EP0291763B1 - Système de commande automatique pour des couteaux - Google Patents

Système de commande automatique pour des couteaux Download PDF

Info

Publication number
EP0291763B1
EP0291763B1 EP88107126A EP88107126A EP0291763B1 EP 0291763 B1 EP0291763 B1 EP 0291763B1 EP 88107126 A EP88107126 A EP 88107126A EP 88107126 A EP88107126 A EP 88107126A EP 0291763 B1 EP0291763 B1 EP 0291763B1
Authority
EP
European Patent Office
Prior art keywords
curve
circuit
stored
transverse
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88107126A
Other languages
German (de)
English (en)
Other versions
EP0291763A1 (fr
Inventor
Gerhard Arlt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AFS ENTWICKLUNGS and VERTRIEBS GmbH
Original Assignee
AFS ENTWICKLUNGS and VERTRIEBS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AFS ENTWICKLUNGS and VERTRIEBS GmbH filed Critical AFS ENTWICKLUNGS and VERTRIEBS GmbH
Publication of EP0291763A1 publication Critical patent/EP0291763A1/fr
Application granted granted Critical
Publication of EP0291763B1 publication Critical patent/EP0291763B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/10Making cuts of other than simple rectilinear form

Definitions

  • the invention relates to a control circuit for controlling the linear transverse movement and the rotary movement of a knife according to the preamble of claim 1.
  • DE-C 33 36 145 describes a device for the production of plastic bags, in which a cutting knife makes a longitudinally wavy separating cut while a film tubular web is running. This wavy cut consists of sinusoidal curve sections and straight sections.
  • the device has a knife head carrying the knife, which is displaceable in a guide transversely to the longitudinal movement of the film tube web and rotatable about an axis running transversely to the guide.
  • the knife head On the side opposite the knife, the knife head has a guide pin which engages in the groove of a control roller, the axis of rotation of which runs parallel to the guide. This groove determines the position of the knife in the transverse direction and the rotational position of the knife.
  • the rotary position of the knife should be approximately tangential to the curve piece to be cut of the longitudinally undulating separating cut. Since plastic bags have different transverse dimensions and the amplitude of the separating cut differs from bag to bag, it is necessary to stock control rollers, the control groove of which is adapted to the respective width of the bag and the amplitude of the undulating separating cut. This requires the stocking of a large number of control rollers and their replacement if separating cuts are to be made for different plastic bags.
  • a control circuit according to the preamble of claim 1 is described in CH-A 645 288.
  • a digital computer in which the constants of the curves to be cut are entered, is used to control the first electric motor for the movement in the transverse direction and to control the second electric motor for the rotary movement of the knife.
  • a measuring transducer which scans the respective position of the path is provided, which generates signals corresponding to length increments and feeds them to the computer. From the entered constants of the curves and the signals corresponding to the length increments, the computer calculates the respective position of the knife in the transverse direction and its rotational position and generates corresponding control commands which control the motors after a digital-analog conversion. This means that the computer must recalculate the control commands for each signal corresponding to a length increment.
  • US-A 3 969 615 is concerned with the adjustment of a tool slide in two directions perpendicular to one another in order to execute curves of the tool.
  • the curve to be executed is fed point by point to a computer which is connected to an interpolator for each axis. From the curve points, arcs are calculated that approximate the curve to be executed.
  • the interpolators perform, for example, linear, parabolic or circular interpolations.
  • the control signals generated in the form of pulse trains are fed synchronously to the two adjustment motors of the tool slide. Control commands are also continuously calculated here.
  • the object is to provide a control circuit of the aforementioned type, with which it is possible to cut longitudinally, repeating separating cut curves into webs, the longitudinal and transverse dimensions of which can be changed in a simple manner.
  • the exemplary embodiment relates to the production of longitudinal, wave-shaped separating cuts which are composed of sinusoidal curve pieces and longitudinal straight lines.
  • the separating section consists of a first sinusoidal curve section AB, which runs in the fourth quadrant.
  • the subsequent sinusoidal curve segment BC runs in the first quadrant.
  • This is followed by a straight CD.
  • This merges into the sinusoidal curve section DE, which runs in the second quadrant and which is followed by the sinusoidal curve section EF, which runs in the third quadrant.
  • This is followed by the longitudinal straight line FA.
  • This undulating cut has a dimension Wo in the longitudinal direction X.
  • the dimension in the transverse direction Y is 2U. Both Wo and U are variable.
  • the length of the sinusoidal curve sections AB + BC and DE + EF is W i .
  • the longitudinal dimension of the straight line CD is W 2 and the straight line FA is W 3 .
  • the relationship between the dimensions W 1 on the one hand and the dimensions W 2 and W 3 on the other hand is predetermined for the undulating separating cuts.
  • the cutting knife 20 is arranged on the shaft 21 of a motor 22 which is carried by a carriage 23.
  • the carriage 23 is supported by guide rods 24, whereby it can be moved in the transverse direction Y.
  • An endless toothed belt 25 is fastened to the carriage 23 via a lock and is guided on the one hand via a deflection roller 25 and on the other hand via the shaft 26 of a motor 27.
  • the tubular film 28 to be cut moves below the guide rods 24 and the carriage 23 in the direction of the arrow 29.
  • the direction of the arrow 29 corresponds to the movement in the direction of the X axis
  • the transverse movement of the carriage 23 corresponds to the movement in the direction of the Y axis.
  • the first motor 27 thus determines the transverse movement of the knife 20 while the motor 22 determines its rotational position.
  • the control circuit has a first memory 30, in which the course of a sine curve piece from 0 ° to 90 ° is stored point by point on a standard scale in the longitudinal direction X and in the transverse direction Y.
  • the total length Wo of the desired cut AA is input to a divider circuit 31 which determines the lengths of Wi, W 2 and W 3 . This takes place on the basis of the predetermined length ratios of W 1 to W 2 and to Ws.
  • the value W1 is input to a divider circuit 32 where it is divided by the value of the longitudinal increment ⁇ x. This results in a number of 2n 1 of longitudinal increments ⁇ x, which defines the length of the curve sections AC and DF in the direction of the x-axis. This means that each sinusoidal segment AB, BC, DE and EF is divided in the direction of the x-axis into a number n 1 increments ⁇ x.
  • the course of a sinusoidal curve section from 0 ° to 90 ° is stored point by point on a standard scale in the memory 30, ie the longitudinal and transverse dimensions are in each case the number 1.
  • This curve section is now divided in the longitudinal direction into a number of n 1 equally long sections , so each length is 1
  • the adjacent memory values of the transverse dimensions are continuously read out for each length and fed to an evaluation circuit 33.
  • the stored values read from memory 30 are illustrated by the solid vertical lines.
  • the evaluation circuit 33 now carries out a linear interpolation for each length from the neighboring read-out memory values of the transverse dimensions.
  • the interpolated values are represented by the vertical dashed lines.
  • the associated transverse dimension is obtained on a standard scale for each length increment ⁇ x, which is multiplied by the amplitude value U, which results in the actual transverse dimension y.
  • the associated value y is determined in the transverse direction Y for each longitudinal increment ⁇ x.
  • the interpolated and multiplied values y of the respective transverse dimension are fed to an increment circuit 34 which forms the transverse increments A y from successive values y.
  • These transverse increments A y determined in this way are stored in succession in a second memory 35.
  • the memory 35 stores the curve segment BC divided into increments, ie it is divided into a number n 1 of equal longitudinal increments ⁇ x, with each longitudinal increment ⁇ x in the memory 35 being assigned the associated transverse increment A y which have mutually different values.
  • the second memory 35 is connected to a motor control circuit 36, which in turn controls the motor 27. Furthermore, a synchronous and sequential circuit 37 is provided, which is connected to the second memory 35 and to the motor control circuit 36.
  • the synchronous and sequential circuit 37 generates a start signal which is fed to the memory 35. After the start signal, this circuit 37 generates a number of no pulses synchronous to the movement of the path 28 in the direction of arrow 29.
  • the increments A y in stored in the memory 35 are fed to the motor control circuit 36 for input in the reverse order, ie in Direction from C to B according to the course of the curve section AB.
  • the increments A y are fed from the memory 35 to the motor control circuit 36 in the same sequence for input, corresponding to the increment sequence ⁇ y which defines the curve segment BC.
  • the film 28 moves in the arrow direction 29 by the amount n 1 ⁇ x.
  • the transverse increments A y in are fed from the memory 35 for the input of the same sequence, but with the opposite sign, to the motor control circuit 36, in accordance with the curve section EF, during the then following n 1 pulses.
  • the carriage 23 has returned to its original position along the guide rails 24.
  • the film 28 now moves during the subsequent na impulses over a distance of n 3 ⁇ x, corresponding to the straight line FA, without the carriage 23 being moved in the process.
  • the memory 35 can also store the increments A y of the entire course of the curve from A to C. These increments are then read out in one sequence if the curve is to be traversed from A to C and in the other sequence, but with the opposite sign, if the curve is to be traversed from D to F.
  • Increments ⁇ y which are stored in the second memory 35, can also be used to control the rotary movement of the knife 20 by the motor 22. If the curve section AB is traversed, the knife performs a rotary movement A'B ', the course of the rotary movement corresponding to a sine curve section in the first quadrant.
  • the motor control circuit 38 is therefore supplied with the increments in the same sequence for input during the first sequence of n 1 pulses from the memory 35.
  • FIG. 5 Another circuit variant is shown in FIG. 5. It is used to cut an already printed tubular film web, in which a mark is printed at points A, which is detected by a sensor 2. The duration between two successive sensor signals at a known speed of the path 28 in the direction of the arrow 29 gives the value Wo.
  • the desired amplitude U is entered via an input module 5.
  • the values Wo and U are supplied on the one hand to a display unit 3 for the operating parameters and on the other hand to a subdivision circuit 1.
  • This subdivision circuit corresponds to the subdivision circuit 31 according to FIG. 4.
  • the number n 1 of the length increments ⁇ x is determined and the values read out from the memory 30 are processed in the transverse direction.
  • the module 6 thus contains the divider circuit 32, the memory 30 and the evaluation circuit 33 according to FIG. 4.
  • the block 7 corresponds to the increment circuit 34 and the memory 10 corresponds to the memory 35 according to FIG. 4.
  • the values of the memory 10 are fed to a position controller 11 and from there via a digital-to-analog converter 12 to a servo controller 13 which controls the motor 27, which is illustrated by block 14.
  • the servomotor 14 has a rotary position transmitter, the output signals of which are fed back to the position controller 11. A setpoint / actual value comparison takes place in it, so that the motor 14 always assumes its exact position, which are determined by the signals from the memory 10.
  • the control computer 9 comprises an axis computer which generates the aforementioned start signal when the sensor 2 has detected a marking, which corresponds to point A. This start signal is fed to the position controller 11, which then reads the memory 10 during the following 2ni pulses as mentioned above.
  • the axis computer also determines that no signals are supplied to the position controller 11 during the subsequent n 2 pulses and generates the further signal, which in turn causes the memory 10 to be read during the subsequent 2n 1 pulses.
  • the axis computer thus corresponds to circuit 37.
  • a synchronization circuit 4 which generates the pulses synchronously with the film speed. These pulses are fed to the control computer 9 and the memory 10.
  • the synchronization circuit 4 synchronizes the output of the increments ⁇ y from the step memory 10 with the output of the signals from the control computer 9 into the motor control circuit 15.
  • the distance FA can be variable in terms of its length, since the distances between the printed markings are not always exactly the same.
  • the length W 3 is only determined in teach-in mode, the associated number n 3 of longitudinal increments ⁇ x are left open during operation. This means that when a printed marking is detected, the curve is traversed from A to F as intended, then the carriage 23 and the knife 20 remain in their position without counting the pulses n 3 until a printed marking is detected again, whereupon the above-mentioned process repeated.
  • the transverse increment ⁇ y (0.1) is stored for a movement of the film web from point B to point B + ⁇ x
  • the increment ⁇ y (1,2) etc. is stored for a movement from point B + A x to B + 2 ⁇ x and ultimately for the movement from point C - ⁇ x to point C, the transverse increment A y (ni, (ni- 1)).
  • the output sequence which is the same for this sequence is illustrated by the arrows pointing downwards and the output sequence which is opposite to this sequence is indicated by the arrows pointing upwards.
  • the signs of the transverse increments for each curve section are also given.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Cutting Processes (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Treatment Of Fiber Materials (AREA)

Claims (9)

1. Circuit de commande du deplacement transversal linéaire et du déplacement en rotation d'un couteau (20) pour découper des courbes répétitives (A-A) dans un lé défilant dans le sens longitudinal (X) sous le couteau (20), comprenant un premier moteur électrique (14, 27), qui commande le déplacement du couteau (20) dans le sens transversal (Y), et un second moteur électrique (16, 22), qui est déplacé transversalement avec le couteau (20) et qui commande le déplacement en rotation du couteau (20) qui, en l'occurrence, adopte en tout point de la courbe à découper (A-A) approximativement une position tangentielle par rapport à la courbe (A-A), la courbe (A-A) étant subdivisée en incréments de longueur égale (àx), le circuit de commande du premier moteur électrique (14, 27) formant les valeurs de courbe dans le sens transversal (Y) et un ordinateur de commande (9) du second moteur électrique (16, 22) formant, outre le tracé de la courbe (A-A), approximativement sa dérivée mathématique première et les valeurs formées commandant les moteurs électriques (14, 16, 22, 27) de manière synchrone avec le déplacement longitudinal (27) du lé (28), caractérisé en ce que
a) il est prévu une première mémoire (30) dans laquelle est mémorisé au moins un élément de courbe dont le tracé f (x) dans le sens longitudinal et dans le sens transversal (x, Y) est proportionnel au tracé d'éléments répétitifs (AB, BC, DE, EF) de la courbe (A-A),
b) il est prévu un circuit diviseur (32) qui subdivise la dimension longitudinale (W) des éléments de courbe répétitifs (AB, BC, DE, EF) en incréments de longueur (Ax) et subdivise la dimension longitudinale de l'élément de courbe mémorisé en un nombre égal (n) d'eléments longitudinaux,
c) un circuit d'analyse (33) détermine, pour chaque subdivision de l'élément de courbe mémorisé, les valeurs de mémoire dans le sens transversal (Y),
d) il est prévu un circuit d'incrémentation (7, 34) qui, à partir des valeurs de mémoire déterminées dans le sens transversal (Y), forme un incrément transversal (ày),
e) il est prévu une seconde mémoire (10, 35) dans laquelle est mémorisé l'incrément transversal (ày) correspondant a chaque incrément longitudinal (àx) et
f) il est prévu un circuit de synchronisation et de séquence (37) qui transmet les incréments transversaux (ày) mémorisés dans la seconde mémoire (10, 35) au circuit de commande (36) du premier moteur électrique (14, 27) pour commander au moins ce dernier, ladite transmission étant synchronisée avec la vitesse du lé à découper (28).
2. Circuit de commande selon la revendication 1, caractérisé en ce que, dans la première mémoire, l'élément de courbe est mémorisé point par point et le circuit d'analyse (33) interpole, pour chaque sub- division de cet elément de courbe, les valeurs de mémoire voisines.
3. Circuit de commande selon la revendication 2, caractérisé en ce que l'élément de courbe mémorisé point par point dans la première mémoire (30) est mémorisé, dans le sens longitudinal et dans le sens transversal (X, Y), dans une dimension unifiée, en ce que le circuit d'analyse (33) multiplie les valeurs interpolées (y) par la dimension transversale (U) des éléments de courbe répétitifs (AB, BC, DE, EF), et en ce que l'ordinateur de commande (9) multiplie la première courbe dérivée f (x) également par le facteur (U).
4. Circuit de commande selon la revendication 2 ou 3, caractérisé en ce que le circuit d'analyse (33) interpole linéairement des valeurs de mémoire voisines.
5. Circuit de commande selon l'une des revendications 1 à 4, caractérisé en ce qu'il est prévu un circuit de subdivision (1, 31) qui, pour les droites longitudinales (CD, FA) de. la courbe (A-A), détermine, pour chaque incrément longitudinal (Δx), l'incrément transversal (ày) zéro et transmet la position de rotation zéro, en tant que valeur de commande, aux moteurs électriques (14, 16, 22, 27) lors de la découpe de ces droites (CD, FA).
6. Circuit de commande selon l'une des revendications 1 à 5, caractérisé en ce que le circuit de synchronisation et de séquence (37) des éléments de courbe (AB, DE, EF) présentant une symétrie d'axes et/ou de points par rapport à l'élément de courbe mémorisé transmet les incréments transversaux (oy), qui sont mémorisés dans la seconde mémoire (10, 35) et qui sont destinés a commander le premier moteur (14, 27), dans l'ordre inverse et/ou avec un signe inverse.
7. Circuit de commande selon la revendication 6, caractérisé en ce que, si l'élément de courbe mémorisé présente un tracé sinusoïdal o cosinusoïdal, le circuit de synchronisation et de séquence (37) transmet les incréments transversaux (Ay), qui sont memorisés dans la seconde mémoire (35) et qui sont destinés a commander le second moteur (27), dans un ordre et avec un signe correspondant à la dérivée mathématique première.
8. Circuit de commande selon la revendication 6 ou 7, caractérisé en ce que le circuit de subdivision (31) envoie au circuit de synchronisation et de séquence (37) des signaux correspondant aux valeurs zéro des incréments (ày) et a la position de rotation, ains qu'un signal qui correspond all nombre (n2, na), qui est le nombre d'incréments longitudinaux (Δx) correspondant à la longueur des droites (CD, FA), et en ce qu, le circuit de synchronisation et de séquence (37) coupe les moteurs (14, 27, 16, 22) à l'apparition des droites (CD, FA).
9. Circuit de commande selon la revendication 8, caractérisé en c que l'extrémité de la courbe (A-A) est formée par une droite longitudinale (FA), en ce que le lé (28) comporte des marquages qui déterminent le début de la courbe (A-A), en ce qu'il est prévu un capteur qui détecte ces marquages (2) et dont les signaux sont transmis au circuit de synchronisation et de séquence (4, 37) et déterminent le debut de la transmission des signaux de commande aux moteurs (14, 16, 22, 27), et en ce que la droite (FA) placée à l'extrémité de la courbe (A-A) est déterminée, avec son extrémite, par la détection d'un marquage.
EP88107126A 1987-05-19 1988-05-04 Système de commande automatique pour des couteaux Expired - Lifetime EP0291763B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3716704A DE3716704C1 (de) 1987-05-19 1987-05-19 Steuerschaltung zur Steuerung eines Messers
DE3716704 1987-05-19

Publications (2)

Publication Number Publication Date
EP0291763A1 EP0291763A1 (fr) 1988-11-23
EP0291763B1 true EP0291763B1 (fr) 1990-12-27

Family

ID=6327852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88107126A Expired - Lifetime EP0291763B1 (fr) 1987-05-19 1988-05-04 Système de commande automatique pour des couteaux

Country Status (7)

Country Link
US (1) US5124929A (fr)
EP (1) EP0291763B1 (fr)
JP (1) JPH01503286A (fr)
CA (1) CA1314604C (fr)
DE (2) DE3716704C1 (fr)
ES (1) ES2019429B3 (fr)
WO (1) WO1988009248A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835951C1 (fr) * 1988-10-21 1989-12-14 Hans Lingl Anlagenbau Und Verfahrenstechnik Gmbh & Co Kg, 7910 Neu-Ulm, De
ES2083409T3 (es) * 1990-09-25 1996-04-16 Heidenhain Gmbh Dr Johannes Procedimiento para determinar el contorno de trayectoria de herramientas para maquinas de control numerico.
US5925969A (en) * 1995-10-17 1999-07-20 O'neill; Cormac G. Ferroelectric transducers
US20030105443A1 (en) * 2000-07-10 2003-06-05 The Procter & Gamble Company Absorbent article comprising mircroporous film with registration mark

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969615A (en) * 1974-12-20 1976-07-13 The United States Of America As Represented By The United States Energy Research And Development Administration Interpolator for numerically controlled machine tools
US4262336A (en) * 1979-04-27 1981-04-14 Pritchard Eric K Multi-axis contouring control system
CH645288A5 (en) * 1980-05-23 1984-09-28 Schmidlin Ag Roller-cutter shears for automatically cutting combined curves
US4415978A (en) * 1981-04-14 1983-11-15 Molins Machine Company, Inc. Cut-to-mark cut-off control automated for splice and order change
GB2115336B (en) * 1982-02-26 1985-06-26 Head Wrightson Mach Method of and apparatus for slitting or edge trimming strip material
US4493032A (en) * 1982-09-07 1985-01-08 General Electric Company Method and apparatus for positioning using circular interpolation
DE3336145C2 (de) * 1983-10-05 1985-09-05 LEMO M. Lehmacher & Sohn GmbH Maschinenfabrik, 5216 Niederkassel Vorrichtung für die Herstellung von Kunststofftaschen
DE3521072A1 (de) * 1984-06-12 1985-12-12 Mitsubishi Denki K.K., Tokio/Tokyo Interpolationsverfahren fuer eine numerisch gesteuerte maschine
US4829219A (en) * 1986-11-20 1989-05-09 Unimation Inc. Multiaxis robot having improved motion control through variable acceleration/deceleration profiling

Also Published As

Publication number Publication date
JPH01503286A (ja) 1989-11-09
EP0291763A1 (fr) 1988-11-23
US5124929A (en) 1992-06-23
CA1314604C (fr) 1993-03-16
DE3716704C1 (de) 1988-11-17
WO1988009248A1 (fr) 1988-12-01
ES2019429B3 (es) 1991-06-16
DE3861420D1 (de) 1991-02-07

Similar Documents

Publication Publication Date Title
DE3542923C2 (fr)
DE2817683A1 (de) Programmierte vorrichtung zum schneiden von flachmaterial mit einem schaerfbaren schneidwerkzeug und verfahren zu deren betrieb
DE2724602C3 (de) Einrichtung zur Gleichlaufregelung einer Zahnradbearbeitungsmaschine
DE2856817C2 (fr)
EP0390770B1 (fr) Méthode de correction électronique d'erreur de position pour un système de mesure incrémentiel et système de mesure pour mettre en oeuvre ce procédé
DE2052123C3 (de) Elektroerosionsanlage mit numerischer Bahnsteuerung für eine zwischen zwei Führungen gespannte Drahtelektrode
DE1638034C3 (de) Linien-Nachführ vorrichtung
DE2832982A1 (de) Positionierungsvorrichtung
DE2702498C3 (de) Vorrichtung zur numerischen Steuerung des Anfangspunktes des Gewindeschneidvorganges fur mehrgängige Gewinde
EP0291763B1 (fr) Système de commande automatique pour des couteaux
DE1936915A1 (de) Roentgenschichtaufnahmegeraet
EP0417337B1 (fr) Procédé de fonctionnement d'une machine-outil à commande numérique ou d'un robot
DE2641851C2 (de) Brennschneidmaschine
EP0094986A1 (fr) Dispositif pour la sous-division des signaux analogiques périodiques
CH669354A5 (fr)
CH673541A5 (fr)
DE2052161B2 (de) Schaltungsanordnung für eine Elektroerosionsmaschine zum Steuern der relativen Bewegung zwischen mindestens einer Elektrode und mindestens einem Werkstück
DE2718044C2 (de) Verfahren und Vorrichtung zur elektroerosiven Bearbeitung
DE2812849C2 (de) Verfahren zum Steuern eines Querschneiders und digitale Regeleinrichtung zur Durchführung des Verfahrens
DE2400298A1 (de) Digitale steuervorrichtung zur positionierung eines beweglichen objektes
DE2733035A1 (de) Bewegungs- oder positions-steuersystem
DE3717078C1 (de) Vorrichtung zur Regelung des Waelzantriebes einer Zahnradschleifmaschine
DE3926413C2 (fr)
DE3308671C2 (de) Regelkreis für die Geschwindigkeit eines mit einem Geschwindigkeitssollwert hochgenau abzustimmenden Förderer- oder Werkzeugantriebs
DE2430104B2 (de) Numerisch arbeitende Programmsteuerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17P Request for examination filed

Effective date: 19890301

17Q First examination report despatched

Effective date: 19891013

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901227

REF Corresponds to:

Ref document number: 3861420

Country of ref document: DE

Date of ref document: 19910207

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910531

Year of fee payment: 4

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930706

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940328

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940413

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940516

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950531

BERE Be: lapsed

Owner name: AFS ENTWICKLUNGS + VERTRIEBS G.M.B.H.

Effective date: 19950531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050504