EP0291763B1 - Steuerschaltung zur Steuerung eines Messers - Google Patents

Steuerschaltung zur Steuerung eines Messers Download PDF

Info

Publication number
EP0291763B1
EP0291763B1 EP88107126A EP88107126A EP0291763B1 EP 0291763 B1 EP0291763 B1 EP 0291763B1 EP 88107126 A EP88107126 A EP 88107126A EP 88107126 A EP88107126 A EP 88107126A EP 0291763 B1 EP0291763 B1 EP 0291763B1
Authority
EP
European Patent Office
Prior art keywords
curve
circuit
stored
transverse
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88107126A
Other languages
English (en)
French (fr)
Other versions
EP0291763A1 (de
Inventor
Gerhard Arlt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AFS ENTWICKLUNGS and VERTRIEBS GmbH
Original Assignee
AFS ENTWICKLUNGS and VERTRIEBS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AFS ENTWICKLUNGS and VERTRIEBS GmbH filed Critical AFS ENTWICKLUNGS and VERTRIEBS GmbH
Publication of EP0291763A1 publication Critical patent/EP0291763A1/de
Application granted granted Critical
Publication of EP0291763B1 publication Critical patent/EP0291763B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/10Making cuts of other than simple rectilinear form

Definitions

  • the invention relates to a control circuit for controlling the linear transverse movement and the rotary movement of a knife according to the preamble of claim 1.
  • DE-C 33 36 145 describes a device for the production of plastic bags, in which a cutting knife makes a longitudinally wavy separating cut while a film tubular web is running. This wavy cut consists of sinusoidal curve sections and straight sections.
  • the device has a knife head carrying the knife, which is displaceable in a guide transversely to the longitudinal movement of the film tube web and rotatable about an axis running transversely to the guide.
  • the knife head On the side opposite the knife, the knife head has a guide pin which engages in the groove of a control roller, the axis of rotation of which runs parallel to the guide. This groove determines the position of the knife in the transverse direction and the rotational position of the knife.
  • the rotary position of the knife should be approximately tangential to the curve piece to be cut of the longitudinally undulating separating cut. Since plastic bags have different transverse dimensions and the amplitude of the separating cut differs from bag to bag, it is necessary to stock control rollers, the control groove of which is adapted to the respective width of the bag and the amplitude of the undulating separating cut. This requires the stocking of a large number of control rollers and their replacement if separating cuts are to be made for different plastic bags.
  • a control circuit according to the preamble of claim 1 is described in CH-A 645 288.
  • a digital computer in which the constants of the curves to be cut are entered, is used to control the first electric motor for the movement in the transverse direction and to control the second electric motor for the rotary movement of the knife.
  • a measuring transducer which scans the respective position of the path is provided, which generates signals corresponding to length increments and feeds them to the computer. From the entered constants of the curves and the signals corresponding to the length increments, the computer calculates the respective position of the knife in the transverse direction and its rotational position and generates corresponding control commands which control the motors after a digital-analog conversion. This means that the computer must recalculate the control commands for each signal corresponding to a length increment.
  • US-A 3 969 615 is concerned with the adjustment of a tool slide in two directions perpendicular to one another in order to execute curves of the tool.
  • the curve to be executed is fed point by point to a computer which is connected to an interpolator for each axis. From the curve points, arcs are calculated that approximate the curve to be executed.
  • the interpolators perform, for example, linear, parabolic or circular interpolations.
  • the control signals generated in the form of pulse trains are fed synchronously to the two adjustment motors of the tool slide. Control commands are also continuously calculated here.
  • the object is to provide a control circuit of the aforementioned type, with which it is possible to cut longitudinally, repeating separating cut curves into webs, the longitudinal and transverse dimensions of which can be changed in a simple manner.
  • the exemplary embodiment relates to the production of longitudinal, wave-shaped separating cuts which are composed of sinusoidal curve pieces and longitudinal straight lines.
  • the separating section consists of a first sinusoidal curve section AB, which runs in the fourth quadrant.
  • the subsequent sinusoidal curve segment BC runs in the first quadrant.
  • This is followed by a straight CD.
  • This merges into the sinusoidal curve section DE, which runs in the second quadrant and which is followed by the sinusoidal curve section EF, which runs in the third quadrant.
  • This is followed by the longitudinal straight line FA.
  • This undulating cut has a dimension Wo in the longitudinal direction X.
  • the dimension in the transverse direction Y is 2U. Both Wo and U are variable.
  • the length of the sinusoidal curve sections AB + BC and DE + EF is W i .
  • the longitudinal dimension of the straight line CD is W 2 and the straight line FA is W 3 .
  • the relationship between the dimensions W 1 on the one hand and the dimensions W 2 and W 3 on the other hand is predetermined for the undulating separating cuts.
  • the cutting knife 20 is arranged on the shaft 21 of a motor 22 which is carried by a carriage 23.
  • the carriage 23 is supported by guide rods 24, whereby it can be moved in the transverse direction Y.
  • An endless toothed belt 25 is fastened to the carriage 23 via a lock and is guided on the one hand via a deflection roller 25 and on the other hand via the shaft 26 of a motor 27.
  • the tubular film 28 to be cut moves below the guide rods 24 and the carriage 23 in the direction of the arrow 29.
  • the direction of the arrow 29 corresponds to the movement in the direction of the X axis
  • the transverse movement of the carriage 23 corresponds to the movement in the direction of the Y axis.
  • the first motor 27 thus determines the transverse movement of the knife 20 while the motor 22 determines its rotational position.
  • the control circuit has a first memory 30, in which the course of a sine curve piece from 0 ° to 90 ° is stored point by point on a standard scale in the longitudinal direction X and in the transverse direction Y.
  • the total length Wo of the desired cut AA is input to a divider circuit 31 which determines the lengths of Wi, W 2 and W 3 . This takes place on the basis of the predetermined length ratios of W 1 to W 2 and to Ws.
  • the value W1 is input to a divider circuit 32 where it is divided by the value of the longitudinal increment ⁇ x. This results in a number of 2n 1 of longitudinal increments ⁇ x, which defines the length of the curve sections AC and DF in the direction of the x-axis. This means that each sinusoidal segment AB, BC, DE and EF is divided in the direction of the x-axis into a number n 1 increments ⁇ x.
  • the course of a sinusoidal curve section from 0 ° to 90 ° is stored point by point on a standard scale in the memory 30, ie the longitudinal and transverse dimensions are in each case the number 1.
  • This curve section is now divided in the longitudinal direction into a number of n 1 equally long sections , so each length is 1
  • the adjacent memory values of the transverse dimensions are continuously read out for each length and fed to an evaluation circuit 33.
  • the stored values read from memory 30 are illustrated by the solid vertical lines.
  • the evaluation circuit 33 now carries out a linear interpolation for each length from the neighboring read-out memory values of the transverse dimensions.
  • the interpolated values are represented by the vertical dashed lines.
  • the associated transverse dimension is obtained on a standard scale for each length increment ⁇ x, which is multiplied by the amplitude value U, which results in the actual transverse dimension y.
  • the associated value y is determined in the transverse direction Y for each longitudinal increment ⁇ x.
  • the interpolated and multiplied values y of the respective transverse dimension are fed to an increment circuit 34 which forms the transverse increments A y from successive values y.
  • These transverse increments A y determined in this way are stored in succession in a second memory 35.
  • the memory 35 stores the curve segment BC divided into increments, ie it is divided into a number n 1 of equal longitudinal increments ⁇ x, with each longitudinal increment ⁇ x in the memory 35 being assigned the associated transverse increment A y which have mutually different values.
  • the second memory 35 is connected to a motor control circuit 36, which in turn controls the motor 27. Furthermore, a synchronous and sequential circuit 37 is provided, which is connected to the second memory 35 and to the motor control circuit 36.
  • the synchronous and sequential circuit 37 generates a start signal which is fed to the memory 35. After the start signal, this circuit 37 generates a number of no pulses synchronous to the movement of the path 28 in the direction of arrow 29.
  • the increments A y in stored in the memory 35 are fed to the motor control circuit 36 for input in the reverse order, ie in Direction from C to B according to the course of the curve section AB.
  • the increments A y are fed from the memory 35 to the motor control circuit 36 in the same sequence for input, corresponding to the increment sequence ⁇ y which defines the curve segment BC.
  • the film 28 moves in the arrow direction 29 by the amount n 1 ⁇ x.
  • the transverse increments A y in are fed from the memory 35 for the input of the same sequence, but with the opposite sign, to the motor control circuit 36, in accordance with the curve section EF, during the then following n 1 pulses.
  • the carriage 23 has returned to its original position along the guide rails 24.
  • the film 28 now moves during the subsequent na impulses over a distance of n 3 ⁇ x, corresponding to the straight line FA, without the carriage 23 being moved in the process.
  • the memory 35 can also store the increments A y of the entire course of the curve from A to C. These increments are then read out in one sequence if the curve is to be traversed from A to C and in the other sequence, but with the opposite sign, if the curve is to be traversed from D to F.
  • Increments ⁇ y which are stored in the second memory 35, can also be used to control the rotary movement of the knife 20 by the motor 22. If the curve section AB is traversed, the knife performs a rotary movement A'B ', the course of the rotary movement corresponding to a sine curve section in the first quadrant.
  • the motor control circuit 38 is therefore supplied with the increments in the same sequence for input during the first sequence of n 1 pulses from the memory 35.
  • FIG. 5 Another circuit variant is shown in FIG. 5. It is used to cut an already printed tubular film web, in which a mark is printed at points A, which is detected by a sensor 2. The duration between two successive sensor signals at a known speed of the path 28 in the direction of the arrow 29 gives the value Wo.
  • the desired amplitude U is entered via an input module 5.
  • the values Wo and U are supplied on the one hand to a display unit 3 for the operating parameters and on the other hand to a subdivision circuit 1.
  • This subdivision circuit corresponds to the subdivision circuit 31 according to FIG. 4.
  • the number n 1 of the length increments ⁇ x is determined and the values read out from the memory 30 are processed in the transverse direction.
  • the module 6 thus contains the divider circuit 32, the memory 30 and the evaluation circuit 33 according to FIG. 4.
  • the block 7 corresponds to the increment circuit 34 and the memory 10 corresponds to the memory 35 according to FIG. 4.
  • the values of the memory 10 are fed to a position controller 11 and from there via a digital-to-analog converter 12 to a servo controller 13 which controls the motor 27, which is illustrated by block 14.
  • the servomotor 14 has a rotary position transmitter, the output signals of which are fed back to the position controller 11. A setpoint / actual value comparison takes place in it, so that the motor 14 always assumes its exact position, which are determined by the signals from the memory 10.
  • the control computer 9 comprises an axis computer which generates the aforementioned start signal when the sensor 2 has detected a marking, which corresponds to point A. This start signal is fed to the position controller 11, which then reads the memory 10 during the following 2ni pulses as mentioned above.
  • the axis computer also determines that no signals are supplied to the position controller 11 during the subsequent n 2 pulses and generates the further signal, which in turn causes the memory 10 to be read during the subsequent 2n 1 pulses.
  • the axis computer thus corresponds to circuit 37.
  • a synchronization circuit 4 which generates the pulses synchronously with the film speed. These pulses are fed to the control computer 9 and the memory 10.
  • the synchronization circuit 4 synchronizes the output of the increments ⁇ y from the step memory 10 with the output of the signals from the control computer 9 into the motor control circuit 15.
  • the distance FA can be variable in terms of its length, since the distances between the printed markings are not always exactly the same.
  • the length W 3 is only determined in teach-in mode, the associated number n 3 of longitudinal increments ⁇ x are left open during operation. This means that when a printed marking is detected, the curve is traversed from A to F as intended, then the carriage 23 and the knife 20 remain in their position without counting the pulses n 3 until a printed marking is detected again, whereupon the above-mentioned process repeated.
  • the transverse increment ⁇ y (0.1) is stored for a movement of the film web from point B to point B + ⁇ x
  • the increment ⁇ y (1,2) etc. is stored for a movement from point B + A x to B + 2 ⁇ x and ultimately for the movement from point C - ⁇ x to point C, the transverse increment A y (ni, (ni- 1)).
  • the output sequence which is the same for this sequence is illustrated by the arrows pointing downwards and the output sequence which is opposite to this sequence is indicated by the arrows pointing upwards.
  • the signs of the transverse increments for each curve section are also given.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Cutting Processes (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

  • Die Erfindung betrifft eine Steuerschaltung zur Steuerung der linearen Querbewegung und der Drehbewegung eines Messers nach dem Oberbegriff des Anspruches 1.
  • Die DE-C 33 36 145 beschreibt eine Vorrichtung zur Herstellung von Kunststofftaschen, bei der ein Schneidmesser bei einer laufenden Folienschlauchbahn einen längs verlaufenden wellenförmigen Trennschnitt vornimmt. Dieser wellenförmige Trennschnitt besteht aus sinusförmigen Kurvenstücken sowie aus geradlinigen Abschnitten. Die Vorrichtung weist einen das Messer tragenden Messerkopf auf, der in einer Führung quer zur Längsbewegung der Folienschlauchbahn verschiebbar und um eine quer zur Führung verlaufende Achse drehbar ist. An der dem Messer gegenüberliegenden Seite weist der Messerkopf einen Führungszapfen auf, der in die Nut einer Steuerwalze eingreift, deren Drehachse parallel zur Führung verläuft. Diese Nut bestimmt die Stellung des Messers in Querrichtung sowie die Drehstellung des Messers. Hierbei soll die Drehstellung des Messers etwa tangential zu dem zu schneidenden Kurvenstück des längs verlaufenden wellenförmigen Trennschnitts sein. Da Kunststofftaschen unterschiedliche Querabmessungen aufweisen und auch die Amplitude des Trennschnitts von Tasche zu Tasche unterschiedlich ist, ist es erforderlich, Steuerwalzen zu bevorraten, deren Steuernut der jeweiligen Breite des Beutels und der Amplitude des wellenförmigen Trennschnitts angepaßt ist. Dies bedingt die Bevorratung einer Vielzahl von Steuerwalzen und deren Austausch, wenn Trennschnitte für unterschiedliche Kunststofftaschen hergestellt werden sollen.
  • Eine Steuerschaltung nach dem Oberbegriff des Anspruches 1 ist in der CH-A 645 288 beschrieben. Zur Steuerung des ersten Elektromotors für die Bewegung in der Querrichtung sowie zur Steuerung des zweiten Elektromotors für die Drehbewegung des Messers dient ein Digitalrechner, in welchen die Konstanten der zu schneidenden Kurven eingegeben werden. Es ist einer die jeweilige Stellung der Bahn abtastender Meßwertgeber vorgesehen, der Längeninkremente entsprechende Signale erzeugt und diese dem Rechner zuführt. Aus den eingegebenen Konstanten der Kurven und den den Längeninkrementen entsprechenden Signale errechnet der Rechner die jeweilige Stellung des Messers in Querrichtung und dessen Drehstellung und erzeugt entsprechende Steuerbefehle, die nach einer Digital-Analogumsetzung die Motoren steuern. Dies bedeutet, daß der Rechner bei jedem einem Längeninkrement entsprechenden Signal von neuem die Steuerbefehle errechnen muß.
  • Die US-A 3 969 615 befaßt sich mit der Verstellung eines Werkzeugschlittens in zwei zueinander senkrechten Richtungen zur Ausführung von KJrven des Werkzeugs. Hierbei wird die auszuführende Kurve punktweise einem Rechner zugeführt, der mit einem Interpolator für jede Achse verbunden ist. Aus den Kurvenpunkten werden Bogenstücke errechnet, die der auszuführenden Kurve angenähert sind. Je nach dem errechneten Bogenstück führen die Interpolatoren zum Beispiel lineare, parabolische oder kreisförmige Interpolationen durch. Die dabei erzeugten Steuersignale in Form von Impulszügen werden synchron den beiden Verstellmotoren des Werkzeugschlittens zugeführt. Auch hier werden fortlaufend Steuerbefehle errechnet.
  • Es besteht die Aufgabe, eine Steuerschaltung der vorgenannten Art bereitzustellen, mit der es möglich ist, längs verlaufende, sich wiederholende Trennschnittkurven in Bahnen zu schneiden, deren Längs- und Querabmessungen auf einfache Weise veränderbar sind.
  • Gelöst wird diese Aufgabe mit den kennzeichnenden Merkmalen des Anspruches 1. Vorteilhafte Ausgestaltungen sind den Unteransprüchen entnehmbar.
  • Ein Ausführungsbeispiel wird nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:
    • Fig. 1 einen aus Sinusstücken und längs verlaufenden Geraden zusammengesetzten und zu schneidenden Kurvenverlauf sowie den Verlauf der Messerstellung
    • Fig. 2 eine Draufsicht auf die Schneidvorrichtung
    • Fig. 3 eine stirnseitige Ansicht der Schneidvorrichtung
    • Fig. 4 ein Blockschaltbild der Steuerschaltung
    • Fig. 5 ein Blockschaltbild einer vereinfachten Version der Steuerschaltung und
    • Fig. 6 ein Ausgabeschema bei dem die Querinkremente speichernden zweiten Speicher
  • Das Ausführungsbeispiel betrifft die Herstellung von längs verlaufenden, wellenförmigen Trennschnitten, die aus sinusförmigen Kurvenstücken und längs verlaufenden Geraden zusammengesetzt sind. Gemäß Fig. 1 besteht der Trennschnitt aus einem ersten sinusförmigen Kurvenstück AB, das im vierten Quadranten verläuft. Das sich anschließende sinusförmige Kurvenstück BC verläuft im ersten Quadranten. Daran schließt sich eine längs verlaufende Gerade CD an. Diese geht über in das sinusförmige Kurvenstück DE, das im zweiten Quadranten verläuft und an das sich das sinusförmige Kurvenstück EF anschließt, das im dritten Quadranten verläuft. Hieran schließt sich an die längs verlaufende Gerade FA. Dieser wellenförmige Trennschnitt weist in Längsrichtung X eine Abmessung Wo auf. Die Abmessung in Querrichtung Y beträgt 2U. Sowohl Wo als auch U sind variabel.
  • Die Länge der sinusförmigen Kurvenstücke AB + BC und DE + EF beträgt jeweils Wi. Die Längsabmessung der Geraden CD beträgt W2 und der Geraden FA gleich W3.
  • Bei den wellenförmigen Trennschnitten ist vorgegeben das Verhältnis zwischen den Abmessungen W1 einerseits und den Abmessungen W2 und W3 andererseits.
  • Die Drehstellung des Messers wird durch die Kurvenverläufe N, B', C' und D', E', F' verdeutlicht. Diese Kurven entsprechen der Steigung der Tangenten an den Kurvenverlauf AA. Wird die Kurve AA definiert als y = f(x), dann entspricht die Kurve A'A' der Funktion y' = f(x).
  • Gemäß den Figuren 2 und 3 ist das Schneidmesser 20 auf der Welle 21 eines Motors 22 angeordnet, der von einem Schlitten 23 getragen wird. Der Schlitten 23 wird von Führungsstangen 24 gelagert, wodurch dieser in Querrichtung Y verschiebbar ist. Über ein Schloß ist am Schlitten 23 ein endloser Zahnriemen 25 befestigt, der einerseits über eine Umlenkrolle 25 und andererseits über die Welle 26 eines Motors 27 geführt ist. Die zu schneidende Schlauchfolie 28 bewegt sich unterhalb der Führungsstangen 24 und des Schlittens 23 in Pfeilrichtung 29. Die Pfeilrichtung 29 entspricht der Bewegung in Richtung der Achse X während die Querbewegung des Schlittens 23 der Bewegung in Richtung der Achse Y entspricht. Der erste Motor 27 bestimmt somit die Querbewegung des Messers 20 während der Motor 22 dessen Drehstellung bestimmt.
  • Die Steuerschaltung weist einen ersten Speicher 30 auf, in welchem punktweise der Verlauf eines Sinuskurvenstücks von 0° bis 90° in einem Einheitsmaßstab in Längsrichtung X und in Querrichtung Y gespeichert ist. Die gesamte Länge Wo des gewünschten Trennschnitts AA wird in eine Unterteilerschaltung 31 eingegeben, welche die Längen von Wi, W2 und W3 bestimmt. Dies erfolgt aufgrund der vorgegebenen Längenverhältnisse von W1 zu W2 und zu Ws. Der Wert W2 definiert eine Anzahl n2von gleichgroßen Inkrementen Δx in Längsrichtung, denen jeweils ein Inkrement Ay = 0 in Querrichtung zugeordnet ist. In gleicher Weise definiert der Wert Ws eine Anzahl n3 von Längsinkrementen Δx, denen jeweils ein Querinkrement Ay = 0 zugeordnet ist. Den Querinkrementen Ay = 0 ist jeweils die Drehstellung a= 0 zugeordnet.
  • Der Wert W1 wird in eine Teilerschaltung 32 eingegeben, wo er mit dem Wert des Längsinkrements Δx dividiert wird. Hieraus ergibt sich eine Anzahl von 2n1 von Längsinkrementen Δx, wodurch die Länge der Kurvenstücke AC und DF in Richtung der x-Achse definiert ist. Dies bedeutet also, daß jedes sinusförmige Kurvenstück AB, BC, DE und EF in Richtung der x-Achse in eine Anzahl n1 Inkremente Δx unterteilt ist.
  • Wie schon erwähnt ist im Speicher 30 der Verlauf eines Sinuskurvenstücks von 0° bis 90° in einem Einheitsmaßstab punktweise gespeichert, d.h. die Längs- und Querabmessung beträgt jeweils die Zahl 1. Dieses Kurvenstück wird nunmehr in Längsrichtung in eine Anzahl von n1 gleichgroßen Längenstücken unterteilt, jedes Längenstück ist also 1|n1 lang. Dabei werden fortlaufend für jedes Längenstück die benachbarten Speicherwerte der Querabmessungen ausgelesen und einer Auswerteschaltung 33 zugeführt. Neben dem Block 33 in Fig. 4 sind die aus dem Speicher 30 ausgelesenen Speicherwerte durch die ausgezogenen vertikalen Linien verdeutlicht. Die Auswerteschaltung 33 führt nunmehr für jedes Längenstück aus den benachbarten ausgelesenen Speicherwerten der Querabmessungen eine lineare Interpolation durch. Die interpolierten Werte sind durch die vertikal gestrichelten Linien dargestellt. Auf diese Weise wird für jedes Längeninkrement Δx die zugehörige Querabmessung im Einheitsmaßstab erhalten, die mit dem Amplitudenwert U multipliziert wird, womit sich die tatsächliche Querabmessung y ergibt. Dies bedeutet, daß für jedes Längsinkrement Δx der zugehörige Wert y in Querrichtung Y ermittelt ist.
  • Die interpolierten und multiplizierten Werte y der jeweiligen Querabmessung werden einer Inkrementschaltung 34 zugeführt, die aus aufeinanderfolgenden Werten y die Querinkremente Ay bildet. Diese so ermittelten Querinkremente Ay werden in einem zweiten Speicher 35 aufeinanderfolgend gespeichert. Dies bedeutet, daß der Speicher 35 das Kurvenstück BC in Inkrementen unterteilt speichert, d.h. es ist in eine Anzahl n1 gleich große Längsinkremente Δx unterteilt, wobei jedem Längsinkrement Δx im Speicher 35 das zugehörige Querinkrement Ay zugeordnet ist, die voneinander unterschiedliche Werte haben.
  • Der zweite Speicher 35 ist verbunden mit einer Motorsteuerschaltung 36, die ihrerseits den Motor 27 steuert. Weiterhin ist eine Synchron- und Folgeschaltung 37 vorgesehen, die mit dem zweiten Speicher 35 und mit der Motorsteuerschaltung 36 verbunden ist.
  • Die Betriebsweise ist folgende: Beim Punkt A erzeugt die Synchron- und Folgeschaltung 37 ein Startsignal, das dem Speicher 35 zugeführt wird. Nach dem Startsignal erzeugt diese Schaltung 37 eine Anzahl von no Impulsen synchron zur Bewegung der Bahn 28 in Pfeilrichtung 29. Bei einer ersten Folge von ni Impulsen werden die im Speicher 35 gespeicherten Inkremente Ay in zur Eingabe umgekehrter Folge der Motorsteuerschaltung 36 zugeführt, d.h. in Richtung von C nach B entsprechend dem Verlauf des Kurvenstücks AB. Bei den nächsten ni Impulsen werden die Inkremente Ay vom Speicher 35 in zur Eingabe gleichen Folge der Motorsteuerschaltung 36 zugeführt, entsprechend der Inkrementenfolge Δy, die das Kurvenstück BC definiert. Dies erfolgt, während die Folienbahn 28 sich in Pfeilrichtung 29, entsprechend der X-Achse um eine Strecke bewegt, die einer Anzahl von 2n1 Längsinkrementen der jeweiligen Länge Δx entspricht. Hat sich die Folienbahn über eine Strecke von 2n1Δx bewegt, dann bleibt der Schlitten 23 in seiner zuletzt eingenommenen Lage während der folgenden n2 Impulse stehen, was dem Durchlauf der Folie 28 über eine Strecke von n2Ax entspricht, entsprechend der Geraden CD. Nunmehr führt die Synchron- und Folgeschaltung 37 dem Speicher 35 ein weiteres Signal zu, wodurch während der folgenden n1 Impulse die dort gespeicherten Inkremente Δy wiederum in zur Eingabe umgekehrter Folge und mit dazu umgekehrtem Vorzeichen ausgelesen werden, entsprechend dem Kurvenstück DE. Hierbei bewegt sich die Folie 28 in Pfeilrichtung 29 um den Betrag n1Δx. Während der nachfolgenden Bewegung um die Strecke n1Δx werden während der dann folgenden n1 Impulse vom Speicher 35 die Querinkremente Ay in zur Eingabe gleicher Folge, jedoch mit umgekehrtem Vorzeichen der Motorsteuerschaltung 36 zugeführt, entsprechend dem Kurvenstück EF. Am Ende dieser Ausgabe hat der Schlitten 23 wieder seine Ursprungsstellung längs der Führungsschienen 24 eingenommen. Die Folie 28 bewegt sich nunmehr während der nachfolgenden na Impulse über eine Strecke von n3Δx, entsprechend der Geraden FA, ohne daß dabei der Schlitten 23 bewegt wird.
  • Der Speicher 35 kann auch die Inkremente Ay des gesamten Kurvenverlaufs von A bis C speichern. Diese Inkremente werden dann in der einen Folge ausgelesen, wenn die Kurve von A bis C zu durchlaufen ist und in der anderen Folge, jedoch mit umgekehrtem Vorzeichen, wenn die Kurve von D nach F zu durchlaufen ist.
  • Zur Steuerung der Drehbewegung des Messers 20 durch den Motor 22 können ebenfalls die Inkremente Δy herangezogen werden, die im zweiten Speicher 35 gespeichert sind. Wird das Kurvenstück AB durchlaufen, führt das Messer eine Drehbewegung A'B' aus, wobei der Verlauf der Drehbewegung einem Sinuskurvenstück im ersten Quadranten entspricht. Der Motorsteuerschaltung 38 werden daher während der ersten Folge von n1 Impulsen vom Speicher 35 die Inkremente in der zur Eingabe gleichen Folge zugeführt. Für das Kurvenstück B'C' werden der Motorsteuerschaltung 38 der nächsten Folge von n1 Impulsen die Inkremente in zur Eingabe umgekehrter Folge mit umgekehrten Vorzeichen zugeführt, während der dann folgenden n2 Impulse ist das Inkrement Ay=0. Von D' nach E' erfolgt bei den folgenden n1 Impulsen die Ausgabe gleich der Eingabefolge, jedoch mit umgekehrtem Vorzeichen und von E' nach F', bei den dann folgenden n1 Impulsen in umgekehrter Folge. Bei den letzten ns Impulsen beträgt dann das Inkrement Ay=0.
  • Eine weitere Schaltungsvariante ist in Fig. 5 dargestellt. Sie dient dem Schneiden einer bereits bedruckten Schlauchfolienbahn, bei welcher an den Stellen A jeweils eine Markierung aufgedruckt ist, die von einem Sensor 2 erfaßt wird. Die Dauer zwischen zwei aufeinanderfolgenden Sensorsignalen bei bekannter Geschwindigkeit der Bahn 28 in Pfeilrichtung 29 ergibt den Wert Wo Über ein Eingabemodul 5 wird die gewünschte Amplitude U eingegeben. Die Werte Wo und U werden einerseits einer Anzeigeeinheit 3 für die Betriebsparameter, andererseits einer Unterteilungsschaltung 1 zugeführt. Diese Unterteilerschaltung entspricht der Unterteilerschaltung 31 nach Fig. 4. In einem Modul 6 zur Kurvenberechnung wird die Anzahl n1 der Längeninkremente Δx ermittelt, sowie die vom Speicher 30 ausgelesenen Werte in Querrichtung verarbeitet. Der Modul 6 beinhaltet also die Teilerschaltung 32, den Speicher 30 sowie die Auswerteschaltung 33 nach Fig. 4. Der Block 7 entspricht der Inkrementschaltung 34 und der Speicher 10 dem Speicher 35 nach Fig. 4. Die Werte des Speichers 10 werden einem Lageregler 11 zugeführt und von dort über einen Digital-Analogwandler 12 einem Servoregler 13, der den Motor 27 ansteuert, der durch den Block 14 verdeutlicht wird. Der Servomotor 14 weist einen Drehstellungsgeber auf, dessen Ausgangssignale auf den Lageregler 11 zurückgeführt werden. In ihm findet ein Soll-Istwertvergleich statt, so daß der Motor 14 stets seine exakte Stellung einnimmt, die durch die Signale des Speichers 10 bestimmt sind.
  • Von der Unterteilerschaltung 1 werden die Werte von U und W1 sowie W2 und damit von n1 und n2 einem Steuerrechner 9 zugeführt. Da es nicht erforderlich ist, daß das Messer 20 jeweils exakt tangential zur zu schneidenden Kurve verläuft, hat dieser Steuerrechner 9 die Aufgabe, Dreiecksimpulse zu erzeugen, wie in Fig. 1 bei A', B' und C' gestrichelt dargestellt. Deren Breite ist durch n1 und deren Höhe durch U vorgegeben. Dieser Steuerrechner 9 steuert die Motorsteuerschaltung 15 entsprechend der Motorsteuerschaltung 38 nach Fig. 4 an. Diese Steuerschaltung 15 steuert den Schrittmotor 16, entsprechend dem Motor 22 nach den Figuren 2 bis 4. Der Steuerrechner 9 umfaßt einen Achsenrechner, der das vorerwähnte Startsignal erzeugt, wenn der Sensor 2 eine Markierung erfaßt hat, was dem Punkt A entspricht. Dieses Startsignal wird dem Lageregler 11 zugeführt, der den Speicher 10 dann während der folgenden 2ni Impulse wie vorerwähnt abliest. Der Achsenrechner bestimmt auch, daß während der nachfolgenden n2 Impulse dem Lageregler 11 keine Signale zugeführt werden und erzeugt das weitere Signal, das wiederum während der nachfolgenden 2n1 Impulse eine Ablesung des Speichers 10 bewirkt. Der Achsenrechner entspricht somit der Schaltung 37.
  • Außerdem ist eine Synchronisationsschaltung 4 vorgesehen, welche die Impulse synchron zur Foliengeschwindigkeit erzeugt. Diese Impulse werden dem Steuerrechner 9 und dem Speicher 10 zugeführt. Die Synchronisationsschaltung 4 synchronisiert die Ausgabe der Inkremente Δy aus dem Schrittspeicher 10 mit der Ausgabe der Signale aus dem Steuerrechner 9 in die Motorsteuerschaltung 15.
  • Die Strecke FA kann bezüglich ihrer Länge variabel sein, da die Abstände zwischen den aufgedruckten Markierungen nicht immer exakt gleich sind. Die Länge W3 wird nur im Teach-In-Betrieb ermittelt, beim Betrieb die zugehörige Anzahl n3 von Längsinkrementen Δx offengelassen. Dies bedeutet, daß bei Erfassen einer aufgedruckten Markierung die Kurve von A bis F bestimmungsgemäß durchlaufen wird, danach der Schlitten 23 und das Messer 20 ohne Zählung der Impulse n3 ihre Stellung beibehalten, bis wiederum eine aufgedruckte Markierung erfaßt wird, worauf sich der vorerwähnte Vorgang wiederholt.
  • In Fig. 6 ist die vorerwähnte Ausgabefolge beim Speicher 35 dargestellt. Für eine Bewegung der Folienbahn von Punkt B nach Punkt B + Δx ist das Querinkrement Δy (0,1) gespeichert, für eine Bewegung von Punkt B + Ax nach B + 2Δx das Inkrement Δy (1,2) usw. gespeichert und letztlich für die Bewegung von Punkt C - Δx bis Punkt C das Querinkrement Ay (ni, (ni- 1)). Die zu dieser Folge gleiche Ausgabefolge wird durch die nach unten zeigenden Pfeile und die zu dieser Folge entgegengesetzte Ausgabefolge durch die nach oben weisenden Pfeile verdeutlicht. Außerdem sind die Vorzeichen der Querinkremente für jedes Kurvenstück angegeben.

Claims (9)

1. Steuerschaltung zur Steuerung der linearen Querbewegung und der Drehbewegung eines Messers (20) zum Schneiden von sich wiederholenden Kurven (A-A) in eine unter dem Messer (20) sich in Längsrichtung (X) bewegende Bahn mit einem ersten Elektromotor (14, 27), der die Bewegung des Messers (20) in Querrichtung (Y) steuert, und einem zweiten, zusammen mit dem Messer (20) querbewegten Elektromotor (16, 22), der die Drehbewegung des Messers (20) steuert, das dabei an jeder Stelle der zu schneidenden Kurve (A-A) näherungsweise eine tangentiale Stellung in Bezug auf die Kurve (A-A) einnimmt, die Kurve (A-A) in gleiche Längeninkremente (Ax) unterteilt wird, die Steuerschaltung zur Steuerung des ersten Elektromotors (14, 27) die Kurvenwerte in Querrichtung (Y) und ein Steuerrechner (9) zur Steuerung des zweiten Elektromotors (16, 22) außer dem Verlauf der Kurve (A-A) näherungsweise dessen erste mathematische Ableitung bildet und die gebildeten Werte synchron zur Längsbewegung (27) der Bahn (28) die Elektromotoren (14, 16, 22, 27) steuern, dadurch gekennzeichnet, daß
a) ein erster Speicher (30) vorgesehen ist, in welchem mindestens ein Kurvenstück gespeichert ist, dessen Verlauf f (x) in Längs- und Querrichtung (x, Y) proportional zum Verlauf sich wiederholender Kurvenstücke (AB, BC, DE, EF) der Kurve (A-A) ist,
b) eine Teilerschaltung (32) vorgesehen ist, welche die Längsabmessung (W) der sich wiederholenden Kurvenstücke (AB, BC, DE, EF) in die Längeninkremente (Ax) unterteilt und die Längsabmessung des gespeicherten Kurvenstücks in eine dazu gleiche Anzahl (n) von Längenstücken unterteilt,
c) eine Auswerteschaltung (33) für jede Unterteilung des gespeicherten Kurvenstückes die Speicherwerte in Querrichtung (Y) ermittelt,
d) eine Inkrementschaltung (7, 34) vorgesehen ist, die aus den ermittelten Speicherwerten in der Querrichtung (Y) jeweils ein Querinkrement (Ay) bildet
e) ein zweiter Speicher (10, 35) vorgesehen ist, in welchem für jedes Längeninkrement (Δx), das zugehörige Querinkrement (Ay) gespeichert ist und
f) eine Synchron- und Folgeschaltung (4, 37) vorgesehen ist, die die im zweiten Speicher (10, 35) gespeicherten Querinkremente (Ay) mindestens zur Steuerung des ersten Elektromotors (14, 27) an dessen Motorsteuerschaltung (36) ausgibt und diese Ausgabe mit der Geschwindigkeit der zu schneidenden Bahn (28) synchronisiert ist.
2. Steuerschaltung nach Anspruch 1, dadurch gekennzeichnet, daß im ersten Speicher (30) das gespeicherte Kurvenstück punktweise gespeichert ist und die Auswerteschaltung (33) für jede Unterteilung dieses Kurvenstückes die dazu benachbarten Speicherwerte interpoliert.
3. Steuerschaltung nach Anspruch 2, dadurch gekennzeichnet, daß das im ersten Speicher (30) punktweise gespeicherte Kurvenstück in Längs-und Querrichtung (X, Y) in einem Einheitsmaß gespeichert ist, die Auswerteschaltung (33) die interpolierten Werte (y) mit der Querabmessung (U) der sich wiederholenden Kurvenstücke (AB, BC, DE, EF) multipliziert und der Steuerrechner (9) die erste Ableitungskurve f (x) ebenfalls mit diesem Faktor (U) multipliziert.
4. Steuerschaltung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Auswerteschaltung (33) benachbarte Speic.herwerte linear interpoliert.
5. Steuerschaltung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Unterteilerschaltung (1, 31) vorgesehen ist, die für längsverlaufende Geraden (CD, FA) der Kurve (A-A) für jedes Längeninkrement (Δx) das Querinkrement (Ay) Null bestimmt und die Drehstellung Null als Steuerwerte während des Schneidens dieser Geraden (CD, FA) den Elektromotoren (14,16, 22, 27) zuführt.
6. Steuerschaltung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Synchron-und Folgeschaltung (37) für Kurvenstücke (AB, DE, EF), die achsen- und/oder punktsymmetrisch zum gespeicherten Kurvenstück verlaufen, die im zweiten Speicher (10, 35) gespeicherten Querinkremente (Ay) zur Steuerung des ersten Motors (14, 27) in umgekehrter Folge und/oder mit umgekehrten Vorzeichen ausgibt.
7. Steuerschaltung nach Anspruch 6, dadurch gekennzeichnet, daß bei sinus- bzw. cosinusförmigem Verlauf des gespeicherten Kurvenstückes die Synchron- und Folgeschaltung (37) die im zweiten Speicher (35) gespeicherten Querinkremente (äy) zur Steuerung des zweiten Motors (27) in einer der ersten mathematischen Ableitung entsprechenden Folge und Vorzeichen ausgibt.
8. Steuerschaltung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Unterteilerschaltung (31) der Synchron- und Folgeschaltung (37) Signale entsprechend den Nullwerten der Inkremente (Ay) und der Drehstellung sowie ein Signal zuführt, das der Anzahl (n2, n3) der der Länge der Geraden (CD, FA) entsprechenden Anzahl von Längsinkrementen (Δx) entspricht und die Synchron- und Folgeschaltung (37) bei Auftreten dieser Geraden (CD, FA) die Motoren (14, 27, 16, 22) stillsetzt.
9. Steuerschaltung nach Anspruch 8, dadurch gekennzeichnet, daß das Ende der Kurve (A-A) durch eine längsverlaufende Gerade (FA) gebildet wird, die Bahn (28) Markierungen aufweist, die einen jeweiligen Beginn der Kurve (A-A) bestimmen, ein diese Markierungen erfassender Sensor (2) vorgesehen ist, dessen Signale der Synchron- und Folgeschaltung (4, 37) zugeführt werden, die jeweils den Beginn der Steuersignalzufuhr zu den Motoren (14, 16, 22, 27) bestimmen und die Gerade (FA) am Ende der Kurve (A-A) mit ihrem Ende durch die Erfassung einer Markierung bestimmt wird.
EP88107126A 1987-05-19 1988-05-04 Steuerschaltung zur Steuerung eines Messers Expired - Lifetime EP0291763B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3716704 1987-05-19
DE3716704A DE3716704C1 (de) 1987-05-19 1987-05-19 Steuerschaltung zur Steuerung eines Messers

Publications (2)

Publication Number Publication Date
EP0291763A1 EP0291763A1 (de) 1988-11-23
EP0291763B1 true EP0291763B1 (de) 1990-12-27

Family

ID=6327852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88107126A Expired - Lifetime EP0291763B1 (de) 1987-05-19 1988-05-04 Steuerschaltung zur Steuerung eines Messers

Country Status (7)

Country Link
US (1) US5124929A (de)
EP (1) EP0291763B1 (de)
JP (1) JPH01503286A (de)
CA (1) CA1314604C (de)
DE (2) DE3716704C1 (de)
ES (1) ES2019429B3 (de)
WO (1) WO1988009248A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835951C1 (de) * 1988-10-21 1989-12-14 Hans Lingl Anlagenbau Und Verfahrenstechnik Gmbh & Co Kg, 7910 Neu-Ulm, De
EP0477397B2 (de) * 1990-09-25 1999-09-01 Dr. Johannes Heidenhain GmbH Verfahren zur Ermittlung von Werkzeugbahnkonturen bei numerisch gesteuerten Maschinen
US5925969A (en) * 1995-10-17 1999-07-20 O'neill; Cormac G. Ferroelectric transducers
US20030105443A1 (en) * 2000-07-10 2003-06-05 The Procter & Gamble Company Absorbent article comprising mircroporous film with registration mark

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969615A (en) * 1974-12-20 1976-07-13 The United States Of America As Represented By The United States Energy Research And Development Administration Interpolator for numerically controlled machine tools
US4262336A (en) * 1979-04-27 1981-04-14 Pritchard Eric K Multi-axis contouring control system
CH645288A5 (en) * 1980-05-23 1984-09-28 Schmidlin Ag Roller-cutter shears for automatically cutting combined curves
US4415978A (en) * 1981-04-14 1983-11-15 Molins Machine Company, Inc. Cut-to-mark cut-off control automated for splice and order change
GB2115336B (en) * 1982-02-26 1985-06-26 Head Wrightson Mach Method of and apparatus for slitting or edge trimming strip material
US4493032A (en) * 1982-09-07 1985-01-08 General Electric Company Method and apparatus for positioning using circular interpolation
DE3336145C2 (de) * 1983-10-05 1985-09-05 LEMO M. Lehmacher & Sohn GmbH Maschinenfabrik, 5216 Niederkassel Vorrichtung für die Herstellung von Kunststofftaschen
DE3521072A1 (de) * 1984-06-12 1985-12-12 Mitsubishi Denki K.K., Tokio/Tokyo Interpolationsverfahren fuer eine numerisch gesteuerte maschine
US4829219A (en) * 1986-11-20 1989-05-09 Unimation Inc. Multiaxis robot having improved motion control through variable acceleration/deceleration profiling

Also Published As

Publication number Publication date
CA1314604C (en) 1993-03-16
US5124929A (en) 1992-06-23
JPH01503286A (ja) 1989-11-09
WO1988009248A1 (en) 1988-12-01
DE3861420D1 (de) 1991-02-07
EP0291763A1 (de) 1988-11-23
DE3716704C1 (de) 1988-11-17
ES2019429B3 (es) 1991-06-16

Similar Documents

Publication Publication Date Title
DE3542923C2 (de)
DE2817683A1 (de) Programmierte vorrichtung zum schneiden von flachmaterial mit einem schaerfbaren schneidwerkzeug und verfahren zu deren betrieb
DE2724602C3 (de) Einrichtung zur Gleichlaufregelung einer Zahnradbearbeitungsmaschine
DE2856817C2 (de)
EP0390770B1 (de) Verfahren zur elektronischen Korrektur von Positionsfehlern bei einem inkrementalen Messsystem und Messsystem zur Durchführung des Verfahrens
DE2052123C3 (de) Elektroerosionsanlage mit numerischer Bahnsteuerung für eine zwischen zwei Führungen gespannte Drahtelektrode
DE1638034C3 (de) Linien-Nachführ vorrichtung
DE2832982A1 (de) Positionierungsvorrichtung
DE2702498C3 (de) Vorrichtung zur numerischen Steuerung des Anfangspunktes des Gewindeschneidvorganges fur mehrgängige Gewinde
EP0291763B1 (de) Steuerschaltung zur Steuerung eines Messers
DE1936915A1 (de) Roentgenschichtaufnahmegeraet
EP0417337B1 (de) Verfahren zum Betrieb einer numerisch gesteuerten Werkzeugmaschine oder eines Roboters
DE2641851C2 (de) Brennschneidmaschine
EP0094986A1 (de) Einrichtung zum Unterteilen von analogen periodischen Signalen
CH669354A5 (de)
CH673541A5 (de)
DE2052161B2 (de) Schaltungsanordnung für eine Elektroerosionsmaschine zum Steuern der relativen Bewegung zwischen mindestens einer Elektrode und mindestens einem Werkstück
DE2718044C2 (de) Verfahren und Vorrichtung zur elektroerosiven Bearbeitung
DE2812849C2 (de) Verfahren zum Steuern eines Querschneiders und digitale Regeleinrichtung zur Durchführung des Verfahrens
DE2400298A1 (de) Digitale steuervorrichtung zur positionierung eines beweglichen objektes
DE2733035A1 (de) Bewegungs- oder positions-steuersystem
DE3717078C1 (de) Vorrichtung zur Regelung des Waelzantriebes einer Zahnradschleifmaschine
DE3926413C2 (de)
DE3308671C2 (de) Regelkreis für die Geschwindigkeit eines mit einem Geschwindigkeitssollwert hochgenau abzustimmenden Förderer- oder Werkzeugantriebs
DE2430104B2 (de) Numerisch arbeitende Programmsteuerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17P Request for examination filed

Effective date: 19890301

17Q First examination report despatched

Effective date: 19891013

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901227

REF Corresponds to:

Ref document number: 3861420

Country of ref document: DE

Date of ref document: 19910207

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910531

Year of fee payment: 4

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930706

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940328

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940413

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940516

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950531

BERE Be: lapsed

Owner name: AFS ENTWICKLUNGS + VERTRIEBS G.M.B.H.

Effective date: 19950531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050504