michelson Apparatus and method for heatless production of hollow items, for instance, foundry shell cores
DE3039394A1 (de) * 1980-10-18 1982-05-06 Heinrich Wagner Maschinenfabrik GmbH & Co, 5928 Laasphe Unterdruckanschluss fuer vakuumverfestigte giessformen
JPS57142798A (en) * 1981-02-26 1982-09-03 Nippon Piston Ring Co Ltd Powder molding method and molded article

Also Published As

Publication number Publication date
WO1989003736A1 (en) 1989-05-05
US5190094A (en) 1993-03-02
DE3735751C2 (de) 1989-08-31
ATE71862T1 (de) 1992-02-15
DE3735751A1 (de) 1989-05-03
KR890701245A (ko) 1989-12-19
JPH02501721A (ja) 1990-06-14
JP2851293B2 (ja) 1999-01-27
ES2029000T3 (es) 1992-07-16
EP0342209A1 (de) 1989-11-23
EP0316978A1 (de) 1989-05-24
DE3868014D1 (de) 1992-03-05

Similar Documents

Publication Publication Date Title
EP0309507B1 (de) Formkörper zum tiefziehen von folien und vergiessen von werkstoffen
EP0316978B1 (de) Heteroporöses Formwerkzeug zur Herstellung von Gussformen aus Formsand und Verfahren zu dessen Herstellung
EP0554683A1 (de) Verfahren zur Umwandlung von Gussoberflächen durch Pulverimprägnation
DE102007003192A1 (de) Keramischer und/oder pulvermetallurgischer Verbundformkörper und Verfahren zu ihrer Herstellung
DE102010026139A1 (de) Verfahren zum Herstellen eines Bauteils und derartiges Bauteil
DE2702602A1 (de) Formwerkzeuge zum formen von formbaren materialien sowie verfahren zur herstellung solcher formwerkzeuge
WO2011042090A1 (de) Verfahren und vorrichtung zur herstellung eines formteils mittels generativen auftragens
DE1205363B (de) Verfahren zum Herstellen poroeser Werkstuecke aus Metallfasern
DE19652223C2 (de) Formkörper aus einem Werkstoffverbund, Verfahren zu seiner Herstellung und Verwendung
WO2000053359A2 (de) Material zur schichtweisen herstellung von werkzeugen, formen oder bauteilen durch das lasersintern verfahren
EP0789644B1 (de) Vorrichtung zur fluid-leitung zwischen einem durch eine feste oberfläche begrenzten raum und einem kanal, sowie verfahren zur herstellung der vorrichtung
WO1983002251A1 (en) Device for molding ceramic objects, implementation and utilization method thereof
DE10034508A1 (de) Verfahren zur Herstellung eines endkonturnahen Formgebungswerkzeug und danach hergestelltes Formgebungswerkzeug
WO2017157723A1 (de) Verfahren zur herstellung eines latentwärmespeichers sowie ein solcher
DE2046721B2 (de) Verfahren zum pulvermetallurgischen herstellen einer mehrteiligen form
EP0446664A1 (de) Verfahren und Vorrichtung zur Herstellung eines beliebig kompliziert geformten Bauteils durch Erzeugung eines dichtgepakten Formkörpers ausgehend von einem rieselfähigen Pulver
DE1944602A1 (de) Gussform zum Herstellen von Formteilen aus schaeumbarem Kunststoff
EP0815989A2 (de) Verfahren zur Herstellung von lokal keramikverstärkten, gegossenen Bremsscheiben aus Leichtmetallegierungen
DE19918908A1 (de) Kern für in Gußtechnik hergestellte Bauteile und Herstellverfahren dazu
DE19508959C2 (de) Formkörper aus keramischem, pulvermetallurgischem oder Verbundwerkstoff und Verfahren zu seiner Herstellung
DE19703177C2 (de) Verfahren zur Herstellung von keramischen oder pulvermetallurgischen Bauteilen
DE3517494C2 (de)
DE19929761A1 (de) Kern für in Gußtechnik hergestellte Bauteile und Herstellverfahren dazu
AT403692B (de) Verfahren zur herstellung von keramischen formkörpern
DE10317797B4 (de) Rapid Prototyping-Verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES

17P Request for examination filed

Effective date: 19890310

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 88908950.4/0342209 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 25.03.91.

17Q First examination report despatched

Effective date: 19910625

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 71862

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REF Corresponds to:

Ref document number: 3868014

Country of ref document: DE

Date of ref document: 19920305

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029000

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88202375.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981012

Year of fee payment: 11

Ref country code: FR

Payment date: 19981012

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981014

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981020

Year of fee payment: 11

Ref country code: AT

Payment date: 19981020

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981022

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19981027

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981030

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991020

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

BERE Be: lapsed

Owner name: METALLWERK PLANSEE G.M.B.H.

Effective date: 19991031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991020

EUG Se: european patent has lapsed

Ref document number: 88202375.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051020