EP0299364B1 - Procédé et dispositif de séparation de l'air par rectification - Google Patents
Procédé et dispositif de séparation de l'air par rectification Download PDFInfo
- Publication number
- EP0299364B1 EP0299364B1 EP88110876A EP88110876A EP0299364B1 EP 0299364 B1 EP0299364 B1 EP 0299364B1 EP 88110876 A EP88110876 A EP 88110876A EP 88110876 A EP88110876 A EP 88110876A EP 0299364 B1 EP0299364 B1 EP 0299364B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- nitrogen
- rectification
- oxygen
- purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000000926 separation method Methods 0.000 title abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 202
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 102
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 100
- 239000001301 oxygen Substances 0.000 claims abstract description 88
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 88
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 85
- 239000007788 liquid Substances 0.000 claims abstract description 52
- 229910052786 argon Inorganic materials 0.000 claims abstract description 51
- 239000007789 gas Substances 0.000 claims abstract description 16
- 238000010992 reflux Methods 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 description 14
- 150000002430 hydrocarbons Chemical class 0.000 description 14
- 229910052743 krypton Inorganic materials 0.000 description 14
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 14
- 229910052724 xenon Inorganic materials 0.000 description 14
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 14
- 239000001307 helium Substances 0.000 description 13
- 229910052734 helium Inorganic materials 0.000 description 13
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 13
- 229910052754 neon Inorganic materials 0.000 description 10
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 9
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
- F25J3/04212—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04709—Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
- F25J3/04715—The auxiliary column system simultaneously produces oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/32—Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/34—Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/42—Nitrogen or special cases, e.g. multiple or low purity N2
- F25J2215/44—Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/56—Ultra high purity oxygen, i.e. generally more than 99,9% O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/42—Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/50—Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/923—Inert gas
- Y10S62/924—Argon
Definitions
- the invention further relates to an apparatus for performing such a method.
- U.S. Patent No. 4,575,388 also shows a crude argon column into which argon-enriched gas is introduced from the second rectification stage.
- a liquid bottom fraction consisting essentially of oxygen is returned from the crude argon column to the second rectification stage.
- the oxygen-rich liquid that accumulates in the bottom of the crude argon column has a relatively high concentration of impurities, since the argon-enriched fraction from the second rectification stage contains oxygen and nitrogen in addition to krypton, xenon and hydrocarbons, all of which collect in the bottom of the crude argon column .
- the impurities By returning the bottom liquid to the second rectification stage, the impurities get into the bottom of the second rectification stage and thus into the oxygen removed as a decomposition product.
- the process does not allow high-purity, in particular liquid, oxygen which is free from krypton, xenon and hydrocarbons to be obtained from the second rectification stage.
- High-purity oxygen is required, for example, in the electronics industry.
- Nitrogen which is obtained in the known process, also contains traces of other gases, for example of helium, neon, hydrogen and carbon monoxide. However, nitrogen of the highest purity is required for the modern semiconductor industry.
- the removal of carbon monoxide can be carried out catalytically.
- a helium discharge usually attached to the head of the first rectification stage can only bring about a slight reduction in helium, neon and hydrogen.
- the invention is therefore based on the object of developing a method of the type mentioned at the outset which enables the production of high-purity decomposition products, preferably high-purity oxygen and high-purity nitrogen.
- This object is achieved in that a further fraction above the bottom is taken from a crude argon column into which a stream essentially containing oxygen and argon is introduced from the second rectification stage and is broken down into high-purity oxygen and a lighter residual fraction in a high-purity oxygen column.
- oxygen can be produced as a high-purity decomposition product which is essentially free of argon, krypton, xenon and hydrocarbons.
- the concentration of krypton, xenon and hydrocarbons in the crude argon column decreases from the bottom of the column.
- the fraction removed above the bottom of the column therefore only contains the components oxygen, argon and nitrogen, while it is free from krypton, xenon and hydrocarbons.
- the oxygen is separated by rectification from nitrogen and argon. In this way, oxygen with a purity of less than 10 ppm, preferably less than 5 ppm, most preferably less than 2 ppm of hydrocarbons, krypton, xenon and nitrogen and a content of less than 20 ppm, preferably less than 15 ppm, of argon produce.
- the oxygen obtained in the bottom of the pure oxygen column is preferably taken off in liquid form. If high-purity gaseous oxygen is to be produced using the method, at least a portion of the high-purity oxygen is removed in gaseous form from the high-purity oxygen column. The removal takes place just above the column bottom.
- the residual fraction which essentially contains oxygen, argon and nitrogen, is removed from the top of the high-purity oxygen column and preferably returned to the crude argon column or to the second rectification stage above the removal point of the further fraction.
- the further fraction is removed in liquid form and added to the ultrapure oxygen column as reflux liquid.
- the further fraction is removed from several trays above the column bottom of the crude argon column.
- the bottoms between the column sump and the tapping point act as a barrier to the undesirable proportions of krypton, xenon and hydrocarbons.
- the high-purity oxygen is removed from a plurality of trays above the bottom of the ultrapure oxygen column.
- the only fraction which is introduced into the pure oxygen column generally contains impurities of the type mentioned only in orders of magnitude far below ppm. Nevertheless, such fractions can get into the bottom of the ultrapure oxygen column by enriching the smallest traces or by penetrating from the outside, for example through leaks in the bottom heating. Therefore, the removal is a few, preferably three to five floors above the sump
- the ultra-pure oxygen column is particularly inexpensive, since these trays - as in the crude argon column - serve as a barrier for unwanted traces of krypton, xenon and hydrocarbons.
- the high-purity oxygen can be withdrawn at this point both in liquid and in gaseous form. In order to avoid a slow accumulation of impurities in the sump during operation, it is advantageous if a small part of the sump liquid is led out of the high-purity oxygen column and discarded or returned to the second rectification stage.
- the column bottom of the further column is heated by nitrogen from the top of the first rectification stage.
- the heating is preferably carried out by heat exchange in a condenser evaporator arranged in the bottom of the ultrapure oxygen column. It is advantageous here if the nitrogen condenses at least partially during the heating and the condensate is returned to the pressure stage.
- An apparatus for carrying out the process according to the invention comprises a two-stage rectification column and a crude argon column connected to its second stage and is characterized by a high-purity oxygen column which is connected to the crude argon column by means of a lateral removal line, the lateral withdrawal line being arranged a plurality of rectification trays above the bottom of the crude argon column .
- the object on which the invention is based is further achieved in that a further nitrogen-rich fraction is introduced from the top of the first rectification stage into a high-purity nitrogen column and is broken down there into a bottom liquid and into a residual gas fraction, the bottom liquid being returned to the top of the first rectification stage and some trays below a liquid fraction of high-purity nitrogen is removed from the top of the first rectification stage.
- nitrogen can be produced as a very pure decomposition product.
- helium, neon, hydrogen and carbon monoxide are rectified from the nitrogen in the high-purity nitrogen column and removed in a residual gas fraction.
- the residual gas fraction can, for example, be admixed with impure nitrogen, which is usually taken from the second rectification stage and used to regenerate molecular sieve adsorbers.
- liquid nitrogen to the first rectification stage and the removal below some barrier trays cause residues of light gases such as helium, neon or hydrogen to be retained, which despite a helium discharge are also present at the top of the first rectification stage when the additional rectification is used in the high-purity nitrogen column can enrich.
- the liquid high-purity nitrogen has a purity of 99.999% and still contains argon, helium, neon, hydrogen and carbon monoxide.
- the liquid high-purity nitrogen is at least partially subcooled. This makes it easier to store the liquid product portion in a tank.
- the cooling is preferably carried out in indirect heat exchange with nitrogen from the second rectification stage.
- the nitrogen can then be fed into a separator and removed as a liquid.
- liquid high-purity nitrogen is at least partially evaporated from the top of the first rectification stage in heat exchange with condensing nitrogen.
- An apparatus for carrying out the process for the production of high-purity nitrogen comprises a two-stage rectification column, in which a first and a second rectification stage are in heat-exchanging connection via a common condenser-evaporator, a high-purity nitrogen column, the lower region of which is connected to the through a gas line and through a liquid line is connected to the upper region of the first rectification stage, and a removal line for high-purity nitrogen, which is attached to the first rectification stage some trays below the head.
- the process steps from one of claims 1 to 5 and the process steps from one of claims 7 to 9 are used together in the process according to the invention and, moreover, the bottom liquid of the ultrapure oxygen column is heated by heat exchange with the gas in the top of the ultrapure nitrogen column.
- both oxygen and nitrogen can be produced as decomposition products of the highest purity.
- the energy consumption is particularly low due to the heat exchange between the high-purity oxygen and high-purity nitrogen columns.
- a device for carrying out this method additionally has a condenser-evaporator which is fitted between the high-purity oxygen and high-purity nitrogen column.
- a condenser-evaporator which is fitted between the high-purity oxygen and high-purity nitrogen column.
- Air contaminated with impurities such as C0 2 and H 2 0 and compressed to a pressure of approx. 6.3 bar is fed via a line 1 to the first stage 2 of a two-stage rectification column 3.
- the air is split into a nitrogen-rich fraction in the head and an oxygen-rich fraction in the swamp.
- a portion of the nitrogen-rich fraction is removed in liquid form (line 4), subcooled in a heat exchanger 5, decompressed and fed at a temperature of about ⁇ 193 ° C. as reflux to the second stage 6 of the rectification column 3.
- the two stages 2, 6 of the rectification column 3 are in heat-exchanging connection with one another via a common condenser-evaporator 7.
- the oxygen-rich fraction from the bottom of the first stage 2 is removed via a line 8, subcooled in the heat exchanger 5 and removed therefrom at an intermediate point which is at a higher temperature level than the nitrogen-rich fraction 4 supplied.
- a portion of the oxygen-rich fraction, which is at a temperature of approximately ⁇ 182 ° C., is fed to the second stage 6 at an intermediate point, while the rest is fed as a coolant to a condenser-evaporator 9 in the top of a crude argon column 10.
- Another pre-cleaned air stream which has been compressed to generate cold and then expanded, is fed via a line 11 to the second stage 6 approximately at the level of the supply of the oxygen-rich fraction 8.
- the pre-separation fractions from the first stage are converted into pure oxygen, which is obtained in the column bottom and pure nitrogen, which is obtained in the top of the column, disassembled.
- the oxygen is typically 99.5% pure and contains about 0.5% argon and additionally all krypton and xenon as well as the hydrocarbons in the ppm range that are present in the air.
- the oxygen is withdrawn in gaseous form above the column bottom via a line 12 and / or in liquid form from the column bottom via a line 13.
- the liquid oxygen is subcooled in the heat exchanger 5.
- Liquid nitrogen (line 14) with a purity of 99.995% is led out of the top of the second stage 6.
- Gaseous pure nitrogen with a purity of 99.995% is removed from the top of the second stage 6 via a line 15.
- These two nitrogen fractions are still contaminated by the usual components such as oxygen, argon, helium, neon, hydrogen and carbon monoxide.
- Impure gaseous nitrogen (approx. 0.15% 0 2 content) is removed from the upper third of the column via a line 16.
- the two gaseous nitrogen streams are heated in the heat exchanger 5 and removed from the system.
- the argon concentration is highest in the second stage 6 somewhat below the middle of the column, for example between the 35th and 36th plate with a total plate number of 96.
- a fraction from the second stage is removed via line 17, which contains up to 91% 0 2 a few ppm N 2 to 9% argon and traces of xenon, krypton, hydrocarbons in the ppm range.
- This fraction is fed to the crude argon column 10 at its lower end and is broken down there by rectification into a gaseous crude argon fraction which is taken from the top of the crude argon column via a line 18 and a liquid bottom fraction which is returned to the second stage via a line 19.
- the crude argon fraction preferably has a composition of 2% 0 2 , 97% argon and 1% N 2 , the bottom liquid has a composition of 94% 0 2 , 6% argon.
- a portion of the crude argon is condensed to form reflux liquid in the condenser-evaporator 9 by heat exchange with previously relaxed oxygen-rich liquid from the first rectification stage 2.
- the oxygen-rich liquid is partially evaporated.
- the vaporized portion is removed via a line 20 and passed into the second stage 6 together with the liquid (line 21) removed from the evaporator space.
- a liquid fraction is removed from the crude argon column via a line 22 and fed to a high-purity oxygen column 23.
- the fraction 22 consists only of the components 0 2 , argon and N 2 and is free of krypton, xenon and hydrocarbons. The reason for this is that the impurities (krypton, xenon, hydrocarbons) are retained in the bottom of the column between the column sump and the removal point in the column sump and are returned to the second stage 6 via line 19.
- the ultrapure oxygen column 23 which is operated at a temperature of -179 ° C and a pressure of 1.5 bar, nitrogen and argon are separated from the oxygen and removed as a gaseous residual fraction via a line 24 from the top and above the removal point of the liquid fraction 22 fed back into the crude argon column 10 or above the line 17 into the column 6 (dashed line 42).
- High-purity liquid oxygen with a purity of 99.999% is removed from the bottom of the ultrapure oxygen column 23 via a line 25.
- the oxygen typically has the following impurities: hydrocarbons, krypton, xenon, nitrogen each less than 1 ppm, argon less than 10 ppm.
- the high-purity liquid oxygen is subcooled in the heat exchanger 5 and then removed from the system. If necessary, in addition or alternatively, high-purity gaseous oxygen above the Column sump can be removed via a line 26.
- the column sump is heated by nitrogen, which is removed from the top of the first stage 2 and fed via a line 27 to a condenser-evaporator 28 arranged in the column sump. During the heat exchange, the nitrogen condenses and is returned to the head of the first stage 2 via a line 29. Part of the gaseous nitrogen is branched off from line 27 and removed via line 30.
- FIG. 2 shows a modification of the method of FIG. 1. Since the major part of the modified method is identical to that of FIG. 1, only the ultrapure oxygen column 23 is shown in FIG.
- the removal of the liquid high-purity oxygen via line 25 or the gaseous high-purity oxygen via line 26 takes place here some floors above the sump.
- the preferably three to five rectification trays retain undesirable fractions such as krypton, xenon and hydrocarbons, which can get into the bottom of the ultrapure oxygen column 23 by enriching traces or by penetrating through a less dense point on the condenser-evaporator 28.
- Line 43 is used to discharge a small amount of bottom liquid, which is either discarded or returned to the second rectification stage. In this way, the accumulation of undesirable fractions in the bottom of the ultrapure oxygen column 23 can be largely prevented.
- FIG. 3 shows a further embodiment of the method according to the invention, in which high-purity nitrogen is generated.
- Analog system parts are provided with the same reference numerals as in Figure 1.
- Gaseous nitrogen from the top of the first rectification stage 2 is fed via line 27 into a high-purity nitrogen column 31, which is operated at approximately the same pressure as the first rectification stage, and is separated there into a liquid bottom fraction and a residual gas fraction.
- the residual gas fraction contains undesirable fractions such as helium, neon and carbon monoxide and is drawn off via line 33 and admixed with the impure nitrogen fraction 16 from the second rectification stage 6.
- the bottom fraction flows back via line 29 to the first rectification stage, from which high-purity nitrogen is withdrawn via line 34.
- the high-purity nitrogen 34 has a purity of 99.999%, the rest consists essentially of argon.
- a further line 32 opens into the high-purity nitrogen column 31.
- the line 32 is connected directly to the condenser 7 and is also referred to as a helium drain.
- the air components helium, neon and carbon monoxide accumulate in this area. These constituents are removed together with the nitrogen via line 32 from the first stage 2 and removed with the top fraction of the high-purity nitrogen column 31.
- the top of the high-purity nitrogen column 31 is cooled with oxygen-rich liquid 46, which comes from the bottom of the first rectification stage 2.
- the oxygen-rich liquid is partially evaporated, leaves the top condenser of the high-purity nitrogen column 31 via line 44 or 45 and is then introduced into the second rectification stage 6.
- the nitrogen removed via line 34 is subcooled in heat exchanger 5 and then expanded.
- the gas produced during the expansion is separated in a separator 35 and mixed with the nitrogen in line 15 via a line 36.
- Liquid nitrogen of the highest purity can be removed via line 37.
- the high-purity liquid nitrogen (line 38) is partially or completely expanded without prior cooling and fed to an evaporator 39.
- the evaporator is heated by a partial flow of the gaseous nitrogen in line 30, which is branched off via a line 40 and, after the heat exchange in the evaporator 39, is admixed with the nitrogen-rich fraction 4.
- the high-purity gaseous nitrogen is discharged from the evaporator 39 via a line 41.
- FIG. 1 An embodiment of the method according to the invention, in which both high-purity oxygen and high-purity nitrogen can be produced, is shown in FIG.
- the high-purity oxygen column 23 and the high-purity nitrogen column 31 are combined into one unit and are in heat-exchanging connection via a condenser-evaporator 28 now common.
- the heating of the bottom of the ultrapure oxygen column 27 and the cooling of the head of the ultrapure nitrogen column 31 can be carried out with the aid of only one heat exchange apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Separation Of Gases By Adsorption (AREA)
- Electrostatic Separation (AREA)
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88110876T ATE59463T1 (de) | 1987-07-09 | 1988-07-07 | Verfahren und vorrichtung zur luftzerlegung durch rektifikation. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873722746 DE3722746A1 (de) | 1987-07-09 | 1987-07-09 | Verfahren und vorrichtung zur luftzerlegung durch rektifikation |
DE3722746 | 1987-07-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0299364A2 EP0299364A2 (fr) | 1989-01-18 |
EP0299364A3 EP0299364A3 (en) | 1989-03-15 |
EP0299364B1 true EP0299364B1 (fr) | 1990-12-27 |
Family
ID=6331261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88110876A Expired - Lifetime EP0299364B1 (fr) | 1987-07-09 | 1988-07-07 | Procédé et dispositif de séparation de l'air par rectification |
Country Status (6)
Country | Link |
---|---|
US (1) | US4824453A (fr) |
EP (1) | EP0299364B1 (fr) |
JP (1) | JP2696705B2 (fr) |
CN (1) | CN1016460B (fr) |
AT (1) | ATE59463T1 (fr) |
DE (2) | DE3722746A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2662653A1 (fr) | 2012-05-08 | 2013-11-13 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la production dýazote sans hydrogène |
WO2023083488A1 (fr) | 2021-11-10 | 2023-05-19 | Linde Gmbh | Procédé et agencement de production d'un produit à base d'argon et d'un produit à base d'oxygène et procédé de rénovation d'une ou de plusieurs installations de fractionnement d'air |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4867772A (en) * | 1988-11-29 | 1989-09-19 | Liquid Air Engineering Corporation | Cryogenic gas purification process and apparatus |
GB8828133D0 (en) * | 1988-12-02 | 1989-01-05 | Boc Group Plc | Air separation |
JPH0672740B2 (ja) * | 1989-01-20 | 1994-09-14 | ル・エール・リクイツド・ソシエテ・アノニム・プール・ル・エチユド・エ・ル・エクスプルワテション・デ・プロセデ・ジエオルジエ・クロード | 空気分離及び超高純度酸素製造方法並びに装置 |
DE3913880A1 (de) * | 1989-04-27 | 1990-10-31 | Linde Ag | Verfahren und vorrichtung zur tieftemperaturzerlegung von luft |
FR2650378A1 (fr) * | 1989-07-28 | 1991-02-01 | Air Liquide | Installation de distillation d'air produisant de l'argon |
US5019144A (en) * | 1990-01-23 | 1991-05-28 | Union Carbide Industrial Gases Technology Corporation | Cryogenic air separation system with hybrid argon column |
US5049173A (en) * | 1990-03-06 | 1991-09-17 | Air Products And Chemicals, Inc. | Production of ultra-high purity oxygen from cryogenic air separation plants |
US5129932A (en) * | 1990-06-12 | 1992-07-14 | Air Products And Chemicals, Inc. | Cryogenic process for the separation of air to produce moderate pressure nitrogen |
US5137559A (en) * | 1990-08-06 | 1992-08-11 | Air Products And Chemicals, Inc. | Production of nitrogen free of light impurities |
US5205127A (en) * | 1990-08-06 | 1993-04-27 | Air Products And Chemicals, Inc. | Cryogenic process for producing ultra high purity nitrogen |
US5123947A (en) * | 1991-01-03 | 1992-06-23 | Air Products And Chemicals, Inc. | Cryogenic process for the separation of air to produce ultra high purity nitrogen |
US5133790A (en) * | 1991-06-24 | 1992-07-28 | Union Carbide Industrial Gases Technology Corporation | Cryogenic rectification method for producing refined argon |
FR2680114B1 (fr) * | 1991-08-07 | 1994-08-05 | Lair Liquide | Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie. |
US5289688A (en) * | 1991-11-15 | 1994-03-01 | Air Products And Chemicals, Inc. | Inter-column heat integration for multi-column distillation system |
US5218825A (en) * | 1991-11-15 | 1993-06-15 | Air Products And Chemicals, Inc. | Coproduction of a normal purity and ultra high purity volatile component from a multi-component stream |
US5195324A (en) * | 1992-03-19 | 1993-03-23 | Prazair Technology, Inc. | Cryogenic rectification system for producing nitrogen and ultra high purity oxygen |
JP2966999B2 (ja) * | 1992-04-13 | 1999-10-25 | 日本エア・リキード株式会社 | 超高純度窒素・酸素製造装置 |
FR2694383B1 (fr) * | 1992-07-29 | 1994-09-16 | Air Liquide | Production et installation de production d'azote gazeux à plusieurs puretés différentes. |
US5351492A (en) * | 1992-09-23 | 1994-10-04 | Air Products And Chemicals, Inc. | Distillation strategies for the production of carbon monoxide-free nitrogen |
US5528906A (en) * | 1995-06-26 | 1996-06-25 | The Boc Group, Inc. | Method and apparatus for producing ultra-high purity oxygen |
US5546767A (en) * | 1995-09-29 | 1996-08-20 | Praxair Technology, Inc. | Cryogenic rectification system for producing dual purity oxygen |
JPH09184681A (ja) * | 1995-11-02 | 1997-07-15 | Teisan Kk | 超高純度窒素及び酸素の製造装置 |
US5628207A (en) * | 1996-04-05 | 1997-05-13 | Praxair Technology, Inc. | Cryogenic Rectification system for producing lower purity gaseous oxygen and high purity oxygen |
US5596886A (en) * | 1996-04-05 | 1997-01-28 | Praxair Technology, Inc. | Cryogenic rectification system for producing gaseous oxygen and high purity nitrogen |
US5669236A (en) * | 1996-08-05 | 1997-09-23 | Praxair Technology, Inc. | Cryogenic rectification system for producing low purity oxygen and high purity oxygen |
DE19640711A1 (de) * | 1996-10-02 | 1998-04-09 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung von hochreinem Stickstoff |
US5682765A (en) * | 1996-12-12 | 1997-11-04 | Praxair Technology, Inc. | Cryogenic rectification system for producing argon and lower purity oxygen |
GB9902101D0 (en) | 1999-01-29 | 1999-03-24 | Boc Group Plc | Separation of air |
US7299656B2 (en) * | 2005-02-18 | 2007-11-27 | Praxair Technology, Inc. | Cryogenic rectification system for neon production |
JP4944454B2 (ja) * | 2006-02-20 | 2012-05-30 | 大陽日酸株式会社 | 窒素分析装置 |
CN100445671C (zh) * | 2007-02-12 | 2008-12-24 | 庞启东 | 利用尾气余热的氨水吸收式制冷装置 |
CN101886870B (zh) * | 2010-06-24 | 2012-11-14 | 上海启元科技发展有限公司 | 一种生产带压力的高纯氮及高纯氧的方法和装置 |
CN102620520B (zh) * | 2012-04-09 | 2014-09-17 | 开封黄河空分集团有限公司 | 一种由空气分离制取压力氧气和压力氮气附产液氩的工艺 |
CN102721260A (zh) * | 2012-07-04 | 2012-10-10 | 开封空分集团有限公司 | 高纯氧提取装置及利用该装置提取高纯氧的方法 |
EP3067649A1 (fr) * | 2015-03-13 | 2016-09-14 | Linde Aktiengesellschaft | Système de colonnes de distillation et procédé de production d'oxygène par séparation cryogénique de l'air |
EP3327393A1 (fr) * | 2016-11-25 | 2018-05-30 | Linde Aktiengesellschaft | Procédé et dispositif de production d'un flux de produit d'oxygène ultrapur par cryogénie de séparation d'air |
AU2018269511A1 (en) | 2017-05-16 | 2019-11-28 | Terrence J. Ebert | Apparatus and process for liquefying gases |
US10295254B2 (en) | 2017-09-05 | 2019-05-21 | Praxair Technology, Inc. | System and method for recovery of non-condensable gases such as neon, helium, xenon, and krypton from an air separation unit |
US10408536B2 (en) | 2017-09-05 | 2019-09-10 | Praxair Technology, Inc. | System and method for recovery of neon and helium from an air separation unit |
US10814268B2 (en) | 2018-03-29 | 2020-10-27 | Samuel L. Shepherd | Process for separating gases from gas mixtures using hydro fluoro ether |
CN109883139B (zh) * | 2019-01-14 | 2021-07-02 | 安徽加力气体有限公司 | 一种基于富氧空分的高效提氩工艺 |
CN112161427B (zh) * | 2020-09-29 | 2023-05-26 | 上海启元气体发展有限公司 | 一种对称混合流动氧氮分离制取机 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0136926A1 (fr) * | 1983-08-05 | 1985-04-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et installation de distillation d'air au moyen d'une double colonne |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2280383A (en) * | 1939-09-08 | 1942-04-21 | Baufre William Lane De | Method and apparatus for extracting an auxiliary product of rectification |
DE1922956B1 (de) * | 1969-05-06 | 1970-11-26 | Hoechst Ag | Verfahren zur Erzeugung von argonfreiem Sauerstoff durch Rektifikation von Luft |
US4137056A (en) * | 1974-04-26 | 1979-01-30 | Golovko Georgy A | Process for low-temperature separation of air |
US4604116A (en) * | 1982-09-13 | 1986-08-05 | Erickson Donald C | High pressure oxygen pumped LOX rectifier |
US4433989A (en) * | 1982-09-13 | 1984-02-28 | Erickson Donald C | Air separation with medium pressure enrichment |
DE3486017T3 (de) * | 1983-03-08 | 1999-03-04 | Daidousanso Co. Ltd., Osaka | Sehr reiner Stickstoffgaserzeugungsapparat. |
US4533375A (en) * | 1983-08-12 | 1985-08-06 | Erickson Donald C | Cryogenic air separation with cold argon recycle |
JPS60142184A (ja) * | 1983-12-28 | 1985-07-27 | 日本酸素株式会社 | 空気液化分離方法 |
JPS60142183A (ja) * | 1983-12-28 | 1985-07-27 | 日本酸素株式会社 | 空気液化分離方法及び装置 |
US4560397A (en) * | 1984-08-16 | 1985-12-24 | Union Carbide Corporation | Process to produce ultrahigh purity oxygen |
US4578095A (en) * | 1984-08-20 | 1986-03-25 | Erickson Donald C | Low energy high purity oxygen plus argon |
JPS62210386A (ja) * | 1986-03-12 | 1987-09-16 | 株式会社日立製作所 | 空気分離装置 |
-
1987
- 1987-07-09 DE DE19873722746 patent/DE3722746A1/de not_active Withdrawn
-
1988
- 1988-07-07 EP EP88110876A patent/EP0299364B1/fr not_active Expired - Lifetime
- 1988-07-07 DE DE8888110876T patent/DE3861437D1/de not_active Expired - Fee Related
- 1988-07-07 AT AT88110876T patent/ATE59463T1/de not_active IP Right Cessation
- 1988-07-08 JP JP63169196A patent/JP2696705B2/ja not_active Expired - Fee Related
- 1988-07-09 CN CN88104228A patent/CN1016460B/zh not_active Expired
- 1988-07-11 US US07/217,516 patent/US4824453A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0136926A1 (fr) * | 1983-08-05 | 1985-04-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et installation de distillation d'air au moyen d'une double colonne |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2662653A1 (fr) | 2012-05-08 | 2013-11-13 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la production dýazote sans hydrogène |
WO2023083488A1 (fr) | 2021-11-10 | 2023-05-19 | Linde Gmbh | Procédé et agencement de production d'un produit à base d'argon et d'un produit à base d'oxygène et procédé de rénovation d'une ou de plusieurs installations de fractionnement d'air |
Also Published As
Publication number | Publication date |
---|---|
CN1031131A (zh) | 1989-02-15 |
ATE59463T1 (de) | 1991-01-15 |
JPS6479574A (en) | 1989-03-24 |
CN1016460B (zh) | 1992-04-29 |
US4824453A (en) | 1989-04-25 |
DE3722746A1 (de) | 1989-01-19 |
JP2696705B2 (ja) | 1998-01-14 |
EP0299364A3 (en) | 1989-03-15 |
DE3861437D1 (de) | 1991-02-07 |
EP0299364A2 (fr) | 1989-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0299364B1 (fr) | Procédé et dispositif de séparation de l'air par rectification | |
DE69100239T2 (de) | Herstellung von ultrahochreinem Sauerstoff bei der Tieftemperatur-Luftzerlegung. | |
EP0377117B1 (fr) | Procédé et dispositif de séparation de l'air | |
EP0628777B1 (fr) | Procédé et dispositif d'obtention d'argon | |
DE69302064T3 (de) | Destillationsprozess für die Herstellung von kohlenmonoxidfreiem Stickstoff | |
DE69209572T3 (de) | Verfahren zur Herstellung von reinstem Stickstoff | |
EP0669509A1 (fr) | Procédé et appareil permettant d'obtenir d l'argon pur | |
EP0669508B1 (fr) | Procédé et appareil permettant d'obtenir de l'argon pur | |
DE69613066T2 (de) | Kryogenische Lufttrennungsanlage zur Herstellung von ultrahochreinem Sauerstoff | |
DE10332863A1 (de) | Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft | |
DE69204128T2 (de) | Kryogenisches Verfahren zur Herstellung von ultrareinem Stickstoff. | |
DE69007032T2 (de) | Verfahren und Einrichtung zur Luftdestillierung mit Argongewinnung. | |
EP1051588B1 (fr) | Procede et dispositif pour vaporiser de l'oxygene liquide | |
DE69204800T2 (de) | Coproduktion von reinem und ultrahochreinem flüchtigen Bestandteil eines Mehrkomponentenstroms. | |
DE69522877T2 (de) | Verfahren zur Herstellung von hochreinem Stickstoff | |
DE69613279T2 (de) | Lufttrennung | |
EP1006326B1 (fr) | Procédé et dispositif pour la production d'oxygène sous pression et de krypton/xenon par séparation cryogénique d'air | |
DE69709234T2 (de) | Verfahren und Vorrichtung zur Lufttrennung | |
DE69223217T2 (de) | Verfahren zur Entfernung von Wasserstoff bei der kryogenen Destillation zwecks Erzeugung von hochreinem Stickstoff | |
DE69611469T2 (de) | Verfahren und Vorrichtung zur Verdampfung eines Flüssigkeitstromes | |
DE69004647T2 (de) | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft. | |
EP1231440B1 (fr) | Procédé et installation de séparation d'air par distillation cryogénique | |
DE19933558B4 (de) | Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft | |
DE69521017T2 (de) | Lufttrennung | |
DE19855485A1 (de) | Verfahren und Vorrichtung zur Gewinnung eines krypton- und/oder xenonangereicherten Gemischs durch Gegenstrom-Stoffaustausch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19890217 |
|
17Q | First examination report despatched |
Effective date: 19891012 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 59463 Country of ref document: AT Date of ref document: 19910115 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3861437 Country of ref document: DE Date of ref document: 19910207 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20050622 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050630 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20050703 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050706 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050708 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20050913 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060707 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060731 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070201 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060707 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20070201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070330 |
|
BERE | Be: lapsed |
Owner name: *LINDE A.G. Effective date: 20060731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070707 |