EP1231440B1 - Procédé et installation de séparation d'air par distillation cryogénique - Google Patents

Procédé et installation de séparation d'air par distillation cryogénique Download PDF

Info

Publication number
EP1231440B1
EP1231440B1 EP01129565A EP01129565A EP1231440B1 EP 1231440 B1 EP1231440 B1 EP 1231440B1 EP 01129565 A EP01129565 A EP 01129565A EP 01129565 A EP01129565 A EP 01129565A EP 1231440 B1 EP1231440 B1 EP 1231440B1
Authority
EP
European Patent Office
Prior art keywords
column
liquid
pressure
product
pressure column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01129565A
Other languages
German (de)
English (en)
Other versions
EP1231440A1 (fr
Inventor
Theo Sentis
Jens Juckel
Thorsten Moeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide AGS GmbH
Original Assignee
Air Liquide AGS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7666857&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1231440(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide AGS GmbH filed Critical Air Liquide AGS GmbH
Publication of EP1231440A1 publication Critical patent/EP1231440A1/fr
Application granted granted Critical
Publication of EP1231440B1 publication Critical patent/EP1231440B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Definitions

  • the invention relates to a method and a device for the cryogenic separation of air for the production of nitrogen, oxygen and argon, according to the features of claims 1 and 17.
  • the air separation plants designed with an internal compression circuit have the fundamental disadvantage that, depending on the product quantities taken off as liquid from the rectification system, a partial liquefaction of the process air used is accompanied by the amount of which the amount of air rectified in the pressure column of the rectification system decreases, with the result in that the separation effort and thus the structural complexity in the rectification columns connected to the pressure column increases and / or the product yields and in particular the argon yield decrease.
  • EP-A-0 752 565 discloses a process for the low temperature separation of air for the recovery of nitrogen, oxygen and argon in which, in a rectification system, at least one pressure and low pressure column thermally coupled together by the main condenser are connected to a crude argon column, a pure argon column and a liquid air column two-stage rectification column, wherein a further throttled air stream is withdrawn from the pressure column and fed into the liquid air column, and the oxygen-rich liquid bottom product of the pressure column fed into the liquid air column, and the liquid bottom product of the liquid air column is supplied as a cooling medium for a condenser of the pure argon column.
  • the oxygen-enriched bottoms liquid of the pressure column is expanded into an RL-flash column equipped with or without rectifiers, a bottom evaporator and a top condenser, and the resulting in the expansion of the vapor in the RL-flash column under a between the pressure column and the the low pressure column rectified operating pressure.
  • the RL flash column is through with gaseous nitrogen from the pressure column resulting sump evaporation additionally produces oxygen-poor steam.
  • the resulting bottoms liquid is merely throttled to form a two-phase mixture, which is subsequently further decomposed in the low-pressure column.
  • the throttled bottoms liquid or alternatively in a particularly advantageous embodiment of US 5,715,706 liquid side draw from the low pressure column, as a condensation medium for the arranged at the top of the RL-flash column condenser use, by means of which the ascending in the RL-flash column vapor medium is at least partially condensed.
  • the condensate is fed as reflux back into the RL-flash column and low pressure column and / or withdrawn as a liquid product from the liquid air column.
  • the invention is therefore based on the object to provide a method and an apparatus of the type mentioned, by means of which a cost oxygen and nitrogen production with high product yields, in particular in a connected Argonrektbericht enabled.
  • a heat exchanger network all heat exchangers involved in the cooling of the incoming and outgoing process streams, such as high heat exchanger, subcooler and LOX evaporator
  • the remaining portion of liquid process air which is not supplied to the pressure column is throttled to the pressure level of the liquid-air column as liquid and vapor partial air stream is fed into the liquid-air column and as liquid reflux into the low-pressure column.
  • the process air fed into the rectification units in the form of differently arranged conventional trays and / or ordered packings or random packings and thermally coupled by means of a main condenser to the low pressure column is at a pressure of usually 4 to 6 bar in an oxygen-rich liquid bottom product and in decomposed a nitrogen-rich vaporous overhead fraction.
  • the nitrogen product present at the top of the pressure column with a residual oxygen content of up to less than 1 ppm is at least partially withdrawn from the rectification column as a vaporous and / or liquid product.
  • the rectified in the pressure column overhead vapor product is at least partially condensed by indirect heat exchange with thereby evaporating oxygen-rich liquid bottom fraction of the low pressure column by means of the main condenser and fed the resulting condensate at least partially as reflux of the pressure column.
  • the oxygen-rich liquid bottom product of the pressure column is at least partially fed as a cooling medium into the condenser of the crude argon column and / or as reflux into the low-pressure column.
  • the fed into the low-pressure column media are decomposed under a pressure of usually 1.1 to 1.6 bar by means of rectification in the form of differently arranged conventional trays and / or ordered packings or packing in a nitrogen-rich vaporous overhead product and in an oxygen-rich liquid bottom product.
  • the by means of the main condenser at least partially vaporized bottoms liquid rises in the low pressure column and is rectified in countercurrent with trickling down liquid.
  • an argon-rich argon-oxygen side gas is withdrawn from the middle region of the low-pressure column, the so-called argon belly, and fed into the crude argon column equipped with rectification devices in the form of differently arranged ordered packings and / or random packings and overhead condenser, and at an operating pressure. which is only slightly below the operating pressure of the low pressure column, decomposed into a gaseous crude argon product and an oxygen-rich liquid bottom product.
  • the crude argon fed into the pure argon column equipped with rectification units in the form of differently arranged, ordered packings and / or random packings, overhead condenser and bottom evaporator is converted under an operating pressure of 1.1 to 5 bar into a largely oxygen and nitrogen-poor liquid bottom product, part of which is pure argon product With less than 1 ppm of residual oxygen content and residual nitrogen content is withdrawn from the pure argon column and the remaining fraction in the pure argon column is vaporized to maintain the rectification in the bottom evaporator, rectified to a nitrogen-rich overhead product.
  • the bottoms liquid rectified in the pure argon column is at least partially vaporized by means of a bottoms evaporator operated with gaseous process medium and the vaporous nitrogen-rich top product present in the pure argon column is condensed by means of bottom liquid fed from the liquid-air column.
  • the noncondensable gaseous inert portion of the nitrogen-rich overhead product of the pure argon column is blown off as purge gas into the plant environment.
  • the vaporous and liquid process air fed into the liquid-air column in the manner described above is pressurized at a pressure which is between the operating pressure of the pressure and the low-pressure column and which, when liquid air is used, at about 2.3 to 2.6 bar ,
  • a pressure which is between the operating pressure of the pressure and the low-pressure column and which, when liquid air is used, at about 2.3 to 2.6 bar
  • the bottoms liquid rectified in the liquid air column is partially vaporized in a bottom evaporator in order to allow rectification below the feed point of the liquefied air and thereby to increase the oxygen content of the bottom liquid and thus the yield of top product.
  • the latent heat of a predominantly gaseous process medium and / or the sensible heat of a liquid coupled out of the process is used to heat the bottom evaporator.
  • a stream decoupled from the process such as bottom liquid of the pressure column, a vaporous side gas stream or overhead product stream of the pressure column and particularly preferably a vaporous Side discharge of the crude argon column Use, which are fed individually or in combination into a bottom evaporator of the liquid air column.
  • the bottom liquid used as the heating medium in the bottom evaporator of the liquid column of the pressure column is then fed as a cooled liquid of the low pressure column and / or the condenser of the crude argon column.
  • the side gas stream or top product stream of the pressure column used as heating medium in the bottom evaporator of the liquid air column is then - at least partially condensed - fed as reflux liquid into the low pressure column and / or as cooling medium in the top condenser of the crude argon column.
  • liquid side draw is fed from the liquid air column as cooling medium into the condenser of the liquid air column and / or as reflux liquid into the pressure and low pressure column.
  • the feedstock itself so under pressure, deep-cold gaseous process air can be used by being passed before the throttling to the pressure levels of the liquid air column through the bottom evaporator of the liquid air column and there by dispensing contained in the gas stream sensitive heat generated by the boosting gas for the liquid air column.
  • the at least partially liquefied in the liquefaction of the vaporous overhead product in the condenser of the liquid air column process medium is fed as reflux in the pressure and low pressure column or withdrawn as a liquid nitrogen product.
  • the withdrawn from the heat exchanger network partial flow of the process air, which is present after throttling to the pressure level of the pressure or liquid air column in predominantly liquid form, throttled and fed as predominantly liquid process air directly and completely into the pressure column and deducted from the pressure column side discharges liquid as the cooling liquid for the condenser and as liquid for the liquid air column and withdrawn as reflux for the low pressure column.
  • the vapor produced during the throttling and a portion of the liquid air are fed as feed streams into the liquid air column, another part of the liquid air is passed as a cooling medium to the condenser of the liquid air column and the remaining part of the liquid air as reflux liquid in both the low pressure - fed as well as in the pressure column.
  • the invention further relates to a device according to the features of the claims 17 to 23.
  • cryogenic separation of air according to the invention for the production of nitrogen, oxygen and argon has the following essential advantages over the known prior art:
  • a rectified, non-pretreated liquid air stream is used in the liquid air column, which has a higher nitrogen content than the previously described US 5,715,706 used bottoms liquid of the pressure column, whereby at the same oxygen content of the bottoms liquid in the liquid air column and RL flash column a higher yield of nitrogen and the resulting additional column reflux, a performance optimization of the liquid air column is achieved.
  • the invention is particularly advantageous when liquid products, preferably liquid oxygen or nitrogen, to be withdrawn from the rectification of the rectification to produce only liquid products or to evaporate the liquid products in countercurrent with compressed air (internal compression systems and liquid systems with integrated air liquefier).
  • liquid products preferably liquid oxygen or nitrogen
  • a further significant advantage of the liquid air column supplied according to the invention with liquid air is that a pure gaseous nitrogen product can be produced in the low-pressure column without having to generate a correspondingly low-oxygen washing liquid in the pressure column.
  • the pressure column can be provided with up to 15 to 20 separation stages less and accordingly reduces the height of the cold box and thus the system costs are substantially reduced.
  • the separation effort i. reduces the number of separation stages by up to 10 and / or reduces the amount of reflux required and thus correspondingly increases the nitrogen yield in the liquid-air column.
  • the reduced-pressure operation of the liquid-air column results in a multiplicity of integration possibilities for the liquid-air column that are optimally adapted to the particular specific rectification system.
  • the decoupled from the plant process heat is coupled by means of the bottom evaporator in the liquid air column so that the oxygen concentration in the bottom liquid of the liquid air column is between 45 and 70 percent.
  • the conversion in the liquid air column and thus the yield of low-oxygen overhead product in the liquid air column, especially in comparison to the pressure column be increased so that up to 12% more reflux is available for the upper section of the low pressure column.
  • Another essential advantage of the invention is that a liquid side draw or part of the bottom product of the liquid air column can be used for cooling the top condenser of the pure argon column.
  • the liquid overhead product used for this purpose in conventional process control can be substituted for the pressure column and instead be used as additional reflux liquid in the low pressure column, whereby the argon yield is increased even further and / / or the number of separation stages in the low pressure column can be reduced.
  • the liquefied air is first completely or partially fed into the pressure column and from the pressure column in the form of liquid side draws as a feed medium for the liquid air column, and as a condensation medium for the top condenser Liquid air column used and fed the remaining portion of the liquid air as reflux liquid in the low pressure column.
  • Has proven particularly useful a procedure in which the liquefied air is passed before relaxation and division of the pressure, low pressure and liquid air column through a arranged in the bottom of the pressure column evaporator and there precooled by indirect heat exchange, thereby minimizing the irreversibilities of the throttle process let and by acting as a non-complete theoretical separation stage bottom evaporator, the yield of overhead product in the pressure column is increased.
  • the liquid-air column of the rectification system is preceded by a separation vessel arranged at as high a height as possible in the coldbox.
  • the cryogenic pressurized liquid air stream is depressurized.
  • the resulting in the expansion in the separation vessel steam is fed with a partial flow of the liquefied during throttling air in the downstream liquid air column.
  • a in Fig. 1 schematically illustrated rectification with a consisting of pressure and low pressure column 1, 3 with common main condenser 2 rectification column, which is connected to a crude argon and liquid air column 10, 17, the entire process air before being fed into one of the Entire all arranged in the cold box heat exchanger, such as main heat exchanger, freezer and / or other separate heat exchanger existing heat exchanger network to a slightly higher pressure level than that of the pressure column 1, which usually moves between 4 and 6 bar, compressed and ambient temperature level of disturbing minor components such as water vapor and carbon dioxide, cleaned.
  • the cold box heat exchanger such as main heat exchanger, freezer and / or other separate heat exchanger existing heat exchanger network
  • the compressed and purified process air available at the pressure level of the pressure column 1 is cooled in the heat exchanger network to near its dew point and as predominantly vaporous first partial stream 4 via a line 63 directly below rectification means 47 into the means of the main capacitor 2 with the Low-pressure column 3 thermally coupled pressure column 1 fed.
  • the second partial stream 5 of the process air which is delivered to the higher pressure level, is likewise cooled in the heat exchanger network and expanded into a line 64 with throttle 45 to the pressure level of the pressure column and as liquid partial air flow 5b together with the resulting during expansion in the throttle 45 vapor partial air stream 5c fed via a line 65 above the lower rectification means 47 in the pressure column 1.
  • throttle is used to denote any device suitable for reducing pressure, such as, for example, a valve with moving parts, but also a simple cross-sectional tapering of the line.
  • the predominantly vaporous process air 4 fed into the rectification units 47 in the form of differently arranged conventional trays and / or ordered packings or random packings below the lower rectification units 47 is used together with the liquid fed above the lower rectification units 47 of the pressure column 1 in the lower area Partial air stream 5b and the vaporous air stream 5c decomposed into an oxygen-rich liquid bottom product 6 and in a low-oxygen vaporous nitrogen product 7 having a residual oxygen content of usually 0.5 - 10 ppm.
  • the resulting at the top of the pressure column 1 vaporous nitrogen product is partially withdrawn as vapor pressure nitrogen product 7a via a line 40 and condensed in the pressure column 1 product content in the condenser 2 by indirect heat exchange with thereby evaporating liquid bottom product 8 of the low pressure column 3.
  • the condensate produced in this way is distributed via a line 9 as reflux liquid to the pressure and low pressure column 1, 3 or withdrawn as a liquid nitrogen product 7b via a line 41 with a residual oxygen content of 0.5 to 10 ppm.
  • the by the condenser 2 to the operating pressure of the low pressure column 3 of usually 1.2 to 1.6 bar coupled operating pressure of the pressure column 1 is between 4 and 6 bar.
  • the rectified in the pressure column 1 bottoms liquid 6 is provided by a equipped with a throttle line 48a 48 as return to the low pressure column 3 and another with a throttle 49a provided line 49 as the cooling liquid in the operating at the same operating pressure as the low-pressure column 3, in usually designed as a thermosiphon head capacitor 11 of the crude argon column 10 into relaxed.
  • the liquid and gaseous streams fed into the low-pressure column 3 equipped with rectification means 50 in the form of differently arranged conventional trays and / or ordered packings or packing are at an operating pressure of usually 1.2 to 1 with the aid of the sump-rich oxygen-rich liquid sump product 8. 6 bar in an oxygen-poor vaporous nitrogen product 12 with a residual oxygen content of 0.2 to 10 ppm and in the oxygen-rich liquid sump product 8 with an oxygen content of at least 99.5 vol .-% decomposed.
  • a nitrogen-contaminated nitrogen stream 12a having an oxygen content of 0.1 to 12 is also contaminated with oxygen 2% deducted.
  • the rectified in the low-pressure column 3 liquid oxygen product 8a can be withdrawn via a line 43 and the present in the low-pressure column 3 vapor oxygen product 8b via a line 42 from the low-pressure column 3 for further use.
  • the remaining in the low pressure column 3 residual content of bottoms liquid 8 is evaporated to maintain the rectification by indirect heat exchange in the usually designed as a thermosyphon, in special cases as a falling-film evaporator capacitor 2.
  • the crude argon product 14 is withdrawn as vaporous or liquid crude argon product 14a, b with a residual oxygen content of 0.2 to 5 vol .-% via a line 33a, 33b from the crude argon column 10 for further use.
  • the vapor Rohargonstrom not withdrawn as a product before the top of the crude argon column 10 is condensed in the usually formed as a thermosiphon capacitor 11 by indirect heat exchange with evaporating thereby cooling medium, usually bottom liquid 6 of the pressure column 1, and fed as reflux back into the crude argon column 10.
  • the vapor generated in the condensation on the coolant side in the condenser 11 is fed via a line 53 in the middle section of the low-pressure column 3.
  • the oxygen-rich liquid bottom product 15 rectified in the crude argon column 10 is fed back into the low-pressure column 3 via a line 62.
  • the not directly fed into the pressure column 1 part of the liquid air stream 5b of the process air is by means disposed in a line 46 choke 46a on the operating pressure of the liquid air column 17, which is between the operating pressure of the pressure and low pressure column 1, 3, relaxed and at least partially as a liquid partial air stream 5 d together with the generated during the expansion of the vapor partial air stream 5 e, in which rectifying means 54 in the form of differently arranged conventional trays and / or ordered packings or packing equipped liquid air column 17 is fed.
  • the partial air streams 5d, e fed into the liquid-air column 17 are rectified by means of the rectification units 54 into an oxygen-poor vaporous nitrogen product 18 having a residual oxygen content of 0.5 to 10 ppm and into an oxygen-rich liquid bottom product 19.
  • the rectified in the liquid air column 17 liquid bottom product 19 has an oxygen content of 40 to 70 vol .-%.
  • the liquid partial air flow 5d fed into the liquid air column 17 is for the most part tapped again at the level of its feed point from the liquid air column 17 and fed via a line 23 with throttle 55 into a top condenser 22 of the liquid air column 17.
  • the liquid air which is not fed into the top condenser 22 of the liquid-air column 17 is expanded as a liquid partial air flow 5f via a line 16 by means of throttle 56 into the region of the upper rectification devices 50 of the low-pressure column 3.
  • the coolant-side operating pressure of the condenser 22, which is usually designed as a thermosyphon, is only slightly above the operating pressure of the low-pressure column 3, so that the vapor produced during the evaporation of the liquid air can be fed via a line 25 into the low-pressure column 3.
  • the liquid bath of the top condenser 22 in a temperature range of about 87 to 89 K, so that the liquid air column 17th can be operated at an operating pressure of 2.2 to 2.6 bar.
  • the low-oxygen vaporous nitrogen product 18 obtained in the liquid-air column 17 in front of the head is removed as a gaseous, oxygen-poor top product 18 c from the Withdrawn liquid air column 17 and / or condensed by indirect heat exchange in the top condenser 22 with evaporating liquid air and partially fed as reflux liquid back into the liquid air column 17.
  • the condensate 18b which is not fed as reflux liquid into the liquid-air column 17 is fed via a line 24 by means of throttle 57 as an additional return above the rectification devices 50 into the low-pressure column 3.
  • the fraction of oxygen-rich liquid bottom product 19 which is not vaporized in a sump evaporator 21 of the liquid-air column 17 is fed via a line 58 to the low-pressure column 3.
  • FIG. 2 shows a rectification system in which a pure nitrogen product 12 having a residual oxygen content of 0.5 to 10 ppm is likewise withdrawn in the low-pressure column 1, but in which case the required one Return fluid 18b is withdrawn exclusively from the liquid air column 17.
  • the second partial air stream 5 cooled from the heat exchanger network is not throttled to the pressure level of the pressure column as shown in FIG. 1, but before the pressure drop in the throttle 46a led by means of a line 66 to the bottom evaporator 21 and precooled by indirect heat exchange with thereby evaporating bottoms liquid and then passed via the line 46 to the throttle 46a and relaxed to the pressure level of the liquid air column 17.
  • the liquefied air 5d is fed completely into the liquid-air column 17 together with the vapor stream 5e formed during the expansion.
  • a partial flow of the liquefied air is withdrawn from a side draw liquid air column 17 again and used as a cooling liquid for the condenser 22 and as reflux liquid for the low-pressure column 3.
  • FIG. 3 shows a rectification system according to the invention, in which, contrary to the rectification system shown in FIG. 1, a portion of the bottom product 19 of the liquid air column 17 is fed via a conduit 59 as a cooling medium into a condenser 31 of a pure argon column equipped with conventional rectification means 39 32 is fed, wherein the coolant-side operating pressure of the normally formed as a thermosyphon pure argon capacitor 31 is only slightly above the operating pressure of the low pressure column 3, that the used evaporating bottom liquid 19 can be fed together with the vapor stream from the crude argon capacitor 11 back into the low pressure column 3.
  • a liquid oxygen-free crude argon product 14b is fed, which is rectified into a nitrogen-free and oxygen-free bottom product 34 and a nitrogen-rich overhead product 35.
  • the top product 35 is withdrawn as a gaseous inert stream 38 via a line provided with a throttle line 28a 29 and blown into the environment.
  • a further line 69 the vapor arising on the coolant side of the condenser 31 is fed into the low-pressure column 3 at the level of the rectification devices 50.
  • bottoms liquid 34 is vaporized by indirect heat exchange in a bottom heater 37 with vaporous nitrogen 7a condensing thereinto, which is fed from the pressure column 1 via a pipeline 36.
  • the non-evaporated part of bottoms liquid 34 is withdrawn via a line 68 as a liquid product and the liquid nitrogen condensed in the condensation in the bottom evaporator 37 is fed back into the pressure column 1 via a line 44.
  • the further difference between the rectification system shown in FIG. 3 and the rectification system of FIG. 1 is that the second partial air stream 5 withdrawn from the heat exchanger network is expanded directly and completely into a separation tank 27 via a conduit 67 provided with a throttle 67a, the operating pressure of which only so slightly above the liquid air column 17 is that the entire resulting in the throttling steam 5e can be fed from the separation vessel 27 via a line 28 directly into the liquid air column 17.
  • the separation tank 27 is arranged so far up in the coldbox that a portion of the liquid air 5d can be fed via the conduit 59 into the pressure column 1 due to the geodetic height difference.
  • At least one further part of the liquid partial air flow 5d is drawn off via the line 59 and fed into the liquid-air column 17 from the separating tank 27.
  • the withdrawal of cooling medium for the condenser 22 of the liquid-air column 17 and of return liquid 5f takes place as already shown in FIG. 1 as a side draw from the liquid-air column 17 but could alternatively also take place directly from the separating tank 27.
  • FIG. 4 shows a graphic representation of the irreversibilities in the crude argon column 10 when operated with and without side condenser 11 individual soils and on the abscissa the exergy loss is plotted as a measure of the irreversibilities on each soil. It can be seen that the area under the curve for the exergy loss of the crude argon column 10 with side draw is significantly smaller than the curve for a crude argon column 10 without side draw.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (23)

  1. Procédé de séparation d'air par distillation cryogénique pour obtenir de l'azote, de l'oxygène et de l'argon, dans lequel dans un système de rectification avec au moins une colonne sous pression et une colonne à basse pression (1, 3) couplées thermiquement l'une à l'autre à l'aide d'un condenseur principal (2), avec au moins une colonne d'argon brut (10) et une colonne de rectification à deux étages reliée à une colonne d'air liquide (17) :
    a) de l'air du processus comprimé, pré-épuré, pré-refroidi dans un réseau d'échangeurs de chaleur est alimenté dans un premier flux partiel (4), principalement gazéiforme, directement dans la colonne sous pression (1) et dans un deuxième flux partiel (5) après la réduction (45) sur la pression de service de la colonne sous pression (1), étant un flux partiel, principalement liquide (5a), alimenté au moins partiellement comme flux partiel d'air liquide (5b) dans la colonne sous pression (1) et une autre partie du flux partiel d'air liquide (5b) après encore une réduction (46a) sur la pression de service de la colonne d'air liquide (17), alimentés au moins partiellement comme flux d'air liquide et gazéiforme (5d, e) dans la colonne d'air liquide (17) et hors de la colonne d'air liquide (17) comme flux partiel d'air principalement liquide (5f) après la réduction (56) dans la colonne à basse pression (3) ;
    b) l'air du processus (4, 5a, b, c) alimenté dans la colonne sous pression (1) est rectifié à l'aide de dispositifs de rectification (47) en un produit de fond liquide et riche en oxygène (6) et en un composé azoté (7) en forme de vapeur pauvre en oxygène ;
    c) le composé à l'état de vapeur, azoté (7) rectifié dans la colonne sous pression (1) à l'aide du condenseur principal (2) en échange de chaleur indirect avec le produit de fond liquide riche en oxygène et s'évaporant en même temps (8) de la colonne à basse pression (3), est au moins condensé partiellement et le condensé généré durant l'évaporation est au moins partiellement alimenté à nouveau en tant que reflux (9) dans la colonne sous pression et la colonne à basse pression (1, 3) ;
    d) le produit de fond (6) liquide et riche en oxygène de la colonne sous pression (1) est alimenté dans la colonne d'argon brut (10) en tant que médium de refroidissement pour un condenseur (11) ;
    e) à partir des médiums alimentés dans la colonne à basse pression (3) le produit de fond (8) liquide riche en oxygène liquide et un produit azoté (12) pauvre en oxygène et à l'état de vapeur sont rectifiés et un produit d'oxygène (8a, b) à l'état de vapeur et/ou liquide est prélevé du fond (8) de la colonne à basse pression (3).
    f) le produit de fond (8) rectifié dans la colonne à basse pression (3) à l'aide de dispositifs de rectification (50), s'évapore selon l'étape 1c) au moins partiellement en vapeur de rectification pour la colonne à basse pression (3) et est prélevé comme composé azoté (12) avant d'atteindre la tête de la colonne à basse pression (3) ;
    g) un mélange d'argon et d'oxygène riche en argon et gazéiforme est prélevé (13) de la colonne à basse pression (3) et est alimenté dans la colonne d'argon brut (10) et décomposé dans celle-ci à l'aide de dispositifs de rectification (51) en un produit d'argon brut (14) gazéiforme et pauvre en oxygène et en un produit de fond (15) liquide riche en oxygène ;
    h) le produit d'argon brut (14) à l'état de vapeur, pauvre en oxygène se trouve en tête de la colonne d'argon brut (10), lequel condense au moins partiellement par échange de chaleur indirect avec un médium de processus liquide, comme par exemple avec un produit de fond liquide (6) de la colonne sous pression (1) et est amené au moins partiellement comme reflux jusqu'à la colonne d'argon brut (10) ;
    i) le produit d'argon brut (14) est prélevé au moins partiellement de la colonne d'argon brut (10) comme produit à l'état de vapeur ou à l'état liquide (14a, b) et/ou est alimenté au moins partiellement dans une colonne d'argon pur (32) pour obtenir un produit d'argon pur (34) exempt d'oxygène et d'azote ;
    j) à partir de l'air de processus alimenté selon l'étape 1a) en tant que flux partiel d'air liquide ou à l'état de vapeur (5d, e) dans la colonne d'air liquide (17) équipée de dispositifs de rectification (54) au dessus et en dessous de la position d'alimentation et opérée avec une pression de service située entre la pression de la colonne sous pression et celle de la colonne à basse pression (1, 3) ;
    k) le produit de fond liquide (19), riche en oxygène rectifié dans la colonne d'air liquide (17), étant évaporé partiellement par échange de chaleur indirect à l'aide d'un évaporateur de fond (21) opéré avec un médium de processus principalement gazéiforme ;
    l) le produit de tête (18) à l'état de vapeur pauvre en oxygène se trouvant dans la colonne d'air liquide (17) est liquéfié au moins partiellement à l'aide d'un condenseur de tête (22) opéré avec un médium de processus principalement liquide et le condensat se formant est alimenté au moins partiellement comme reflux dans la colonne d'air liquide et à basse pression (17,3) ;
    m) un flux de vapeur (25) généré dans le condenseur (22) de la colonne d'air liquide (17) durant l'évaporation du médium de processus principalement liquide ainsi au moins une partie du produit de fond liquide (19) sont alimentés dans la colonne à basse pression (3).
  2. Procédé selon la revendication 1, dans lequel dans l'étape d) le produit de fond (6) liquide, riche en oxygène de la colonne sous pression (1) est alimenté dans la colonne à basse pression (3) en tant que liquide de reflux.
  3. Procédé selon la revendication 1 ou 2, dans lequel dans l'étape b) le produit azoté (7) pauvre en oxygène, se trouvant en tête de la colonne sous pression (1) est prélevé au moins partiellement comme produit gazéiforme et/ou liquide (40, 41).
  4. Procédé selon l'une des revendications précédentes, dans lequel dans l'étape a) un deuxième flux partiel (5) qui après la réduction (45) sur la pression de service de la colonne sous pression (1) est un flux partiel principalement liquide (5a), est alimenté au moins partiellement en tant que flux partiel d'air (5b) communément avec le flux partiel d'air (5c) gazéiforme généré durant le réduction (45), dans la colonne sous pression (1).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour liquéfier au moins partiellement le produit de tête (18) pauvre en oxygène, à l'état de vapeur, de la colonne d'air liquide (17), une quantité partielle du flux partiel d'air (5d) est utilisée qui de préférence est refroidie et réduite sur le niveau de pression de la colonne à basse pression (3), la vapeur (25) générée lors de la liquéfaction du produit de tête (18) étant alimentée dans la colonne à basse pression (3).
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le produit de tête (18) à l'état de vapeur et pauvre en oxygène de la colonne d'air liquide (17) est prélevé en tant que composé azoté liquide ou gazéiforme (18a, c).
  7. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que comme médium de processus pour évaporer partiellement du produit de fond liquide (19) de la colonne d'air liquide (17) le produit de fond (6) liquide, riche en oxygène de la colonne sous pression (1) est utilisé, qui est ensuite amené en tant que liquide refroidi à la colonne à basse pression (3) et/ou au condenseur (11) de la colonne d'argon brut (10).
  8. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que comme médium de processus pour l'évaporation partielle de produit de fond liquide (19) de la colonne d'air liquide (17) on utilise une extraction latérale gazéiforme (20) alimentée dans la colonne d'air liquide (17), laquelle est à nouveau alimentée dans la colonne d'argon brut (10) à l'état au moins partiellement condensé comme reflux (52), durant l'évaporation du produit de fond liquide (19).
  9. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que comme médium de processus pour l'évaporation partielle du liquide de fond (19) de la colonne d'air liquide (17) un flux de gaz latéral prélevé de la colonne sous pression (1), de préférence le produit de tête (7) de la colonne sous pression (1), est utilisé, lequel produit de tête est alimenté, au moins partiellement condensé, à nouveau comme liquide de reflux dans la colonne à basse pression (3) et/ou comme médium de refroidissement dans le condenseur de tête (11) de la colonne d'argon brut (10).
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins une extraction latérale liquide (23) de la colonne d'air liquide (17) est alimentée comme médium de refroidissement pour le condenseur (22) de la colonne d'air liquide (17) et/ou comme liquide de reflux dans la colonne sous pression et/ou la colonne à basse pression (1, 3).
  11. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le deuxième flux partiel (5) principalement liquide, de l'air de processus est alimenté au moins partiellement comme médium de chauffage dans l'évaporateur de fond (21) de la colonne d'air liquide (17), y est prérefroidi par échange de chaleur indirect avec du liquide de fond s'évaporant (19) la pression réduite (46a) à la pression de service de la colonne d'air liquide (17) et au moins un flux partiel de l'air liquéfié (5d) est alimenté communément avec la vapeur (5e) générée lors de la réduction de la pression dans la colonne d'air liquide (17).
  12. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le deuxième flux partiel principalement liquide (5) de l'air de processus est alimenté directement dans la colonne sous pression (1) et de la colonne sous pression (1) au moins une extraction latérale liquide (46) comme liquide de refroidissement dans le condenseur (22) de la colonne d'air liquide (17) comme alimentation dans la colonne d'air liquide (17) et un autre flux partiel (5f) comme reflux dans la colonne à basse pression (3).
  13. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le deuxième flux partiel (5) de l'air de processus est refroidi dans un évaporateur de fond de la colonne sous pression (1) par du produit de fond (6) s'évaporant et est réduit (46a) sur le niveau de pression de la colonne d'air liquide (17) comme flux partiel d'air liquide et à l'état de vapeur (5d, e) alimentés dans la colonne d'air liquide (17) ainsi que de la colonne d'air liquide (17) dans la colonne à basse pression (3) au moins partiellement en tant que flux partiel d'air liquide (5f).
  14. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le flux partiel (5) principalement liquide se détend directement dans un réservoir séparateur (27) agencé en amont de la colonne d'air liquide (17) et la vapeur (5e) générée durant la détente est alimentée communément avec au moins un flux partiel d'air liquide (5b) hors du réservoir séparateur (27) dans la colonne d'air liquide (17).
  15. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'une colonne d'argon pur (32) alimentée d'argon pur (14a, b) à l'aide de dispositifs de rectification (39) dans le produit de fond (34) liquide, pauvre en oxygène et en azote et pouvant être prélevé partiellement comme produit d'argon pur liquide, s'évapore partiellement à l'aide d'un évaporateur de fond (37) opéré par le médium de processus (36) amené de la colonne sous pression (1) et le produit de tête à l'état de vapeur (35) rectifié à partir de l'argon brut (14a, b) et pauvre en argon, condense à l'aide d'un flux partiel du liquide prélevé du produit de fond (19) de la colonne d'air liquide (17) et la partie inerte du produit de tête ne pouvant pas être condensé, gazéiforme étant soufflée comme purge dans les environs de l'installation.
  16. Procédé selon l'une des revendications précédentes, caractérisé en ce que la colonne d'air liquide (17) est opérée avec une pression de service se trouvant entre la pression de la colonne sous pression et la colonne à basse pression (1, 3), de préférence avec une pression de service en dessous de 2,3 bar.
  17. Dispositif destiné à la mise en oeuvre du procédé selon l'une des revendications 1 à 16 avec au moins une colonne de rectification à deux étages, consistant en une colonne sous pression et une colonne à basse pression (1, 3), avec un condenseur commun (2), lesquelles sont reliées à un réseau d'échangeurs de chaleur et à au moins une colonne d'argon brut (10) ainsi qu'à au moins une colonne d'air liquide (17) à l'aide de conduites équipées de dispositifs de mesure, de commande et de réglage et de transport.
  18. Dispositif selon la revendication 17, caractérisé en ce que la colonne d'air liquide (17) reliée au réseau d'échangeurs de chaleur et équipée de dispositifs de rectification (54), de condenseur de tête (22) et d'évaporateur de fond (21) ainsi que de conduites de produits est reliée à l'aide de conduites (46, 20, 52, 25, 24, 16, 58) à la colonne sous pression, à basse pression et d'argon brut (1, 3, 10).
  19. Dispositif selon la revendication 17 ou 18, caractérisé en ce que l'évaporateur de fond (21) de la colonne d'air liquide (17) est relié à l'aide de conduites (20, 52, 66, 46) à la colonne sous pression et à la colonne d'argon brut (1, 10).
  20. Dispositif selon la revendication 17, caractérisé en ce que la colonne d'argon brut (10) équipée de dispositifs de rectification (51), du condenseur de tête (11) et de conduites de produit, est reliée à l'aide d'une conduite (33b) à une colonne d'argon pur (32) et à l'aide de conduites (13a, 49, 53, 62) à la colonne sous pression, à basse pression et à la colonne d'air liquide (1, 3, 17).
  21. Dispositif selon la revendication 20, caractérisé en ce que la colonne d'argon pur (32) reliée à l'aide de la conduite (33b) à la colonne d'argon brut (10), présentant des dispositifs de rectification (39), un condenseur de tête (31), un évaporateur de fond (37) et une conduite de produit (38), est reliée à l'aide de conduites (44, 36, 54, 69) à la colonne sous pression, à basse pression et à la colonne d'air liquide (1, 3, 17).
  22. Dispositif selon la revendication 21, caractérisé en ce que le condenseur de tête (31) de la colonne d'argon pur (32) est relié à l'aide de la conduite (59) au fond de la colonne d'air liquide (17).
  23. Dispositif selon la revendication 17, caractérisé en ce qu'un séparateur (27) est relié à l'aide de la conduite (67) au réseau d'échangeurs de chaleur et à l'intermédiaire de conduites (59, 28, 60) à la colonne sous pression, et à la colonne d'air liquide (1, 17).
EP01129565A 2000-12-12 2001-12-12 Procédé et installation de séparation d'air par distillation cryogénique Expired - Lifetime EP1231440B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10061908 2000-12-12
DE10061908A DE10061908A1 (de) 2000-12-12 2000-12-12 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Publications (2)

Publication Number Publication Date
EP1231440A1 EP1231440A1 (fr) 2002-08-14
EP1231440B1 true EP1231440B1 (fr) 2007-07-18

Family

ID=7666857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01129565A Expired - Lifetime EP1231440B1 (fr) 2000-12-12 2001-12-12 Procédé et installation de séparation d'air par distillation cryogénique

Country Status (4)

Country Link
EP (1) EP1231440B1 (fr)
AT (1) ATE367563T1 (fr)
DE (2) DE10061908A1 (fr)
PT (1) PT1231440E (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114949897A (zh) * 2022-06-22 2022-08-30 安徽佳先功能助剂股份有限公司 一种尼龙酸二异丁酯的连续脱水蒸馏装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
JP5878310B2 (ja) * 2011-06-28 2016-03-08 大陽日酸株式会社 空気分離方法及び装置
EP2597409B1 (fr) * 2011-11-24 2015-01-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et installation pour la séparation de l'air par distillation cryogénique
JP5655104B2 (ja) * 2013-02-26 2015-01-14 大陽日酸株式会社 空気分離方法及び空気分離装置
US11959701B2 (en) 2022-07-28 2024-04-16 Praxair Technology, Inc. Air separation unit and method for production of high purity nitrogen product using a distillation column system with an intermediate pressure kettle column
US20240035741A1 (en) * 2022-07-28 2024-02-01 Neil M. Prosser Air separation unit and method for cryogenic separation of air using a distillation column system including an intermediate pressure kettle column
US20240035745A1 (en) * 2022-07-28 2024-02-01 Neil M. Prosser System and method for cryogenic air separation using four distillation columns including an intermediate pressure column

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8512562D0 (en) * 1985-05-17 1985-06-19 Boc Group Plc Liquid-vapour contact method
GB9414938D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation
GB9513765D0 (en) * 1995-07-06 1995-09-06 Boc Group Plc Production of argon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114949897A (zh) * 2022-06-22 2022-08-30 安徽佳先功能助剂股份有限公司 一种尼龙酸二异丁酯的连续脱水蒸馏装置
CN114949897B (zh) * 2022-06-22 2023-06-27 安徽佳先功能助剂股份有限公司 一种尼龙酸二异丁酯的连续脱水蒸馏装置

Also Published As

Publication number Publication date
ATE367563T1 (de) 2007-08-15
DE50112737D1 (de) 2007-08-30
EP1231440A1 (fr) 2002-08-14
DE10061908A1 (de) 2002-06-27
PT1231440E (pt) 2007-10-12

Similar Documents

Publication Publication Date Title
EP0299364B1 (fr) Procédé et dispositif de séparation de l'air par rectification
EP0377117B1 (fr) Procédé et dispositif de séparation de l'air
EP1308680B1 (fr) Procédé et dispositif de production de krypton et/ou xénon par distillation cryogénique de l'air
EP1243882B1 (fr) Production d'argon dans un système de séparation d'air à triple pression et une colonne d'argon
EP0669509A1 (fr) Procédé et appareil permettant d'obtenir d l'argon pur
EP0955509A1 (fr) Procédé et appareil pour la production d'oxygène à haute pureté
DE69917131T2 (de) Stickstoffgenerator mit mehreren Säulen und gleichzeitiger Sauerstofferzeugung
EP0669508B1 (fr) Procédé et appareil permettant d'obtenir de l'argon pur
DE4224068A1 (de) Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1231440B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
EP2322888B1 (fr) Procédé et dispositif d'obtention d'un concentré d'hélium-néon à partir d'air
EP1051588B1 (fr) Procede et dispositif pour vaporiser de l'oxygene liquide
DE102005040508A1 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP3980705A1 (fr) Procédé et installation de décomposition d'air à basse température
DE69723906T2 (de) Lufttrennung
DE10232430A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE60020500T2 (de) Verfahren zur Luftzerlegung durch Tieftemperaturdestillation
DE19933558A1 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE10205096A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
DE10332862A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
EP1162424B1 (fr) Procédé et installation de production d'argon
DE10152356A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon und hoch reinem Sauerstoff durch Tieftemperatur-Zerlegung
EP0828122A1 (fr) Procédé et dispositif pour l'obtention d'argon par séparation d'air à basse température
DE10248656A1 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030214

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030703

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIR LIQUIDE AGS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50112737

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070928

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071008

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071029

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20121018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50112737

Country of ref document: DE

Effective date: 20121018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131217

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 16

Ref country code: NL

Payment date: 20161221

Year of fee payment: 16

Ref country code: DE

Payment date: 20161213

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20161209

Year of fee payment: 16

Ref country code: FR

Payment date: 20161222

Year of fee payment: 16

Ref country code: BE

Payment date: 20161221

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112737

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180612

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231