EP0316519B1 - Verfahren zur Messung und Korrektur der Stösselverstellung bei schnellaufenden Hubpressen und Schaltung zur Durchführung des Verfahrens - Google Patents

Verfahren zur Messung und Korrektur der Stösselverstellung bei schnellaufenden Hubpressen und Schaltung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0316519B1
EP0316519B1 EP19880113357 EP88113357A EP0316519B1 EP 0316519 B1 EP0316519 B1 EP 0316519B1 EP 19880113357 EP19880113357 EP 19880113357 EP 88113357 A EP88113357 A EP 88113357A EP 0316519 B1 EP0316519 B1 EP 0316519B1
Authority
EP
European Patent Office
Prior art keywords
ram
measured
circuit
press
reversal point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880113357
Other languages
English (en)
French (fr)
Other versions
EP0316519A1 (de
Inventor
Helmuth Frisch
Johann Hartinger
Alois Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S+S Elektronik Geraetebau GmbH
Original Assignee
S+S Elektronik Geraetebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S+S Elektronik Geraetebau GmbH filed Critical S+S Elektronik Geraetebau GmbH
Publication of EP0316519A1 publication Critical patent/EP0316519A1/de
Application granted granted Critical
Publication of EP0316519B1 publication Critical patent/EP0316519B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/0029Details of, or accessories for, presses; Auxiliary measures in connection with pressing means for adjusting the space between the press slide and the press table, i.e. the shut height
    • B30B15/0041Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/141With means to monitor and control operation [e.g., self-regulating means]

Definitions

  • the invention relates to a method according to the preamble of claim 1 and to a circuit for performing such a method.
  • a circuit arrangement by means of which the actual value immersion depth of such a tappet is determined by inductive measurement and with which a corresponding actual / target value comparison is then possible in order to carry out the required correction is known from DE-C 27 31 084.
  • the tappet adjustment at stroke rates of over 600 strokes per minute is corrected by means of a motor which acts via a gear train with a high reduction ratio on a pin bearing adjusting element, by means of which the tappet opposes its drive member is adjustable, wherein the immersion depth can be changed, that is, corrected in the desired manner.
  • this known circuit can also be used to make a correction via a program stored in a memory, and depending on the number of strokes, according to this program, monostable flip-flops are supplied with control signals which in turn control the correction motor according to the signal information.
  • Another known circuit arrangement for an actuator of a tappet adjustment uses at least one limit switch for detecting the immersion depth, which is adjustably attached to the press frame in the action of the tappet and whose signal output is connected to the set input of a first flip-flop, the latter Signal output is in turn coupled back to a reset input of a further flip-flop by means of a branch line via a switching stage which determines the size of an adjustment step, a set input of a further flip-flop with a switch activated when the cutting press is interrupted and a reset input of the latter flip-flop.
  • Flops is connected to another switch, which is activated when the plunger has reached a lowermost position relative to its drive element, which it must not fall short of depending on the tool.
  • the two known circuit arrangements have the advantage that the ram adjustment is possible during the operation of the press, on the other hand however, the main disadvantage that these are very complex circuit arrangements, with a correspondingly high outlay on costs for both the hardware and the software side.
  • the present invention uses this known prior art and it is based on the object of providing a method and a circuit arrangement of the generic type and designing such that the plunger immersion depth measurements and the corrections which can be carried out with them are carried out with the least possible susceptibility to malfunction and with a manageably low outlay on equipment becomes possible.
  • the present task solution advantageously enables the increasingly precise tools of the type of interest here to be able to adapt to the higher quality requirements, even with an increased stroke rate of the presses.
  • Special parts in the electrical and electronics industry can therefore be manufactured with very tight tolerances regardless of the stroke speed, specifically for stroke speeds that can be, for example, 2000 strokes per minute.
  • the measuring system used is robust enough to withstand the harsh environmental conditions prevailing for such press operations without that this affects its high measuring accuracy.
  • the implementation of the method with the associated circuit arrangement is simple, in particular also for the operator of the press, whereby restrictions on the tool installation space, in contrast to the prior art, are practically completely eliminated. It is also not necessary in the present solution to the problem to have to make readjustments, or to have to carry out special mechanical adjustments and thus time-consuming work on the press itself.
  • a tape applied to a metal band and magnetized at certain high-precision intervals serves as a measuring ruler, while the sensor head is characterized by four coils that are fed with a carrier frequency, the voltage induced in the coils being fed to the function evaluation by the relative movement between the metal band and the sensor . Because the coil arrangement in the detector head supplies two sine voltages offset by ninety degrees, a directional detection of the relative movement between the metal strip and the sensor head and thus between the ram movement and the press frame can be predefined in a simple manner.
  • the evaluation of the inductive and thus non-contact measurement method is particularly simple in that first a rough path measurement is carried out by generating counting pulses at the zero crossings of the sine / cosine functions and that the amplitude value is stored at the reversal points for the two functions and this for the exact ones Measurement is evaluated.
  • the relative movement can be used to convert a press between the sensor head and the permanent magnetic head are used in the same way as for the evaluation of their automatic operation, in which the deviation that may be present is first measured and displayed and, after the deviation has been measured, the machine is stopped, if the measurement proves that a correction is necessary, which in turn then is carried out automatically.
  • Block 3 takes the magnetic ruler 1, which is characterized by alternating magnetic poles (cf. also FIG. 3) that alternate every two millimeters in length and are applied to a suitable metal strip.
  • the block 3 is firmly attached to the machine frame of the press, for which the receiving channel is used. It is also possible to fix the block 3 not on the static press part but on the moving tool part.
  • the sensor head 4 consists essentially of a detector 2, in which four coils are accommodated, which are acted upon with a suitable carrier frequency.
  • the relative movement between the fixed tool half of the press and the moving tool half, i.e. the plunger, corresponds to the relative movement between the magnetic ruler 1 and the sensor head 4, the detector 2 being moved close to and parallel to the magnetic ruler in the direction of the double arrow shown.
  • the contactless length measurement of the distance covered in this way along the north-south pole arrangement which changes every two millimeters at a distance between the magnetic ruler 1 and detector 2 of 0.1 to a maximum of 0.5 mm, influences the amplitude of the carrier frequency and thus modulates the carrier frequency in the Coils of the detector head 4 alternating voltages, the respective course of which corresponds to sine functions, but which are offset by 90 degrees to one another, since the distances between the individual coils are matched to the distances between the alternating north-south pole arrangements in the ruler.
  • the Voltage profiles picked up by the detector 2 in the scanning head 4 are fed via a line 6 to the plunger immersion depth measurement unit 7 and processed there in a manner to be described later.
  • a coupling piece 8 makes it possible to separate the sensor head, which in the exemplary embodiment is movably attached to the plunger, from the processing and display unit 7 and thus to install it independently at a suitable location within the press or next to it.
  • the front panel of the device 7 contains a text display for the operator, a numerical display for the measured values obtained, as well as control buttons for different functions and a key selector switch for the possible operating modes.
  • the possible operating modes consist in converting the press, in which parts of the device are set to a certain stroke and thus to a defined ram position, which is about the same as the respective tool change.
  • Another mode of operation under the term “automatic” means that the device orients itself automatically after the changeover to the new ram position, whereby it is possible that the device measures a certain deviation, then the press first stops when the deviation has a tolerance limit exceeds or falls below and then makes the necessary correction itself.
  • the device outputs are inactive; The current stroke is displayed, whereby this operating mode lies outside the actual operation of the device.
  • ventilation a mode of operation called “ventilation” is provided, which is used to travel a path for the ram in the upward direction that was defined during commissioning, that is to say to separate the two tool halves for test purposes.
  • the contactless, sliding movement of the scanning head 4 along the magnetic ruler 1 initially leads to a rough path measurement by generating counting pulses at the zero crossings of the sine curve in that one pulse results per millimeter of path.
  • the amplitude values are recorded or stored at the reversal points of the voltage curve and the counting impulses thus given are used to roughly determine the path of a specific stroke quantity.
  • the anologic sinus amplitude measured at the reversal point of the movement of the plunger see also FIG.
  • the plunger immersion depth is fundamentally continuously or variably adjustable, the respective plunger deviation being measured with increasing stroke frequency and the increase in immersion depth being measured by this increasing frequency while the press is running and this is then stopped when a set tolerance limit is either reached is exceeded or undershot upwards or downwards.
  • the deviation that has occurred is corrected during the downtime of the press, for which purpose the press is switched from the "continuous operation" mode to "setup", that is to say discontinuous operation. After taking into account the correction that has become necessary, the press then continues to operate until the set tolerance range is left again or until the press may need to be set up again.
  • the use of the scanning head 4 in connection with the magnetic ruler 1 in the embodiment shown in FIG. 1 is particularly advantageous insofar as the corrections that can be predetermined thereby are independent of the actual tool, ie the ram and the like. as well as the fixed press half, ie that wear of the individual tool parts does not impair the measuring process, as is the case, for example, with the ram correction using the known limit switches.
  • the sine / cosine curve in the coils within the sensor head 4, which are offset by one millimeter from one another in the exemplary embodiment, is shown in FIG. 2 at the reversal point of the up-down movement of a plunger.
  • the reversal point For the measurement of the reversal point, it is ultimately of no interest how many sine or cosine periods are traversed to the reversal point of the ram; the only thing of interest for the measurement of the reversal point is the last maximum of the sine or cosine function before the reversal point or the amplitude of the functions directly at the reversal point.
  • One of these values is used for the evaluation as a reference voltage and the last one in each case voltage value occurring at the reversal point as a measured value. As can be seen from FIG.
  • the reversal point practically represents a mirror plane for both the sine and the cosine function, which precisely defines the measured value and the reference value for the evaluation electronics and, in the exemplary embodiment, a deviation from the desired immersion depth with an accuracy of up to 1 / 100 millimeters.
  • Fig. 3 shows a block circuit diagram of a circuit which enables the aforementioned functions.
  • the scanning head 4 which is guided past the magnetic ruler at a distance, outputs, via the detector 2 consisting of four coils, which are fed via an oscillator 10 with a suitable carrier frequency, the signals which are modulated by the relative movement between the detector 2 and the magnetic ruler 1 in the form of the aforementioned sine waves. respectively.
  • Cosine signals each directly to an associated low-pass filter 12, 13 or via the digital analog converter 11, 14 to the other low-pass filter 13, 12.
  • Each of the low-pass filters 12, 13 is on the output side with the two peak value memories 15, 17 and 21, 22, one Rectifiers 19 and 43, respectively, and a converter 20, 24 are connected in the manner given in the functional representation.
  • An electronic relay 25 switches the analog output signal information of the modules 19 and 23 to digital commands and leads these digital signals alternately to a peak value memory 28, which is followed by an analog measured value memory 29, corresponding to the analog measured value memories 16, 18, 26 and 27 are connected to the outputs of the peak value memories 15, 17, 21 and 22.
  • the signals obtained by the amplitude values of the coils of the detector 2 are used as path information, the demodulated associated direct voltage components, which are superimposed on the alternating voltage components, by measuring the positive and negative peak values and digitizing these measured values for a computer-controlled correction.
  • the integrated switching logic 30, which bwz with the converters 20.
  • the outputs of the analog measured value memories 16, 18, 26, 27 and 29 are at the inputs of a multiplexer 31, the output information of which is amplified by an impedance converter 22 and can be fed to the memory logic 34 via the analog digital converter 33.
  • the multiplexer 31 which can be switched over by the computer and whose outputs feed an analog-digital converter as described above, the computer logic thus has access to each individual peak value which is supplied via the individual peak value memories.
  • Half the difference between the peak values corresponds to the DC voltage offset, which is output with the correct sign at the respective digital / analog converter and subtracted at the signal input.
  • the digital-analog converter signal (14, 11) on the output side passes through the low-pass filters 13, 12 in order to suppress the demodulated carrier frequency components (sine / cosine).
  • the rectified signals are output in the manner described above from the rectifiers 19, 23 to the changeover switch 25, which, controlled by the logic circuit 30, switches through the signal clearly identified with the last maximum at the point of reversal, to the downstream peak value memory, while at the same time via the logic circuit 30, according to the reversal of direction indicated at the point of reversal, the voltage maximum is stored in the associated measured value memory.
  • the distance in the exemplary embodiment is interpolated within a millimeter to within a hundredth of a millimeter.
  • the measurement of the values added to one millimeter in each case is carried out by the computer 34 by enumerating the zero crossings of the sine and cosine signals.
  • the zero crossings are processed via the logic circuit in the memory 34.
  • the logic memory 34 is also connected to the display and operating part 35 and, of course, the inputs and outputs 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren gemäß Oberbegriff des Anspruchs 1 und auf eine Schaltung zur Durchführung eines solchen Verfahrens.
  • Es ist bei schnellaufenden Hubpressen bekannt, daß die Eintauchtiefe des Oberwerkzeuges in ein zugehöriges Unterwerkzeug mit zunehmender Arbeitsgeschwindigkeit zunimmt, wodurch sich die an die Presse gestellten Toleranzanforderungen sowohl für Schneide- oder Stanzvorgänge, als auch für Biege- und Prägearbeiten erheblich verschieben und negativ beeinflußt werden. Aber nicht nur die zu fertigenden Halbzeuge oder dergleichen leiden unter der Stößelverstellung, auch die Werkzeuge unterliegen hierdurch einem erhöhten Verschleiß, wodurch sich häufige Stillstandzeiten und erhöhte Werkzeugkosten nicht vermeiden lassen.
  • Eine Schaltungsanordnung mittels der die Ist-Wert-Eintauchtiefe eines solchen Stößels durch induktive Messung ermittelt wird und mit der dann ein entsprechender Ist-Sollwertvergleich möglich ist, um die erforderliche Korrektur vorzunehmen, ist aus der DE-C 27 31 084 bekannt. Dort wird die Stößelverstellung bei Hubzahlen von über 600 Hüben pro Minute mittels eines Motors korrigiert, der über einen Getriebezug mit hoher Untersetzung auf ein Hublager-Einstellglied wirkt, durch das der Stößel gegenüber seinem Antriebsorgan verstellbar ist, wobei die Eintauchtiefe geändert, das heißt, in der gewünschten Weise korrigiert werden kann. Anstelle der laufenden Ist-Wertmessung der Eintauchtiefe kann bei dieser bekannten Schaltung auch eine Korrektur über ein in einem Speicher abgespeichertes Programm vorgenommen werden, wobei in Abhängikeit von der Hubzahl entsprechend diesem Programm monostabilen Kippstufen Stellsignale zugeführt werden, die ihrerseits den Korrekturmotor entsprechend den Signalinformationen ansteuern.
  • Eine andere bekannte Schaltungsanordnung für einen Stellantrieb einer Stößelverstellung (DE-C-2833829) benutzt zur Erfassung der Eintauchtiefe mindestens einen Endschalter, der im Wirkungsweg des Stößels einstellbar am Pressengestell angebracht ist und dessen Signalausgang mit dem Setzeingang eines ersten Flip-Flops verbunden ist, dessen Signalausgang wiederum mittels einer Abzweigleitung über eine die Größe eines Verstellschrittes bestimmenden Schaltstufe auf einen Rücksetzeingang eines weiteren Flip-Flops rückgekoppelt ist, wobei ein Setzeingang eines noch weiteren Flip-Flops mit einem bei Unterbrechung des Betriebes der Schnittpresse aktivierten Schalter und ein Rücksetzeingang des letzgenannten Flip-Flops mit einem weiteren Schalter verbunden ist, der aktiviert wird, wenn der Stößel eine unterste Lage gegenüber seinem Antriebsorgan erreicht hat, die er werkzeugbezogen nicht unterschreiten darf.
  • Die beiden bekannten Schaltungsanordnungen haben den Vorteil, daß die Stößelverstellung während des Betriebes der Presse möglich ist, andererseits jedoch den wesentlichen Nachteil, daß es sich hierbei um sehr aufwendige Schaltungsanordnungen handelt, mit entsprechend hohem Aufwand an Kosten sowohl für die Hardwareals auch die Softwareseite.
  • Die vorliegende Erfindung setzt bei diesem bekannten Stand der Technik ein und es liegt ihr die Aufgabe zugrunde, ein Verfahren und eine Schaltungsanordnung der gattungsgemäßen Art zuschaffen und so auszubilden, daß die Stößeleintauchtiefenmessungen und die hiermit durchführbaren Korrekturen bei geringstmöglicher Störanfälligkeit und mit einem überschaubar geringem apparativem Aufwand möglich wird.
  • Die Lösung dieser Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale erreicht.
  • Vorteilhafte Weiterbildungen und Ausgestaltungen insbesondere auch für die Ausbildung der Schaltung zur Durchführung des Verfahrens ergeben sich aus den Unteransprüchen.
  • Die vorliegende Aufgabenlösung ermöglicht es in vorteilhafter Weise die immer präziser arbeitenden Werkzeuge der hier interessierenden Art, den höheren Qualitätsanforderungen anpassen zu können und zwar auch bei noch gesteigerter Hubzahl der Pressen. Spezialteile der Elektro- und Elektronikindustrie lassen sich somit mit sehr engen Toleranzen hubgeschwindigkeitsunabhängig fertigen, und zwar für Hubgeschwindigkeiten die z.B. 2000 Hübe pro Minute betragen können. Das verwendete Meßsystem ist robust genug um den rauhen, für derartige Pressenbetriebe gegebenen Umgebungsbedingungen standzuhalten, ohne daß hierdurch seine hohe Meßgenauigkeit beinträchtigt wird. Die Durchführung des Verfahrens mit der zugehörigen Schaltungsanordnung ist einfach, insbesondere auch für die Bedienungsperson der Presse, wobei Beschränkungen des Werkzeugeinbauraumes, im Gegensatz zum Stand der Technik praktisch vollkommen entfallen. Auch ist es bei der vorliegenden erfindungsgemäßen Aufgabenlösung nicht erforderlich Nachjustierungen vornehmen zu müssen, oder besondere mechanische Anpassungen und damit zeitraubende Arbeiten an der Presse selbst ausführen zu müssen.
  • Ein auf ein Metallband aufgebrachtes und in bestimmten hochgenauen Abständen magnetisiertes Band dient als Meßlineal, während der Sensorkopf sich durch vier Spulen kennzeichnet, die mit einer Trägerfrequenz gespeist werden, wobei durch die Relativbewegung zwischen Metallband und Sensor die in den Spulen induzierte Spannung der Funktionsauswertung zugeführt wird. Dadurch, daß die Spulenanordnung im Detektorkopf zwei um neunzig Grad versetzte Sinusspannungen liefert, läßt sich auf einfache Weise eine Richtungserkennung der Relativbewegung zwischen Metallband und Sensorkopf und damit zwischen Stößelbewegung und Pressengestell vorgeben. Besonders einfach ist die Auswertung der induktiven und damit berührungslosen Meßmethode dadurch, daß zunächst eine grobe Wegmessung durch Erzeugung von Zählimpulsen an den Nulldurchgängen der Sinus-/Cosinusfunktionen erfolgt und daß eine Speicherung des Amplitudenwertes an den Umkehrpunkten für die beiden Funktionen vorgenommen und diese für die exakte Messung ausgewertet wird.
  • Für die Umrüstung einer Presse kann die Relativbewegung zwischen Sensorkopf und Permanentmagnetkopf gleichermaßen dienen wie für die Auswertung ihres automatischen Betriebes, bei dem zunächst die gegebenenfalls vorliegende Abweichung gemessen und angezeigt wird und nach erfolgter Messung der Abweichung die Maschine angehalten wird, falls sich durch die Messung eine Korrektur für erforderlich erweist, die ihrerseits dann automatisch durchgeführt wird.
  • Anhand der beiliegenden Zeichnungen soll die vorliegende Verfahrensweise näher beschrieben werden, wobei diese auch eine vorteilhafte Schaltungsanordnung zur Druchführung des vorliegenden Verfahrens beinhaltet.
  • Es zeigen:
    • Fig. 1 Einzelne Teile der Vorrichtung zur Durchführung des Verfahrens in perspektivischer Wiedergabe,
    • Fig. 2 eine Funktionsdarstellung der am Umkehrpunkt des Stößels gemessenen Amplituden zur Verdeutlichung des vorliegenden Verfahrens und
    • Fig. 3 einen beispielsweisen Schaltungsaufbau zur Durchführung dieses Verfahrens.
  • Eine vorteilhafte gerätemäßige Ausführungsform für die Durchführung des erfindungsgemäßen Verfahrens zur Messung und Korrektur der Stößelverstellung bei schnellaufenden Hubpressen wird in Fig. 1 perspektivisch, hinsichtlich der hierfür erforderlichen Einzelteile wiedergegeben. Dabei nimmt der Block 3 das Magnetlineal 1 auf, welches sich durch in hochgenauen Abständen von alle zwei Millimeter Länge alternierend wechselnden Magnetpolen (vgl. auch Fig. 3) kennzeichnet, die auf ein geeignetes Metallband aufgebracht sind. Der Block 3 wird fest am Maschinengestell der Preße montiert,wofür die Aufnahmerinne dient. Es ist auch möglich, den Block 3 nicht am statischen Pressenteil, sondern am bewegten Werkzeugteil zu befestigen.
  • Der Sensorkopf 4 besteht im wesentlichen aus einem Detektor 2, in dem vier Spulen untergebracht sind die mit einer geeigneten Trägerfrequenz beaufschlagt werden. Die Relativbewegung zwischen feststehender Werkzeughälfte der Presse und der bewegten Werkzeughälfte, also dem Stößel, entspricht der Relativbewegung zwischen dem Magnetlineal 1 und dem Sensorkopf 4, wobei der Detektor 2 im dichten Abstand zum Magnetlineal und parallel zu diesem in der dargestellten Doppelpfeilrichtung bewegt wird. Die so ermöglichte berührungslose Längenmessung des zurückgelegten Weges entlang der alle zwei Millimeter wechselnden Nord-Südpolanordnung bei einem Abstand zwischen Magnetlineal 1 und Detektor 2 von 0,1 bis maximal 0,5 mm, beeinflußt die Amplitude der Trägerfrequenz und moduliert so auf die Trägerfrequenz in den Spulen des Detektorkopfes 4 Wechselspannungen, deren jeweiliger Verlauf Sinusfunktionen entspricht, die jedoch um 90 Grad zueinander versetzt sind, da die Abstände der einzelnen Spulen untereinander entsprechend auf die Abstände der alternierenden Nord-Südpolanordnungen im Lineal abgestimmt sind. Die über den Detektor 2 im Abtastkopf 4 abgenommenen Spannungsverläufe werden über eine Leitung 6 der Stößeleintauchtiefenmessungseinheit 7 zugeführt und dort in einer später noch zu beschreibenden Weise verarbeitet.
  • Ein Kupplungsstück 8 ermöglicht die Trennung des im Ausführungsbeispiel am Stößel mit diesem beweglich befestigen Sensorkopfes von der Verarbeitungs- und Anzeigeeinheit 7 und deren damit unabhängige Installierung an einem geeigneten Platz innerhalb der Presse oder auch neben dieser.
  • Die Frontplatte des Gerätes 7 beinhaltet eine Textanzeige für den Bediener, eine Ziffernanzeige für die erhaltenen Meßwerte sowie Bedienungstasten für unterschiedliche Funktionen und einen Schlüsselwahlschalter für die möglichen Betriebsarten. Die möglichen Betriebsarten bestehen einmal im Umrüsten der Presse bei dem Teile des Gerätes auf einen bestimmten Hub eingestellt werden und damit auf eine definierte Stößelposition, was etwa mit dem jeweiligen Werkzeugwechsel identisch ist. Eine weitere Betriebsart unter dem Begriff "Automatik" bedeutet, daß sich das Gerät etwa nach erfolgter Umrüstung automatisch auf die neue Stößelposition orientiert, wobei es möglich ist, daß das Gerät eine bestimmte Abweichung mißt, daraufhin die Presse zunächst stoppt, wenn die Abweichung eine Toleranzgrenze über- bzw. unterschreitet und dann die erforderliche Korrektur selbst vornimmt. Bei einer weiteren Betriebsart "Bypass/Hub" sind die Geräteausgänge inaktiv; angezeigt wird der jeweils aktuelle Hub, wobei diese Betriebsart außerhalb des eigentlichen Betriebes des Gerätes liegt.
  • Schließlich ist noch eine Betriebsart mit der Bezeichnung "Lüftung" vorgesehen, die dazu verwendet wird, einen bei der Inbetriebnahme festgelegten Weg für den Stößel in Aufwärtsrichtung zu fahren, also die beiden Werkzeughälften für Prüfzwecke auseinander zu fahren.
  • Die berührungslose gleitende Bewegung des Abtastkopfes 4 entlang des Magnetlineal 1 führt zunächst durch Erzeugung von Zählimpulsen an den Nulldurchgängen des Sinusverlaufes zu einer groben Wegmessung insofern, als sich pro Millimeter Wegstrecke ein Impuls ergibt. Die Amplitudenwerte werden an den Umkehrpunkten des Spannungsverlaufes festgehalten bzw. gespeichert und die damit vorgegebenen Zählimpulse werden zur groben Ermittlung des Weges einer bestimmten Hubmenge verwendet. Die im Umkehrpunkt der Bewegung des Stößels gemessene anologe Sinusamplitude (vg. hierzu auch Fig. 2 dazu) gibt über die bekannte Arcus-Sinus-Funktionsverknüpfung dann den genauen Wert an bzw. es ist,wie nachfolgend noch näher beschrieben, möglich diesen hierdurch zu ermitteln, wobei in diesem Zusammenhang noch zu erwähnen ist, daß durch die versetzte Spulenanordnung im Detektorkopf und die damit gegebene Versetzung der Spannungsverläufe um 90 Grad auch eine Richtungserkennung der Stößelbewegung möglich ist.
  • Die Stößeleintauchtiefe ist grundsätzlich kontinuierlich bzw. variabel einstellbar, wobei die jeweilige Stößelabweichung bei steigender Hubfrequenz und die Erhöhung der Eintauchtiefe durch diese steigende Frequenz während des Laufes der Presse gemessen wird und diese dann angehalten wird wenn eine eingestellte Toleranzgrenze entweder nach oben oder nach unten überschritten bzw. unterschritten wird. Die Korrektur der aufgetretenen Abweichung erfolgt während der Stillstandzeit der Presse, wofür diese von der Betriebsart "Dauerlauf" auf "Einrichten" also diskontinuierlichen Betrieb umgeschaltet wird. Nach Berücksichtigung der erforderlich gewordenen Korrektur arbeitet die Presse dann wieder, bis erneut der eingestellte Toleranzbereich verlassen wird bzw. bis zur gegebenenfalls erforderlich werdenden Neueinrichtung der Presse.
  • Die Verwendung des Abtastkopfes 4 in Verbindung mit dem Magnetlineal 1 in der in Fig. 1 (unter Weglassung der eigentlichen Presse) dargestellten Ausführungsform ist in sofern besonders vorteilhaft, als die hierdurch vorgebbaren Korrekturen sowohl unabhängig vom eigentlichen Werkzeug, also dem Stößel und dgl., als auch der feststehenden Pressenhälfte sind, d.h., daß Abnutzungen der einzelnen Werkzeugteile das Meßverfahren nicht beeinträchtigen, wie das beispielsweise bei der Stößelkorrektur mittels der bekannten Endwertschalter der Fall ist. Der Sinus-/Cosinusverlauf in den im Ausführungsbeispiel um jeweils einen Millimeter voneinander versetzten Spulen innerhalb des Sensorkopfes 4, ist in Fig. 2 am Umkehrpunkt der Auf-Abbewegung eines Stößels dargestellt. Für die Messung des Umkehrpunktes ist letztlich uninteressant wieviel Sinus- bzw. Cosinusperioden zum Umkehrpunkt des Stößels durchschritten werden; für die Messung des Umkehrpunktes interessiert einzig und allein das letzte Maximum der Sinus- bzw. Cosinusfunktion vor dem Umkehrpunkt bzw. die Amplitude der Funktionen unmittelbar im Umkehrpunkt. Einer dieser Werte wird jeweils für die Auswertung als Referenzspannung verwertet und der jeweils letzte im Umkehrpunkt auftretende Spannungswert als Meßwert. Wie aus Fig. 2 ersichtlich stellt der Umkehrpunkt praktisch eine Spiegelebene sowohl für die Sinus- als auch die Cosinusfunktion dar, die den Meßwert und den Referenzwert für die Auswerteelektronik exakt definiert und im Ausführungsbeispiel eine Abweichung von der Soll-Eintauchtiefe mit einer Genauigkeit bis zu 1/100 Millimeter ermöglicht.
  • Fig. 3 zeigt ein Blockschaltdiagramm einer Schaltung die die vorgenannten Funktionen ermöglicht. Danach gibt der im Abstand an dem Magnetlineal vorbeigeführte Abtastkopf 4 über den aus vier Spulen bestehenden Detektor 2, die über einen Oszillator 10 mit einer geeigneten Trägerfrequenz gespeist sind, die durch die Relativbewegung zwischen Detektor 2 und Magnetlineal 1 modulierten Signale in Form der genannten Sinus-bzw. Cosinussignale jeweils direkt auf ein zugehöriges Tiefpassfilter 12, 13 bzw. über die Digitalanalogwandler 11, 14 auf das jeweils andere Tiefpassfilter 13, 12. Jedes der Tiefpassfilter 12, 13 ist ausgangssseitig jeweils mit den beiden Spitzenwertspeichern 15, 17 bzw. 21, 22,einem Gleichrichter 19 bzw. 43, sowie einem Wandler 20, 24 in der aus der Funktionsdarstellung gegebenen Weise verbunden.
  • Ein elektronisches Relais 25 schaltet die analogen ausgangsseitigen Signalinformationen der Baugruppen 19 bzw. 23 auf digitale Befehle um und führt diese digitalen Signale wechselseitig einem Spitzenwertspeicher 28 zu, dem ein analoger Meßwertspeicher 29 nachgeschaltet ist, entsprechend den analogen Meßwertspeichern 16, 18, 26 und 27 die mit den Ausgängen der Spitzenwertspeicher 15, 17, 21 und 22 in Verbindung stehen. Somit können für eine Auswertung der durch die Amplitudenwerte der Spulen des Detektors 2 gewonnen Signale als Weginformation die demodulierten zugehörigen Gleichspannungsanteile, welche den Wechselspannungsanteilen überlagert sind, durch Messung der positiven und negativen Spitzenwerte und die Digitalisierung dieser Meßwerte für eine rechnerkontrollierte Korrektur benutzt werden. Hierfür wird die integrierte Schaltlogik 30, die mit den Wandlern 20 bwz. 24 verbunden ist, von diesen so angesteuert, daß synchron zu den Nulldurchgängen der Sinus- und der Cosinussignale zunächst die Speicherimpulse für die Analogmeßwertspeicher 16, 18, 26 und 27 bzw. 29 und anschließend die Rücksetzimpulse für die Spitzenwertspeicher 15, 17, 21, 22 bzw. 28 vorgegeben bzw. erzeugt werden. Die Ausgänge der Analogmeßwertspeicher 16, 18, 26, 27 und 29 liegen an den Eingängen eines Multiplexers 31, dessen Ausgangsinformation mittels eines Impedanzwandlers 22 verstärkt wird und über den Analogdigitalwandler 33 an der Speicherlogik 34 zuführbar ist. Mittels des vom Rechner umschaltbaren Multiplexers 31, dessen Ausgänge wie vorstehend beschrieben einen Analogdigitalwandler speisen, hat die Rechnerlogik somit einen Zugriff auf jeden einzelnen Spitzenwert der über die einzelnen Spitzenwertspeicher zugeführt wird. Jeweils die halbe Differenz der Spitzenwerte entspricht dem Gleichspannungsoffset, der vorzeichenrichtig am jeweiligen Digitalanalogwandler ausgegeben und am Signaleingang subtrahiert wird. Nach erfolgter Korrektur durchläuft das ausgangsseitige Digitalanalogwandlersignal (14, 11) die Tiefpassfilter 13, 12 um die demodulierten Trägerfrequenzanteile (Sinus/Cosinus) zu unterdrücken. Die gleichgerichteten Signale werden in der vorbeschriebenen Weise ausgangsseitig von den Gleichrichtern 19, 23 dem Umschalter 25 zugeführt, der gesteuert von der Logikschaltung 30, das eindeutig mit dem letzten Maximum am Umkehrpunkt gekennzeichnete Signal durchschaltet, und zwar zum nachgeschalteten Spitzenwertspeicher, wobei gleichzeitig über die Logikschaltung 30 zufolge der am Umkehrpunkt angegebenen Richtungsumkehr das Spannungsmaximum im zugehörigen Meßwertspeicher gespeichert wird.
  • Durch Normierung der Umkehrspannung auf den zugehörigen Spitzenwert und die anschließende Bewertung über die Arcus-Sinus-Funktion erfolgt eine Interpolation der Wegstrecke im Ausführungsbeispiel innerhalb eines Millimeters auf ein hundertstel Millimeter genau.
  • Die Messung der jeweils auf einen Millimeter ergänzten Werte wird durch Aufzählung der Nulldurchgänge des Sinus- und des Cosinussignales vom Rechner 34 durchgeführt. Die Nulldurchgänge werden über die Logikschaltung im Speicher 34 verarbeitet. Laut Funktionsdiagramm ist der Logikspeicher 34 darüber hinaus mit dem Anzeige- und Bedienungsteil 35, sowie selbstverständlich den Ein- und Ausgängen 36 verbunden.

Claims (6)

1. Verfahren zur Messung und Korrektur der Stößelverstellung bei schnellaufenden Hubpressen, die aus einem Unterwerkzeug und einem hierzu relativ bewegbaren Oberwerkzeug bzw. Stößel bestehen zum Schneiden, Stanzen, Biegen- und/oder Prägen von Halbzeugen oder dergleichen mit hohen Toleranzanforderungen, bei dem der Stößel in Abhängigkeit von der Hubzahl nachzustellen ist und der jeweils tatsächliche Wert der Eintauchtiefe des Stößels gemessen und mit der Soll-Eintauchtiefe verglichen wird, dadurch gekennzeichnet, daß ein mehrere Induktionsschleifen aufweisender Detektorkopf (2) mit dem Stößelhub entlang eines, in an sich bekannten, Permanentmagnetstreifens (1) geführt wird, der in seiner Längsausdehnung in eine Vielzahl sich abwechselnder Nord-Süd-Pole unterteilt ist, wobei der induzierte Spannungsverlauf über Cosinus- und Sinusfunktionen der Induktionsschleifen für jede vorgegebene Weglängeneinheit abgegriffen wird, und die Amplituden beider Funktionen am Umkehrpunkt gemessen und ausgewertet werden, dergestalt, daß die eine der Amplituden bzw. das der am Umkehrpunkt gemessenen Amplitude benachbarte Maximum als Referenzspannung dient und die andere Amplitude den Meßwert vorgibt.
2.Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß wahlweise der Detektorkopf (2) und/oder der Permanentmagnetstreifen (1) oder dergleichen gegenüber dem feststehenden Werkzeug beweglich ist.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Sensorkopf im dichten Abstand zum Magnetlineal und parallel hierzu bewegt wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Stößeleintauchtiefe kontinuierlich variabel während des Laufes der Hubpresse gemessen wird, und daß die Stößelkorrektur während des Stillstandes der Presse nach Über- bzw. Unterschreiten einer eingestellten Toleranzgrenze vorgenommen wird.
5. Schaltung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß beim Nulldurchgang jeder der über die Detektorspulen gegebenen Sinusfunktionen ein Zählimpuls für eine grobe Wegmessung vorgegeben wird.
6. Schaltung zur Durchführung des Verfahrens nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß im Umkehrpunkt der Bewegung des Stößels die gemessenen Amplitudenwerte einer Arcus-Sinus-Funktionsverknüpfung unterworfen werden.
EP19880113357 1987-11-17 1988-08-17 Verfahren zur Messung und Korrektur der Stösselverstellung bei schnellaufenden Hubpressen und Schaltung zur Durchführung des Verfahrens Expired - Lifetime EP0316519B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3739023 1987-11-17
DE19873739023 DE3739023A1 (de) 1987-11-17 1987-11-17 Verfahren zur messung und korrektur der stoesselverstellung bei schnellaufenden hubpressen und schaltung zur durchfuehrung des verfahrens

Publications (2)

Publication Number Publication Date
EP0316519A1 EP0316519A1 (de) 1989-05-24
EP0316519B1 true EP0316519B1 (de) 1991-05-29

Family

ID=6340686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880113357 Expired - Lifetime EP0316519B1 (de) 1987-11-17 1988-08-17 Verfahren zur Messung und Korrektur der Stösselverstellung bei schnellaufenden Hubpressen und Schaltung zur Durchführung des Verfahrens

Country Status (4)

Country Link
US (1) US4890468A (de)
EP (1) EP0316519B1 (de)
JP (1) JPH01156601A (de)
DE (2) DE3739023A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209091A (en) * 1992-11-05 1993-05-11 Koenigbauer Gerald J Apparatus for setting the shut height of a press
US5512077A (en) * 1994-05-27 1996-04-30 Owens-Brockway Glass Container Inc. Test apparatus and testing method for a position sensor in a glassware forming machine
DE59507818D1 (de) * 1995-03-17 2000-03-23 Bruderer Ag Frasnacht Arbon Verfahren und Vorrichtung zur Messung und Regelung der Höhenstellung des Stössels einer schnellaufenden Schnittpresse
US6550361B1 (en) 2000-06-14 2003-04-22 Mead Westvaco Corporation Platen die cutting monitoring system
DE102011107777A1 (de) 2011-07-15 2013-01-17 Phoenix Contact Gmbh & Co. Kg Vorrichtung und Verfahren zur sicheren Bewegungserkennung mit Toleranzschwelle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582924A (en) * 1968-05-17 1971-06-01 Sony Corp Displacement measuring instrument
JPS4835017B1 (de) * 1968-10-02 1973-10-25
JPS5725766B2 (de) * 1973-12-12 1982-06-01
DE2731084C3 (de) * 1977-07-09 1980-07-03 L. Schuler Gmbh, 7320 Goeppingen Stößelverstellung für schnellaufende Schnittpressen
DE2833829C2 (de) * 1978-08-02 1986-11-27 L. Schuler GmbH, 7320 Göppingen Schaltungsanordnung für einen Stellantrieb einer Stößelverstellung
JPS5559314A (en) * 1978-10-27 1980-05-02 Sony Corp Magnetic scale signal detector
DE2925902A1 (de) * 1979-06-27 1981-01-15 Manfred Wanzke Signalvorrichtung zur erzeugung von elektrischen steuersignalen fuer eine steuervorrichtung einer presse
DE2945895C2 (de) * 1979-11-14 1986-06-05 Festo-Maschinenfabrik Gottlieb Stoll, 7300 Esslingen Magnetischer Stellungsgeber für hydrauliche oder pneumatische Arbeitszylinder
US4408471A (en) * 1980-10-29 1983-10-11 Massachusetts Institute Of Technology Press brake having spring-back compensating adaptive control
JPS6023897B2 (ja) * 1982-07-06 1985-06-10 平田プレス工業株式会社 シャットハイト調整に応動するボルスタ上限位置検出スイッチ取付位置自動調整装置
US4463333A (en) * 1982-09-29 1984-07-31 Farrand Industries, Inc. Transformer-type position transducer
DE3244891C2 (de) * 1982-12-04 1985-07-11 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf Einrichtung zur berührungslosen Positionsmessung
US4514689A (en) * 1982-12-27 1985-04-30 Varian Associates, Inc. High resolution position sensing apparatus with linear variable differential transformers having phase-shifted energizing signals
SU1082536A1 (ru) * 1983-01-19 1984-03-30 Воронежское Производственное Объединение По Выпуску Кузнечно-Прессового Оборудования Им.М.И.Калинина Система управлени молотом
SU1171171A1 (ru) * 1983-02-16 1985-08-07 Voronezh Proizv Ob Vypusk Устройство управления пневматическим молотом
SU1175632A1 (ru) * 1984-01-06 1985-08-30 МВТУ им.Н.Э.Баумана Система управлени штамповочным молотом
US4802357A (en) * 1987-05-28 1989-02-07 The Boeing Company Apparatus and method of compensating for springback in a workpiece

Also Published As

Publication number Publication date
US4890468A (en) 1990-01-02
EP0316519A1 (de) 1989-05-24
DE3863057D1 (de) 1991-07-04
DE3739023C2 (de) 1993-08-05
JPH01156601A (ja) 1989-06-20
DE3739023A1 (de) 1989-05-24

Similar Documents

Publication Publication Date Title
EP0849653B1 (de) Verfahren zur Steuerung eines Koordinatenmessgerätes und Koordinatenmessgerät
DE2758525B1 (de) Messeinrichtung mit codierter Unterteilung
DE2910399C2 (de)
EP0316519B1 (de) Verfahren zur Messung und Korrektur der Stösselverstellung bei schnellaufenden Hubpressen und Schaltung zur Durchführung des Verfahrens
DE2501792C2 (de) Anordnung zum Regeln der Verschiebung und Positionierung eines translatorisch beweglichen Systems
EP1182767B1 (de) Linearführung
DE3245357C2 (de) Inkrementale Meßeinrichtung
DE3417016C1 (de) Verfahren zur Ermittlung der Lage und Geschwindigkeit von Objekten
EP0038070A2 (de) Anordnung zum Abtasten von mit graphischen Mustern versehenen Vorlagen
DE3245155C1 (de) Vorrichtung zum Ermitteln des Verlaufes von Bewehrungseisen in Stahlbetonkonstruktionen
DE2400298A1 (de) Digitale steuervorrichtung zur positionierung eines beweglichen objektes
EP3913349A1 (de) Verfahren zur ermittlung der belastung einer antriebswelle
EP1780514A1 (de) Messvorrichtung und Antriebsregler
DE4231989C1 (de) Abtastvorrichtung für konturierte Oberflächen
EP0381784B1 (de) Elektrohydraulisches Antriebssystem
DE3630818C2 (de)
DE2109921A1 (de) Automatisches Digitalisierungssystem
DE3221190C2 (de) Anordnung zur Regelung eines Linearmotors
DE3522082A1 (de) Anordnung zur feinpositionierung schienengebundener fahrzeuge
DE3616782C2 (de)
DE3905382C2 (de)
DE10161905A1 (de) Vorrichtung und Verfahren zur Positionserfassung eines Linearmotors
DE3623036A1 (de) Vorrichtung zur automatischen herstellung eines eine scharfe schneidkante aufweisenden stanzwerkzeugs
DE29504239U1 (de) Koordinatenmeßgerät
DE2420544A1 (de) Vorrichtung zur ueberwachung der vorschubsteuerung einer werkzeugmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890812

17Q First examination report despatched

Effective date: 19901005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3863057

Country of ref document: DE

Date of ref document: 19910704

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940802

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940826

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940829

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940831

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941018

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941026

Year of fee payment: 7

EAL Se: european patent in force in sweden

Ref document number: 88113357.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 88113357.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050817