EP0299364B1 - Procédé et dispositif de séparation de l'air par rectification - Google Patents

Procédé et dispositif de séparation de l'air par rectification Download PDF

Info

Publication number
EP0299364B1
EP0299364B1 EP88110876A EP88110876A EP0299364B1 EP 0299364 B1 EP0299364 B1 EP 0299364B1 EP 88110876 A EP88110876 A EP 88110876A EP 88110876 A EP88110876 A EP 88110876A EP 0299364 B1 EP0299364 B1 EP 0299364B1
Authority
EP
European Patent Office
Prior art keywords
column
nitrogen
rectification
oxygen
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88110876A
Other languages
German (de)
English (en)
Other versions
EP0299364A2 (fr
EP0299364A3 (en
Inventor
Dietrich Dipl.-Ing. Rottmann
Horst Dipl.-Ing. Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to AT88110876T priority Critical patent/ATE59463T1/de
Publication of EP0299364A2 publication Critical patent/EP0299364A2/fr
Publication of EP0299364A3 publication Critical patent/EP0299364A3/de
Application granted granted Critical
Publication of EP0299364B1 publication Critical patent/EP0299364B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • F25J3/04715The auxiliary column system simultaneously produces oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon

Definitions

  • the invention further relates to an apparatus for performing such a method.
  • U.S. Patent No. 4,575,388 also shows a crude argon column into which argon-enriched gas is introduced from the second rectification stage.
  • a liquid bottom fraction consisting essentially of oxygen is returned from the crude argon column to the second rectification stage.
  • the oxygen-rich liquid that accumulates in the bottom of the crude argon column has a relatively high concentration of impurities, since the argon-enriched fraction from the second rectification stage contains oxygen and nitrogen in addition to krypton, xenon and hydrocarbons, all of which collect in the bottom of the crude argon column .
  • the impurities By returning the bottom liquid to the second rectification stage, the impurities get into the bottom of the second rectification stage and thus into the oxygen removed as a decomposition product.
  • the process does not allow high-purity, in particular liquid, oxygen which is free from krypton, xenon and hydrocarbons to be obtained from the second rectification stage.
  • High-purity oxygen is required, for example, in the electronics industry.
  • Nitrogen which is obtained in the known process, also contains traces of other gases, for example of helium, neon, hydrogen and carbon monoxide. However, nitrogen of the highest purity is required for the modern semiconductor industry.
  • the removal of carbon monoxide can be carried out catalytically.
  • a helium discharge usually attached to the head of the first rectification stage can only bring about a slight reduction in helium, neon and hydrogen.
  • the invention is therefore based on the object of developing a method of the type mentioned at the outset which enables the production of high-purity decomposition products, preferably high-purity oxygen and high-purity nitrogen.
  • This object is achieved in that a further fraction above the bottom is taken from a crude argon column into which a stream essentially containing oxygen and argon is introduced from the second rectification stage and is broken down into high-purity oxygen and a lighter residual fraction in a high-purity oxygen column.
  • oxygen can be produced as a high-purity decomposition product which is essentially free of argon, krypton, xenon and hydrocarbons.
  • the concentration of krypton, xenon and hydrocarbons in the crude argon column decreases from the bottom of the column.
  • the fraction removed above the bottom of the column therefore only contains the components oxygen, argon and nitrogen, while it is free from krypton, xenon and hydrocarbons.
  • the oxygen is separated by rectification from nitrogen and argon. In this way, oxygen with a purity of less than 10 ppm, preferably less than 5 ppm, most preferably less than 2 ppm of hydrocarbons, krypton, xenon and nitrogen and a content of less than 20 ppm, preferably less than 15 ppm, of argon produce.
  • the oxygen obtained in the bottom of the pure oxygen column is preferably taken off in liquid form. If high-purity gaseous oxygen is to be produced using the method, at least a portion of the high-purity oxygen is removed in gaseous form from the high-purity oxygen column. The removal takes place just above the column bottom.
  • the residual fraction which essentially contains oxygen, argon and nitrogen, is removed from the top of the high-purity oxygen column and preferably returned to the crude argon column or to the second rectification stage above the removal point of the further fraction.
  • the further fraction is removed in liquid form and added to the ultrapure oxygen column as reflux liquid.
  • the further fraction is removed from several trays above the column bottom of the crude argon column.
  • the bottoms between the column sump and the tapping point act as a barrier to the undesirable proportions of krypton, xenon and hydrocarbons.
  • the high-purity oxygen is removed from a plurality of trays above the bottom of the ultrapure oxygen column.
  • the only fraction which is introduced into the pure oxygen column generally contains impurities of the type mentioned only in orders of magnitude far below ppm. Nevertheless, such fractions can get into the bottom of the ultrapure oxygen column by enriching the smallest traces or by penetrating from the outside, for example through leaks in the bottom heating. Therefore, the removal is a few, preferably three to five floors above the sump
  • the ultra-pure oxygen column is particularly inexpensive, since these trays - as in the crude argon column - serve as a barrier for unwanted traces of krypton, xenon and hydrocarbons.
  • the high-purity oxygen can be withdrawn at this point both in liquid and in gaseous form. In order to avoid a slow accumulation of impurities in the sump during operation, it is advantageous if a small part of the sump liquid is led out of the high-purity oxygen column and discarded or returned to the second rectification stage.
  • the column bottom of the further column is heated by nitrogen from the top of the first rectification stage.
  • the heating is preferably carried out by heat exchange in a condenser evaporator arranged in the bottom of the ultrapure oxygen column. It is advantageous here if the nitrogen condenses at least partially during the heating and the condensate is returned to the pressure stage.
  • An apparatus for carrying out the process according to the invention comprises a two-stage rectification column and a crude argon column connected to its second stage and is characterized by a high-purity oxygen column which is connected to the crude argon column by means of a lateral removal line, the lateral withdrawal line being arranged a plurality of rectification trays above the bottom of the crude argon column .
  • the object on which the invention is based is further achieved in that a further nitrogen-rich fraction is introduced from the top of the first rectification stage into a high-purity nitrogen column and is broken down there into a bottom liquid and into a residual gas fraction, the bottom liquid being returned to the top of the first rectification stage and some trays below a liquid fraction of high-purity nitrogen is removed from the top of the first rectification stage.
  • nitrogen can be produced as a very pure decomposition product.
  • helium, neon, hydrogen and carbon monoxide are rectified from the nitrogen in the high-purity nitrogen column and removed in a residual gas fraction.
  • the residual gas fraction can, for example, be admixed with impure nitrogen, which is usually taken from the second rectification stage and used to regenerate molecular sieve adsorbers.
  • liquid nitrogen to the first rectification stage and the removal below some barrier trays cause residues of light gases such as helium, neon or hydrogen to be retained, which despite a helium discharge are also present at the top of the first rectification stage when the additional rectification is used in the high-purity nitrogen column can enrich.
  • the liquid high-purity nitrogen has a purity of 99.999% and still contains argon, helium, neon, hydrogen and carbon monoxide.
  • the liquid high-purity nitrogen is at least partially subcooled. This makes it easier to store the liquid product portion in a tank.
  • the cooling is preferably carried out in indirect heat exchange with nitrogen from the second rectification stage.
  • the nitrogen can then be fed into a separator and removed as a liquid.
  • liquid high-purity nitrogen is at least partially evaporated from the top of the first rectification stage in heat exchange with condensing nitrogen.
  • An apparatus for carrying out the process for the production of high-purity nitrogen comprises a two-stage rectification column, in which a first and a second rectification stage are in heat-exchanging connection via a common condenser-evaporator, a high-purity nitrogen column, the lower region of which is connected to the through a gas line and through a liquid line is connected to the upper region of the first rectification stage, and a removal line for high-purity nitrogen, which is attached to the first rectification stage some trays below the head.
  • the process steps from one of claims 1 to 5 and the process steps from one of claims 7 to 9 are used together in the process according to the invention and, moreover, the bottom liquid of the ultrapure oxygen column is heated by heat exchange with the gas in the top of the ultrapure nitrogen column.
  • both oxygen and nitrogen can be produced as decomposition products of the highest purity.
  • the energy consumption is particularly low due to the heat exchange between the high-purity oxygen and high-purity nitrogen columns.
  • a device for carrying out this method additionally has a condenser-evaporator which is fitted between the high-purity oxygen and high-purity nitrogen column.
  • a condenser-evaporator which is fitted between the high-purity oxygen and high-purity nitrogen column.
  • Air contaminated with impurities such as C0 2 and H 2 0 and compressed to a pressure of approx. 6.3 bar is fed via a line 1 to the first stage 2 of a two-stage rectification column 3.
  • the air is split into a nitrogen-rich fraction in the head and an oxygen-rich fraction in the swamp.
  • a portion of the nitrogen-rich fraction is removed in liquid form (line 4), subcooled in a heat exchanger 5, decompressed and fed at a temperature of about ⁇ 193 ° C. as reflux to the second stage 6 of the rectification column 3.
  • the two stages 2, 6 of the rectification column 3 are in heat-exchanging connection with one another via a common condenser-evaporator 7.
  • the oxygen-rich fraction from the bottom of the first stage 2 is removed via a line 8, subcooled in the heat exchanger 5 and removed therefrom at an intermediate point which is at a higher temperature level than the nitrogen-rich fraction 4 supplied.
  • a portion of the oxygen-rich fraction, which is at a temperature of approximately ⁇ 182 ° C., is fed to the second stage 6 at an intermediate point, while the rest is fed as a coolant to a condenser-evaporator 9 in the top of a crude argon column 10.
  • Another pre-cleaned air stream which has been compressed to generate cold and then expanded, is fed via a line 11 to the second stage 6 approximately at the level of the supply of the oxygen-rich fraction 8.
  • the pre-separation fractions from the first stage are converted into pure oxygen, which is obtained in the column bottom and pure nitrogen, which is obtained in the top of the column, disassembled.
  • the oxygen is typically 99.5% pure and contains about 0.5% argon and additionally all krypton and xenon as well as the hydrocarbons in the ppm range that are present in the air.
  • the oxygen is withdrawn in gaseous form above the column bottom via a line 12 and / or in liquid form from the column bottom via a line 13.
  • the liquid oxygen is subcooled in the heat exchanger 5.
  • Liquid nitrogen (line 14) with a purity of 99.995% is led out of the top of the second stage 6.
  • Gaseous pure nitrogen with a purity of 99.995% is removed from the top of the second stage 6 via a line 15.
  • These two nitrogen fractions are still contaminated by the usual components such as oxygen, argon, helium, neon, hydrogen and carbon monoxide.
  • Impure gaseous nitrogen (approx. 0.15% 0 2 content) is removed from the upper third of the column via a line 16.
  • the two gaseous nitrogen streams are heated in the heat exchanger 5 and removed from the system.
  • the argon concentration is highest in the second stage 6 somewhat below the middle of the column, for example between the 35th and 36th plate with a total plate number of 96.
  • a fraction from the second stage is removed via line 17, which contains up to 91% 0 2 a few ppm N 2 to 9% argon and traces of xenon, krypton, hydrocarbons in the ppm range.
  • This fraction is fed to the crude argon column 10 at its lower end and is broken down there by rectification into a gaseous crude argon fraction which is taken from the top of the crude argon column via a line 18 and a liquid bottom fraction which is returned to the second stage via a line 19.
  • the crude argon fraction preferably has a composition of 2% 0 2 , 97% argon and 1% N 2 , the bottom liquid has a composition of 94% 0 2 , 6% argon.
  • a portion of the crude argon is condensed to form reflux liquid in the condenser-evaporator 9 by heat exchange with previously relaxed oxygen-rich liquid from the first rectification stage 2.
  • the oxygen-rich liquid is partially evaporated.
  • the vaporized portion is removed via a line 20 and passed into the second stage 6 together with the liquid (line 21) removed from the evaporator space.
  • a liquid fraction is removed from the crude argon column via a line 22 and fed to a high-purity oxygen column 23.
  • the fraction 22 consists only of the components 0 2 , argon and N 2 and is free of krypton, xenon and hydrocarbons. The reason for this is that the impurities (krypton, xenon, hydrocarbons) are retained in the bottom of the column between the column sump and the removal point in the column sump and are returned to the second stage 6 via line 19.
  • the ultrapure oxygen column 23 which is operated at a temperature of -179 ° C and a pressure of 1.5 bar, nitrogen and argon are separated from the oxygen and removed as a gaseous residual fraction via a line 24 from the top and above the removal point of the liquid fraction 22 fed back into the crude argon column 10 or above the line 17 into the column 6 (dashed line 42).
  • High-purity liquid oxygen with a purity of 99.999% is removed from the bottom of the ultrapure oxygen column 23 via a line 25.
  • the oxygen typically has the following impurities: hydrocarbons, krypton, xenon, nitrogen each less than 1 ppm, argon less than 10 ppm.
  • the high-purity liquid oxygen is subcooled in the heat exchanger 5 and then removed from the system. If necessary, in addition or alternatively, high-purity gaseous oxygen above the Column sump can be removed via a line 26.
  • the column sump is heated by nitrogen, which is removed from the top of the first stage 2 and fed via a line 27 to a condenser-evaporator 28 arranged in the column sump. During the heat exchange, the nitrogen condenses and is returned to the head of the first stage 2 via a line 29. Part of the gaseous nitrogen is branched off from line 27 and removed via line 30.
  • FIG. 2 shows a modification of the method of FIG. 1. Since the major part of the modified method is identical to that of FIG. 1, only the ultrapure oxygen column 23 is shown in FIG.
  • the removal of the liquid high-purity oxygen via line 25 or the gaseous high-purity oxygen via line 26 takes place here some floors above the sump.
  • the preferably three to five rectification trays retain undesirable fractions such as krypton, xenon and hydrocarbons, which can get into the bottom of the ultrapure oxygen column 23 by enriching traces or by penetrating through a less dense point on the condenser-evaporator 28.
  • Line 43 is used to discharge a small amount of bottom liquid, which is either discarded or returned to the second rectification stage. In this way, the accumulation of undesirable fractions in the bottom of the ultrapure oxygen column 23 can be largely prevented.
  • FIG. 3 shows a further embodiment of the method according to the invention, in which high-purity nitrogen is generated.
  • Analog system parts are provided with the same reference numerals as in Figure 1.
  • Gaseous nitrogen from the top of the first rectification stage 2 is fed via line 27 into a high-purity nitrogen column 31, which is operated at approximately the same pressure as the first rectification stage, and is separated there into a liquid bottom fraction and a residual gas fraction.
  • the residual gas fraction contains undesirable fractions such as helium, neon and carbon monoxide and is drawn off via line 33 and admixed with the impure nitrogen fraction 16 from the second rectification stage 6.
  • the bottom fraction flows back via line 29 to the first rectification stage, from which high-purity nitrogen is withdrawn via line 34.
  • the high-purity nitrogen 34 has a purity of 99.999%, the rest consists essentially of argon.
  • a further line 32 opens into the high-purity nitrogen column 31.
  • the line 32 is connected directly to the condenser 7 and is also referred to as a helium drain.
  • the air components helium, neon and carbon monoxide accumulate in this area. These constituents are removed together with the nitrogen via line 32 from the first stage 2 and removed with the top fraction of the high-purity nitrogen column 31.
  • the top of the high-purity nitrogen column 31 is cooled with oxygen-rich liquid 46, which comes from the bottom of the first rectification stage 2.
  • the oxygen-rich liquid is partially evaporated, leaves the top condenser of the high-purity nitrogen column 31 via line 44 or 45 and is then introduced into the second rectification stage 6.
  • the nitrogen removed via line 34 is subcooled in heat exchanger 5 and then expanded.
  • the gas produced during the expansion is separated in a separator 35 and mixed with the nitrogen in line 15 via a line 36.
  • Liquid nitrogen of the highest purity can be removed via line 37.
  • the high-purity liquid nitrogen (line 38) is partially or completely expanded without prior cooling and fed to an evaporator 39.
  • the evaporator is heated by a partial flow of the gaseous nitrogen in line 30, which is branched off via a line 40 and, after the heat exchange in the evaporator 39, is admixed with the nitrogen-rich fraction 4.
  • the high-purity gaseous nitrogen is discharged from the evaporator 39 via a line 41.
  • FIG. 1 An embodiment of the method according to the invention, in which both high-purity oxygen and high-purity nitrogen can be produced, is shown in FIG.
  • the high-purity oxygen column 23 and the high-purity nitrogen column 31 are combined into one unit and are in heat-exchanging connection via a condenser-evaporator 28 now common.
  • the heating of the bottom of the ultrapure oxygen column 27 and the cooling of the head of the ultrapure nitrogen column 31 can be carried out with the aid of only one heat exchange apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Electrostatic Separation (AREA)

Claims (12)

1. Procédé de séparation de l'air par rectification, dans lequel on effectue dans un premier étage de rectification une séparation préalable de l'air en une fraction riche en azote et en une fraction riche en oxygène, ces deux fractions étant amenées vers un deuxième étage de rectification pour séprarer l'oxygène et l'azote, cependant qu'un courant (17) renfermant essentiellement de l'oxygène et de l'argon et provenant dudit deuxième étage de rectificatoin (6) est introduit dans une colonne à argon brut (10), caractérisé en ce qu'on retire de ladite colonne à argon brut (10) au-dessus de la cuve une fraction additionnelle (22) et en ce qu'on sépare cette fraction additionnelle dans une colonne de séparation de l'oxygène extra pur (23) en oxygène extra pur (25, 26) et en une fraction restante plus légère (24).
2. Procédé selon la revendication 1, caractérisé en ce que la fraction additionnelle (22) est retirée à l'état liquide et introduite comme liquide de recyclage dans la colonne de séparation de l'oxygène extra pur (23).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le prélèvement de la fraction additionnelle (22) est effectuée au-dessus de la cuve de la colonne à argon brut (10), à une distance de cette cuve qui correspond à une pluralité de plateaux.
4. Procédé selon une quelconque des revendications 1 à 3, caractérisé en ce que l'oxygène extra pur (25, 26) est retiré au-dessus de la cuve de la colonne de séparation d'oxygène de pureté spéciale (23), à un niveau correspondant à plusieurs plateaux au-dessus de la cuve.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on réchauffe la cuve de la colonne à oxygène extra pur (23) à l'aide d'azote (27) provenant de la tête du premier étage de rectification (2).
6. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, comportant une colonne de rectification à deux étages et une colonne à argon brut reliée au deuxième étage de la colonne de rectification précitée, caractérisée en ce qu'elle comporte, en outre, une colonne à oxygène extra pur (23) dont la partie supérieure est reliée à ladite colonne à argon brut (10) par une conduite latérale de prélèvement (22) qui est disposée au-dessus de la cuve de ladite colonne à argon brut (10) à une distance de cette cuve qui correspond à une pluralité de plateaux de rectification.
7. Procédé de séparation de l'air par rectification, dans lequel l'air est pré-séparé, dans un premier étage de rectification, en une fraction riche en oxygène et une fraction riche en azote, ces deux fractions étant amenées vers un deuxième étage de rectification et séparées en oxygène et azote, cependant qu'une fraction additionnelle (27) riche en azote provenant de la tête du premier étage de rectification (2) est introduite dans une colonne à azote de pureté spéciale (31) où elle est séparée en un liquide de cuve (29) et une fraction gazeuse résiduaire (33), caractérisé en ce qu'on recycle ledit de cuve (29) vers la tête dudit premier étage de rectification (2) et en ce qu'on retire au-dessous de la tête du premier étage de rectification (3), à une distance de cette tête qui correspond à une pluralité de plateaux, une fraction liquide (34) d'azote de pureté spéciale.
8. Procédé selon la revendication 7, caractérisé en ce qu'on sous-refroidit au moins partiellement l'azote liquide de pureté spéciale (34).
9. Procédé selon la revendication 7 ou 8, caractérisé en ce que l'azote liquide de pureté spéciale (34) est vaporisé au moins partiellement par échange de chaleur avec de l'azote en voie de condensation (40) qui provient de la tête dudit premier étage de rectification (2).
10. Installation pour la mise en oeuvre du procédé selon une quelconque des revendications 7 à 9, comportant une colonne de rectification (3) à deux étages, un premier étage de rectification (2) et une deuxième étage de rectification (6) étant mis en relation mutuelle d'échange thermique par un condenseur-vaporiseur commun (7), l'installation comportant, en outre, une colonne à azote de pureté spéciale (31), caractérisée en ce que la partie inférieure de ladite colonne à azote de pureté spéciale (31) est reliée à la partie supérieure du premier étage de rectification (2) par une conduuite de gaz (27) et par une conduite de liquide (29) et en ce qu'une conduite de prélèvement d'azote de pureté spéciale (34) est disposée au-dessous de la tête dudit premier étage de rectification (2), à une distance de cette tête qui correspond à une pluralité de plateaux.
11. Procédé de séparation de l'air, qui met en oeuvre les étapes de procédé définies dans une quelconque des revendications 1 à 5, ainsi que les caractéristiques définies dans une quelconque des revendications 7 à 9, caractérisé en ce que le liquide de la cuve de la colonne à oxygène de pureté spéciale (23) est réchauffé par échange de chaleur avec le gaz obtenu dans la tête de la colonne à azote de pureté spéciale (31).
12. Installation pour la mise en oeuvre du procédé selon la revendication 11, qui présente les caractéristiques respectives des revendications 6 et 10, caractérisée en ce qu'elle comporte un condenseur- vaporiseur (28) disposé entre la colonne à oxygène de pureté spéciale (23) et la colonne à azote de pureté spéciale (31).
EP88110876A 1987-07-09 1988-07-07 Procédé et dispositif de séparation de l'air par rectification Expired - Lifetime EP0299364B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88110876T ATE59463T1 (de) 1987-07-09 1988-07-07 Verfahren und vorrichtung zur luftzerlegung durch rektifikation.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873722746 DE3722746A1 (de) 1987-07-09 1987-07-09 Verfahren und vorrichtung zur luftzerlegung durch rektifikation
DE3722746 1987-07-09

Publications (3)

Publication Number Publication Date
EP0299364A2 EP0299364A2 (fr) 1989-01-18
EP0299364A3 EP0299364A3 (en) 1989-03-15
EP0299364B1 true EP0299364B1 (fr) 1990-12-27

Family

ID=6331261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88110876A Expired - Lifetime EP0299364B1 (fr) 1987-07-09 1988-07-07 Procédé et dispositif de séparation de l'air par rectification

Country Status (6)

Country Link
US (1) US4824453A (fr)
EP (1) EP0299364B1 (fr)
JP (1) JP2696705B2 (fr)
CN (1) CN1016460B (fr)
AT (1) ATE59463T1 (fr)
DE (2) DE3722746A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662653A1 (fr) 2012-05-08 2013-11-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production dýazote sans hydrogène
WO2023083488A1 (fr) 2021-11-10 2023-05-19 Linde Gmbh Procédé et agencement de production d'un produit à base d'argon et d'un produit à base d'oxygène et procédé de rénovation d'une ou de plusieurs installations de fractionnement d'air

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867772A (en) * 1988-11-29 1989-09-19 Liquid Air Engineering Corporation Cryogenic gas purification process and apparatus
GB8828133D0 (en) * 1988-12-02 1989-01-05 Boc Group Plc Air separation
JPH0672740B2 (ja) * 1989-01-20 1994-09-14 ル・エール・リクイツド・ソシエテ・アノニム・プール・ル・エチユド・エ・ル・エクスプルワテション・デ・プロセデ・ジエオルジエ・クロード 空気分離及び超高純度酸素製造方法並びに装置
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
FR2650378A1 (fr) * 1989-07-28 1991-02-01 Air Liquide Installation de distillation d'air produisant de l'argon
US5019144A (en) * 1990-01-23 1991-05-28 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system with hybrid argon column
US5049173A (en) * 1990-03-06 1991-09-17 Air Products And Chemicals, Inc. Production of ultra-high purity oxygen from cryogenic air separation plants
US5129932A (en) * 1990-06-12 1992-07-14 Air Products And Chemicals, Inc. Cryogenic process for the separation of air to produce moderate pressure nitrogen
US5205127A (en) * 1990-08-06 1993-04-27 Air Products And Chemicals, Inc. Cryogenic process for producing ultra high purity nitrogen
US5137559A (en) * 1990-08-06 1992-08-11 Air Products And Chemicals, Inc. Production of nitrogen free of light impurities
US5123947A (en) * 1991-01-03 1992-06-23 Air Products And Chemicals, Inc. Cryogenic process for the separation of air to produce ultra high purity nitrogen
US5133790A (en) * 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
FR2680114B1 (fr) * 1991-08-07 1994-08-05 Lair Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
US5289688A (en) * 1991-11-15 1994-03-01 Air Products And Chemicals, Inc. Inter-column heat integration for multi-column distillation system
US5218825A (en) * 1991-11-15 1993-06-15 Air Products And Chemicals, Inc. Coproduction of a normal purity and ultra high purity volatile component from a multi-component stream
US5195324A (en) * 1992-03-19 1993-03-23 Prazair Technology, Inc. Cryogenic rectification system for producing nitrogen and ultra high purity oxygen
JP2966999B2 (ja) * 1992-04-13 1999-10-25 日本エア・リキード株式会社 超高純度窒素・酸素製造装置
FR2694383B1 (fr) * 1992-07-29 1994-09-16 Air Liquide Production et installation de production d'azote gazeux à plusieurs puretés différentes.
US5351492A (en) * 1992-09-23 1994-10-04 Air Products And Chemicals, Inc. Distillation strategies for the production of carbon monoxide-free nitrogen
US5528906A (en) * 1995-06-26 1996-06-25 The Boc Group, Inc. Method and apparatus for producing ultra-high purity oxygen
US5546767A (en) * 1995-09-29 1996-08-20 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
JPH09184681A (ja) * 1995-11-02 1997-07-15 Teisan Kk 超高純度窒素及び酸素の製造装置
US5628207A (en) * 1996-04-05 1997-05-13 Praxair Technology, Inc. Cryogenic Rectification system for producing lower purity gaseous oxygen and high purity oxygen
US5596886A (en) * 1996-04-05 1997-01-28 Praxair Technology, Inc. Cryogenic rectification system for producing gaseous oxygen and high purity nitrogen
US5669236A (en) * 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
DE19640711A1 (de) * 1996-10-02 1998-04-09 Linde Ag Verfahren und Vorrichtung zur Gewinnung von hochreinem Stickstoff
US5682765A (en) * 1996-12-12 1997-11-04 Praxair Technology, Inc. Cryogenic rectification system for producing argon and lower purity oxygen
GB9902101D0 (en) 1999-01-29 1999-03-24 Boc Group Plc Separation of air
US7299656B2 (en) * 2005-02-18 2007-11-27 Praxair Technology, Inc. Cryogenic rectification system for neon production
JP4944454B2 (ja) * 2006-02-20 2012-05-30 大陽日酸株式会社 窒素分析装置
CN100445671C (zh) * 2007-02-12 2008-12-24 庞启东 利用尾气余热的氨水吸收式制冷装置
CN101886870B (zh) * 2010-06-24 2012-11-14 上海启元科技发展有限公司 一种生产带压力的高纯氮及高纯氧的方法和装置
CN102620520B (zh) * 2012-04-09 2014-09-17 开封黄河空分集团有限公司 一种由空气分离制取压力氧气和压力氮气附产液氩的工艺
CN102721260A (zh) * 2012-07-04 2012-10-10 开封空分集团有限公司 高纯氧提取装置及利用该装置提取高纯氧的方法
EP3067649A1 (fr) * 2015-03-13 2016-09-14 Linde Aktiengesellschaft Système de colonnes de distillation et procédé de production d'oxygène par séparation cryogénique de l'air
EP3327393A1 (fr) * 2016-11-25 2018-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un flux de produit d'oxygène ultrapur par cryogénie de séparation d'air
EP3625509A4 (fr) 2017-05-16 2021-02-10 Ebert, Terrence, J. Appareil et procédé de liquéfaction de gaz
US10295254B2 (en) 2017-09-05 2019-05-21 Praxair Technology, Inc. System and method for recovery of non-condensable gases such as neon, helium, xenon, and krypton from an air separation unit
US10408536B2 (en) * 2017-09-05 2019-09-10 Praxair Technology, Inc. System and method for recovery of neon and helium from an air separation unit
US10814268B2 (en) 2018-03-29 2020-10-27 Samuel L. Shepherd Process for separating gases from gas mixtures using hydro fluoro ether
CN109883139B (zh) * 2019-01-14 2021-07-02 安徽加力气体有限公司 一种基于富氧空分的高效提氩工艺
CN112161427B (zh) * 2020-09-29 2023-05-26 上海启元气体发展有限公司 一种对称混合流动氧氮分离制取机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136926A1 (fr) * 1983-08-05 1985-04-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air au moyen d'une double colonne

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280383A (en) * 1939-09-08 1942-04-21 Baufre William Lane De Method and apparatus for extracting an auxiliary product of rectification
DE1922956B1 (de) * 1969-05-06 1970-11-26 Hoechst Ag Verfahren zur Erzeugung von argonfreiem Sauerstoff durch Rektifikation von Luft
US4137056A (en) * 1974-04-26 1979-01-30 Golovko Georgy A Process for low-temperature separation of air
US4604116A (en) * 1982-09-13 1986-08-05 Erickson Donald C High pressure oxygen pumped LOX rectifier
US4433989A (en) * 1982-09-13 1984-02-28 Erickson Donald C Air separation with medium pressure enrichment
WO1984003554A1 (fr) * 1983-03-08 1984-09-13 Daido Oxygen Appareil de production d'azote gazeux de purete elevee
US4533375A (en) * 1983-08-12 1985-08-06 Erickson Donald C Cryogenic air separation with cold argon recycle
JPS60142184A (ja) * 1983-12-28 1985-07-27 日本酸素株式会社 空気液化分離方法
JPS60142183A (ja) * 1983-12-28 1985-07-27 日本酸素株式会社 空気液化分離方法及び装置
US4560397A (en) * 1984-08-16 1985-12-24 Union Carbide Corporation Process to produce ultrahigh purity oxygen
US4578095A (en) * 1984-08-20 1986-03-25 Erickson Donald C Low energy high purity oxygen plus argon
JPS62210386A (ja) * 1986-03-12 1987-09-16 株式会社日立製作所 空気分離装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136926A1 (fr) * 1983-08-05 1985-04-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air au moyen d'une double colonne

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662653A1 (fr) 2012-05-08 2013-11-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production dýazote sans hydrogène
WO2023083488A1 (fr) 2021-11-10 2023-05-19 Linde Gmbh Procédé et agencement de production d'un produit à base d'argon et d'un produit à base d'oxygène et procédé de rénovation d'une ou de plusieurs installations de fractionnement d'air

Also Published As

Publication number Publication date
EP0299364A2 (fr) 1989-01-18
ATE59463T1 (de) 1991-01-15
EP0299364A3 (en) 1989-03-15
DE3722746A1 (de) 1989-01-19
DE3861437D1 (de) 1991-02-07
JP2696705B2 (ja) 1998-01-14
US4824453A (en) 1989-04-25
CN1031131A (zh) 1989-02-15
CN1016460B (zh) 1992-04-29
JPS6479574A (en) 1989-03-24

Similar Documents

Publication Publication Date Title
EP0299364B1 (fr) Procédé et dispositif de séparation de l'air par rectification
EP0377117B1 (fr) Procédé et dispositif de séparation de l'air
EP1308680B1 (fr) Procédé et dispositif de production de krypton et/ou xénon par distillation cryogénique de l'air
EP0628777B1 (fr) Procédé et dispositif d'obtention d'argon
EP1243881B1 (fr) Système de séparation d'air cryogénique à trois colonnes
EP1482266B1 (fr) Procédé et dispositif pour la récupération de Krypton et/ou Xénon par séparation cryogénique d'air
EP0669509A1 (fr) Procédé et appareil permettant d'obtenir d l'argon pur
EP0955509A1 (fr) Procédé et appareil pour la production d'oxygène à haute pureté
EP0669508B1 (fr) Procédé et appareil permettant d'obtenir de l'argon pur
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1051588B1 (fr) Procede et dispositif pour vaporiser de l'oxygene liquide
EP0171711A2 (fr) Procédé et dispositif de séparation d'argon brut
EP1006326B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression et de krypton/xenon par séparation cryogénique d'air
EP1231440B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
DE19933558B4 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE69723906T2 (de) Lufttrennung
DE19855485A1 (de) Verfahren und Vorrichtung zur Gewinnung eines krypton- und/oder xenonangereicherten Gemischs durch Gegenstrom-Stoffaustausch
DE10000017A1 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP0834711A2 (fr) Procédé et dispositif pour la production d'azote à haute pureté
DE10332862A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
EP1162424B1 (fr) Procédé et installation de production d'argon
DE19855486A1 (de) Verfahren und Vorrichtung zur Gewinnung eines krypton- und/oder xenonangereicherten Gemischs durch Tieftemperaturzerlegung von Luft
EP0559117B1 (fr) Procédé et dispositif pour la séparation d'un mélange de gaz
DE19636306A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
DE19725821A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19890217

17Q First examination report despatched

Effective date: 19891012

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59463

Country of ref document: AT

Date of ref document: 19910115

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3861437

Country of ref document: DE

Date of ref document: 19910207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050622

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050630

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050703

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050706

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050708

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050913

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060707

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060707

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070707