EP0314798A1 - Preparation de donnees de commande numerique pour l'usinage de surfaces incurvees - Google Patents
Preparation de donnees de commande numerique pour l'usinage de surfaces incurvees Download PDFInfo
- Publication number
- EP0314798A1 EP0314798A1 EP88903385A EP88903385A EP0314798A1 EP 0314798 A1 EP0314798 A1 EP 0314798A1 EP 88903385 A EP88903385 A EP 88903385A EP 88903385 A EP88903385 A EP 88903385A EP 0314798 A1 EP0314798 A1 EP 0314798A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- point
- curved surface
- data
- tool
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
- G05B19/4099—Surface or curve machining, making 3D objects, e.g. desktop manufacturing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35115—Project 3-D surface on 2-D plane, define grid in plane
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35313—Display, validate tool path for boundary, surface interference
Definitions
- This invention relates to a method of creating NC data for machining curved surfaces. More particularly, the invention relates to a method of creating NC data for machining a curved surface having a cutting boundary surface in the depth direction.
- a curved surface is defined by a plurality of section curves, a point sequence is generated on the curved surface from data such as that indicative of the section curves, data relating to the generated point sequence on the curved surface are stored on an NC tape, and machining of the curved surface is executed by commands from the NC tape.
- a curved surface 101 1 When a curved surface 101 1 is machined, as shown in Fig. 7, there are times when it is desired to prevent cut-in by adopting any curved surface 104' as a cutting boundary surface in the cutting direction. For example, there are cases where a TV frame is cut on the curved surface of a cathode ray tube. In cases such as these, machining in accordance with the prior art is difficult.
- an object of the present invention is to provide a method of creating NC data for machining curved surfaces in which any curved surface is adopted as a cutting boundary surface in the depth direction.
- the present invention relates to an NC data creation method for machining a curved surface having a cutting boundary surface in the depth direction.
- Data specifying a three-dimensional curved surface and a curved surface of a cutting boundary in the depth direction are inputted.
- the three-dimensional curved surface is defined by a set of a plurality of point-sequence paths
- a point sequence Q(i,j) of a tool nose corresponding to a point sequence A(i,j) is determined.
- a projected point sequence B'(i,j) obtained by projecting the point sequence Q(i,j) of the tool nose onto a reference plane, as well as a projected point sequence C(i,j) obtained by projecting the first-mentioned projected point sequence onto the curved surface of the cutting boundary.
- NC data up to the point of intersection P(i,j) are created. NC data are subsequently created in the same manner upon performing a pick-feed.
- Fig. 1 is a view for describing the general features of a method of creating NC data for machining a curved surface according to the invention.
- Numeral 101 denotes a three-dimensional curved surface to be machined, 102 a curved boundary surface specifying the cutting limits of the curved surface 101, 103 an X-Y reference plane, lli an i-th point-sequence path on the machined curved surface 101, A(i,j) a j-th point on the point-sequence path lli, B(i,j) an offset point of a tool TL, with the point A(i,j) serving as a machining point, Q(i,j) a tool nose point, and C(i,j) a point on the curved boundary surface 102 corresponding to a projected point B'(i,j) obtained by projecting the point B(i,j) on the X-Y plane.
- P(i,j) represents the point of intersection between a line segment Q(i,j-l)Q(i,j) connecting a series of points of the tool nose, and a line segment C(i,j-l)C(i,j) connecting projected points on the curved boundary surface 102 corresponding to the abovementioned series of points of the tool nose.
- the first step is to enter data specifying the first three-dimensional curved surface desired to be machined as well as data specifying the second three-dimensional curved surface 102 which provides the cutting boundary of the first three-dimensional curved surface in the depth direction, and define the first machined surface 101 and the second curved boundary surface 102 by respective sets of a plurality of point-sequence paths on these curved surfaces.
- the method of determining a plurality of point sequences on a curved surface from curved surface data is well known. For example, such a method is disclosed in the specifications of USP 4,569,014 and USP 4,589,062.
- the tool offset point sequence B(i,j) corresponding to the point sequence A(i,j) on the machining curved surface 101 is determined, the point sequence Q(i,j) of the tool nose, the projected point sequence B'(i,j) obtained by projecting the tool nose point sequence onto the X-Y plane 103, and the projected point sequence C(i,j) obtained by projecting the abovementioned projected point sequence onto the curved boundary surface 102.
- Fig. 2 is a block diagram of an NC data creating apparatus capable of practicing the present invention
- Fig. 3 is a flowchart of processing according to the invention.
- numeral 201 denotes a keyboard for data input; 202 a processor; 203 a ROM storing a control program for creating NC data; 204 a RAM; 205 a working memory; 206 a curved surface memory for storing generated curved surface data, 207 an output unit for outputting generated curved surface data to an external storage medium 208 such as a paper tape or magnetic tape; 209 an address bus; and 210 a data bus.
- the procesor 202 When the data for specifying the curved surfaces have been entered, the procesor 202 generates the first machining curved surface 101 and the second curved boundary surface 102 in accordance with the well-known technique disclosed in the abovementioned USP specifications.
- an intermediate section .curve lli (i 0, 1, 2, ... M; see Fig. 4), which is a point-sequence path, is generated, and a curved surface is generated by a set of these intermediate section curves (step 302).
- the processor 202 performs the operations (step 303), and a j-th point A(i,j) of an i-th path lli on the machining curved surface 101 is determined (step 304).
- a normal line to the path lli is erected at the point A(i,j), the center (offset point) B(i,j) of the tool offset by the tool radius R is found, and the tool nose point Q(i,j) is determined (step 305; see Fig. 5).
- a method of determining the normal line direction is well known and disclosed in the specification of USP 4,559,601.
- this projected point is elevated perpendicularly to obtain the projected point C(i,j) on the curved boundary surface 102 (step 307).
- a method of obtaining a projected point on a curved surface is well known. For example, this method is disclosed in International Laid-Open No. W086/05289 (Title: "Complex Curved Surface Creation Method”; Laid-Open Date: September 12, 1986).
- step 308 it is checked to see if the line segment Q(i,j-l)Q(i,j) connecting the tool nose point sequence and the line segment C(i,j-l)Q(i,j) connecting the projected point sequence on the curved boundary surface 102 intersect (step 308). If the line segments do not intersect, the processor 202 stores the point B(i,j) in the curved surface memory 206, performs the operation to increment j, and repeats processing from step 304 onward (step 309).
- the processor 202 determines an offset point B e (i,j), which is higher by the tool radius R in the Z direction than the point of intersection P(i,j), and stores the offset point B e(i,j) in the curved surface memory 206 (step 311):
- step 313 If i ⁇ M is found to hold, the processor 202 performs the operation to increment i and then repeats processing from step 304 onward (step 313).
- step 312 processing is terminated. This is followed by creating NC data for curved surface machining using the point sequence data stored in the curved surface memory 206, and outputting the NC data to the external storage medium 208 via the output unit 207.
- the present invention is arranged to create NC data by designating a cutting boundary in the depth direction by any curved surface and outputting machining points up to the cutting boundary.
- This makes it possible to machine parts, such as TV frames, in which the boundary in the depth direction varies three-dimensionally.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP98151/87 | 1987-04-21 | ||
JP62098151A JPS63263501A (ja) | 1987-04-21 | 1987-04-21 | 曲面加工用のncデ−タ作成方法 |
PCT/JP1988/000386 WO1988008560A1 (fr) | 1987-04-21 | 1988-04-20 | Preparation de donnees de commande numerique pour l'usinage de surfaces incurvees |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0314798A1 true EP0314798A1 (fr) | 1989-05-10 |
EP0314798A4 EP0314798A4 (en) | 1991-11-06 |
EP0314798B1 EP0314798B1 (fr) | 1995-06-21 |
Family
ID=14212168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88903385A Expired - Lifetime EP0314798B1 (fr) | 1987-04-21 | 1988-04-20 | Preparation de donnees de commande numerique pour l'usinage de surfaces incurvees |
Country Status (5)
Country | Link |
---|---|
US (1) | US5008806A (fr) |
EP (1) | EP0314798B1 (fr) |
JP (1) | JPS63263501A (fr) |
DE (1) | DE3854036T2 (fr) |
WO (1) | WO1988008560A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0543141A1 (fr) * | 1991-11-19 | 1993-05-26 | Kabushiki Kaisha F A Labo | Procédé d'usinage tridimensionnel |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5246319A (en) * | 1992-08-19 | 1993-09-21 | Prince Lawrence R | Method and apparatus for creating tool path data for a numerically controlled cutter to create incised carvings |
US5575099A (en) * | 1995-05-03 | 1996-11-19 | Gerber Scientific Products, Inc. | Method and apparatus for producing signs with prismatic letters and graphic images |
US6311100B1 (en) * | 1998-09-14 | 2001-10-30 | Mass. Institute Of Technology | Tool path generator for computer aided manufacturing |
CN103809510B (zh) * | 2012-11-09 | 2016-06-15 | 沈阳高精数控技术有限公司 | 一种面向高精加工的自由曲面往复式刀具轨迹规划方法 |
JP6896144B2 (ja) * | 2018-03-09 | 2021-06-30 | 株式会社牧野フライス製作所 | 工具経路生成方法 |
CN113399952B (zh) * | 2021-07-13 | 2022-09-16 | 广东潮宏基实业股份有限公司 | 投影曲面的加工方法及装置 |
US11980986B1 (en) | 2023-10-22 | 2024-05-14 | Rathan P. Muruganantham | Material hardness compensation in an automated milling system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0075031A1 (fr) * | 1981-04-04 | 1983-03-30 | Fanuc Ltd. | Procede de formage d'une surface courbe |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575109A (en) * | 1980-06-10 | 1982-01-11 | Fanuc Ltd | Curved surface forming method |
JPS57169814A (en) * | 1981-04-10 | 1982-10-19 | Fanuc Ltd | Forming method of curved surface |
JPS6015711A (ja) * | 1983-07-07 | 1985-01-26 | Fanuc Ltd | 曲面生成方法 |
JPH067362B2 (ja) * | 1984-06-26 | 1994-01-26 | フアナツク株式会社 | 複合曲面生成方法 |
JPS6190206A (ja) * | 1984-10-08 | 1986-05-08 | Hitachi Seiki Co Ltd | 金型加工用ncデ−タ作成装置 |
JPH067363B2 (ja) * | 1985-02-28 | 1994-01-26 | フアナツク株式会社 | 複合曲面生成方法 |
KR900003123B1 (ko) * | 1985-03-13 | 1990-05-08 | 도시바 기까이 가부시기 가이샤 | 자유표면 평가방법 및 그의 nc 시스템 |
JPS61292705A (ja) * | 1985-06-20 | 1986-12-23 | Fanuc Ltd | 丸味付け方法 |
JPS6219910A (ja) * | 1985-07-18 | 1987-01-28 | Fanuc Ltd | 丸味付け方法 |
JPH061404B2 (ja) * | 1985-09-13 | 1994-01-05 | フアナツク株式会社 | 複合曲面加工方法 |
JPS6265105A (ja) * | 1985-09-17 | 1987-03-24 | Fanuc Ltd | 複合曲面生成方法 |
JP3189418B2 (ja) * | 1992-09-29 | 2001-07-16 | 松下電器産業株式会社 | 鉛蓄電池用ペースト充填装置 |
-
1987
- 1987-04-21 JP JP62098151A patent/JPS63263501A/ja active Pending
-
1988
- 1988-04-20 US US07/290,288 patent/US5008806A/en not_active Expired - Fee Related
- 1988-04-20 DE DE3854036T patent/DE3854036T2/de not_active Expired - Fee Related
- 1988-04-20 EP EP88903385A patent/EP0314798B1/fr not_active Expired - Lifetime
- 1988-04-20 WO PCT/JP1988/000386 patent/WO1988008560A1/fr active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0075031A1 (fr) * | 1981-04-04 | 1983-03-30 | Fanuc Ltd. | Procede de formage d'une surface courbe |
Non-Patent Citations (1)
Title |
---|
See also references of WO8808560A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0543141A1 (fr) * | 1991-11-19 | 1993-05-26 | Kabushiki Kaisha F A Labo | Procédé d'usinage tridimensionnel |
US5369592A (en) * | 1991-11-19 | 1994-11-29 | Kabushiki Kaisha F A Labo | Three-dimensional machining method |
Also Published As
Publication number | Publication date |
---|---|
JPS63263501A (ja) | 1988-10-31 |
EP0314798B1 (fr) | 1995-06-21 |
DE3854036T2 (de) | 1995-11-09 |
EP0314798A4 (en) | 1991-11-06 |
WO1988008560A1 (fr) | 1988-11-03 |
DE3854036D1 (de) | 1995-07-27 |
US5008806A (en) | 1991-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880002554B1 (ko) | 수치 제어 가공방법 | |
US4621959A (en) | Area cutting method | |
US4745558A (en) | Island cutting method | |
EP0314798B1 (fr) | Preparation de donnees de commande numerique pour l'usinage de surfaces incurvees | |
EP0160096A1 (fr) | Procede d'approche dans l'usinage de surfaces | |
EP0276312B1 (fr) | Procede pour calculer un vecteur normal | |
KR910005902B1 (ko) | 복합곡면 생성방법 | |
EP0137047A1 (fr) | Procede de determination du cheminement tridimensionnel d'un outil | |
KR910002445B1 (ko) | 복합곡면 생성방법 | |
EP1457852B1 (fr) | Procédé et dispositif pour éditer un programme pour l'usinage de matrices | |
EP0161321B1 (fr) | Procede d'usinage pour machine-outil | |
EP0303706A1 (fr) | Procede de generation de surfaces courbes | |
US4855921A (en) | Complex curved surface creation method | |
EP0235293A1 (fr) | Procede de production de surfaces courbes composites | |
JP2649838B2 (ja) | 数値制御情報作成装置における加工方法の決定方法 | |
US5410489A (en) | Method of specifying position to create fillet curved surface | |
EP0336975A1 (fr) | Procede de preparation de donnees de commande numerique | |
US4942350A (en) | Method of creating NC data for grooving | |
JPS6234753A (ja) | 面加工方法 | |
EP0328662B1 (fr) | Procede de preparation de donnees de commande numerique pour la taille de rainures | |
EP0371144A1 (fr) | Procede de generation d'un chemin de coupe sur une surface courbe composite | |
EP0411137A1 (fr) | Procede de formation d'une surface courbe composite | |
JPH05329744A (ja) | Ncデータ作成方法 | |
JPS62130409A (ja) | 複合曲面生成方法 | |
JPS61219552A (ja) | 数値制御旋盤における最適切削径路の生成方式 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19881230 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19910916 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19940131 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950621 |
|
REF | Corresponds to: |
Ref document number: 3854036 Country of ref document: DE Date of ref document: 19950727 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960420 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960420 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970428 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990202 |