EP0289730A2 - Vorrichtung zur Überwachung elektronischer Geräte - Google Patents

Vorrichtung zur Überwachung elektronischer Geräte Download PDF

Info

Publication number
EP0289730A2
EP0289730A2 EP88103140A EP88103140A EP0289730A2 EP 0289730 A2 EP0289730 A2 EP 0289730A2 EP 88103140 A EP88103140 A EP 88103140A EP 88103140 A EP88103140 A EP 88103140A EP 0289730 A2 EP0289730 A2 EP 0289730A2
Authority
EP
European Patent Office
Prior art keywords
capacitor
output
circuit
resistor
resonant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP88103140A
Other languages
English (en)
French (fr)
Other versions
EP0289730A3 (de
Inventor
Josef Schriek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella GmbH and Co KGaA
Original Assignee
Hella KGaA Huek and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hella KGaA Huek and Co filed Critical Hella KGaA Huek and Co
Publication of EP0289730A2 publication Critical patent/EP0289730A2/de
Publication of EP0289730A3 publication Critical patent/EP0289730A3/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • G06F11/0757Error or fault detection not based on redundancy by exceeding limits by exceeding a time limit, i.e. time-out, e.g. watchdogs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits

Definitions

  • the invention relates to a device for monitoring electronic devices, in particular microcomputers, with an input which is connected to an output of the electronic device, with a charging circuit which has an RC element which can be discharged by signals from the electronic device, with a Oscillating circuit that can be switched depending on the state of charge of the capacitor and that generates a periodic reset signal, and with an output that is connected to an input of the electronic circuit and that supplies the electronic device with the reset signals of the oscillating circuit.
  • Such a device is known from DE-OS 33 32 383.
  • the charging circuit and the resonant circuit are combined in such a way that an R-C element determines both the time period in which the electrical circuit is to deliver discharge pulses and the frequency for generating reset signals.
  • the known device has disadvantages. Because there is only one R-C element, it is not possible to choose the frequency for generating reset signals regardless of the time period in which the electronic circuit is to deliver a discharge pulse. It is therefore often not possible to adapt the reset to the requirements of the electronic circuit and to freely choose the period of time in which the electronic circuit is to deliver discharge pulses.
  • the previously known device has the disadvantage that it is not possible to output an inverted reset signal. As a result, the previously known device is difficult or impossible to connect to a given electronic device Circuit be adjusted. That is, the prior art device may not be generally applicable.
  • the object of the invention is to provide a device which is simple and inexpensive, which can be used in general and which enables adaptation to many electronic circuits.
  • the charging circuit is formed separately from the resonant circuit and in that the resonant circuit has a second R-C element for determining the cycle time.
  • the separation of the charging circuit and the resonant circuit ensures that a constant potential can be produced at the output of the charging circuit. This means that, unlike the prior art, it is possible to provide a further reset output which supplies other parts of the electronic circuit or another electronic circuit with reset signals.
  • the separation of the charging circuit and the resonant circuit also ensures that an additional reset input can be set up which generates an inverted reset signal.
  • the second R-C element provided according to the invention makes it easy to select the frequency for generating reset signals irrespective of the time period in which the electronic circuit is to deliver a discharge pulse.
  • the device according to the invention thus has the advantage over the prior art that it can be used in general and that it can be adapted to many electronic circuits.
  • the additional effort required compared to the prior art is negligible compared to the advantages of the device according to the invention.
  • the additional electrical energy required for the operation of the device according to the invention is negligible, particularly when so-called C-Mos components are used as electronic components.
  • a microcomputer is supplied with current from a voltage source (B), which can be designed as a battery in a motor vehicle.
  • An output of the microcomputer (MC) is conductively connected to an input (E) of a device according to the invention for monitoring the microcomputer.
  • An output (AI) of the Device for monitoring the microcomputer is connected to an input of the microcomputer.
  • the microcomputer (MC) delivers at its output, if it functions properly, output signals which are applied to a first electrode of a third capacitor (C3) via the input (E).
  • the second electrode of the third capacitor (C3) is conductively connected to the ground or the negative supply voltage of the voltage source (B) via a so-called pull-down resistor (RP).
  • RP pull-down resistor
  • the second electrode of the third capacitor (C3) is connected via a third diode (D3) to render negative voltage peaks ineffective, the anode of which is also connected to the negative supply voltage.
  • the second electrode of the third capacitor (C3) is connected via a series resistor (RV) to the input of an inverting logic element designed as an inverter (I1).
  • the output of the inverter (I1) is connected via a parallel circuit comprising a first resistor (RI) and a series circuit of a fourth resistor (R4) and a second diode (D2) to a first electrode of a first capacitor (C1) in the form of an electrolytic capacitor second electrode is connected to the negative supply voltage.
  • the second diode (D2) is connected such that its anode is conductively connected to the first electrode or positive electrode of the electrolytic capacitor (C1). It is advantageous to use an electrolytic capacitor as the first capacitor (C1) because its capacity is greater than the capacity of conventional film capacitors for a given size. This can be important when measuring the period in which the microcomputer is to emit a discharge pulse.
  • the first resistor (RI) together with the first capacitor (C1) forms a first RC element, the first resistor (RI) being effective, in particular when charging the first capacitor (C1).
  • the fourth resistance (R4) and the first capacitor (C1) form a fourth RC element, which due to the switching of the second diode (D2) is only effective when the first capacitor (C1) is discharged.
  • the first resistor (R1) is chosen to be substantially larger than the fourth resistor (R4), so that the first capacitor (C1) is slowly charged and the capacitor (C1) is quickly discharged.
  • the first electrode of the first capacitor (C1) is also connected in parallel to a first driver (T1) and to a first input of a non-AND element (U).
  • the output of the first driver / buffer (T1) is conductively connected via a fifth resistor (R5) to the input of a second driver / buffer (T2), the output signal of which can be tapped at a third output (A3).
  • a first electrode of a fourth capacitor (C4) is connected between the fifth resistor (R5) and the input of the second driver (T2), the second electrode of which is conductively connected to the negative supply voltage of the battery (B).
  • the fifth resistor (R5) and the fourth capacitor (C4) form a fifth R-C element, the time constant of which specifies a delay time until the output signal at the third output (A3) changes.
  • the output of the inverting non-AND element (U) is in parallel with a second resistor (R2), a third resistor (R3), an input of a second logic element designed as an inverter (I2) and a second output (A2) connected.
  • the output of the second inverter (I2) is connected in parallel to a first electrode of a second capacitor (C2) and to the first output (A1), which is intended to deliver a reset signal to an input of the microcomputer (MC).
  • the second electrode of the second capacitor (C2) is in turn connected in parallel to the anode of a first diode (D1), the cathode of which is conductively connected to the third resistor (R3) is connected to the second resistor (R2) and via a feedback resistor (RR) to a second input of the inverting non-AND element (U).
  • the second resistor (R2) and the second capacitor (C2) form a second RC element
  • the third resistor (R3) and the second capacitor (C2) form a third RC element, again through the first diode (D1) and by dimensioning the resistors (R2 and R3), a different charging and discharging time of the second capacitor (C2) is made possible.
  • the first inverter (I1), the first resistor (R1), the fourth resistor (R4), the second diode (D2) and the first capacitor (C1) form a charging circuit (L), the state of charge of the first capacitor (C1) can be influenced from the outside via the input (E) by the microcomputer (MC).
  • the inverting non-and gate (U), the second inverter (I2), the second capacitor (C2), the first diode (D1), the second resistor (R2), the third resistor (R3) and the feedback resistor (RR ) form a free-running resonant circuit (S) which can be switched on and off via the first input of the inverting non-AND element (U) and thus via the state of charge of the first capacitor (C1).
  • the output signal which is inverted with respect to the signal at the first output (A1) can be tapped at the second output (A2).
  • the microcomputer (MC) delivers rectangular pulses with a predetermined uniform frequency to the charging circuit (L) via the input (E), as shown in FIG. 2a.
  • the Rectangular pulses of the microcomputer (MC) are, as shown in FIG. 2b, converted by the third capacitor (C3) to voltage peaks which can be measured at the first measuring point (P1) and which are fed to the first inverter (I1).
  • the input of the first inverter (I) has negative or ground potential, so that the output of the first inverter (I1) has a positive potential, which has the first capacitor (C1) charges via the first resistor (R1), as can be measured at the second measuring point (P2) and shown in FIG. 2c.
  • the first inverter (I1) changes its initial state to minus or ground potential.
  • the first capacitor (C1) is then discharged very quickly via the first high-resistance resistor (R1), but above all via the fourth low-resistance resistor (R4) and the second diode (D2).
  • the first output (A1) As long as the microcomputer (MC) periodically delivers the pulses shown in FIG. 2a, the first output (A1), as shown in FIG. 2d, has a constant negative or ground potential.
  • the second output (A2) As shown in FIG. 2e, has a constantly positive or supply voltage potential.
  • the third output (A3) as shown in FIG. 2f, has a constant negative or ground potential in this case.
  • the period of the output pulses of the microcomputer (MC) or of the discharge pulses must not exceed a predetermined first period (T1).
  • This first period (T1) is predetermined by the capacitance of the first capacitor (C1), the size of the first resistor (R1) and the threshold voltage at the first input of the inverting non-AND element (U).
  • the reset signals or reset pulses shown in FIG. 2d then appear at the first output (A1) and are supplied as reset pulses to an input of the microcomputer (MC) in order to restart the microcomputer (MC) from a defined operating state. Since it is a free-running resonant circuit (S), these reset pulses are repeated with a second period (T2) predetermined by the value of the second resistor (R2) and the size of the second capacitor (C2).
  • T2 predetermined by the value of the second resistor (R2) and the size of the second capacitor (C2).
  • the width of the reset pulses (PB) can be freely selected by selecting the resistors (R2, R3) and the first diode (D1).
  • the second output (A2) as shown in FIG. 2e, there is the output signal which is inverted compared to the signal at the first output (A1) if a computer is used which requires a corresponding inverted output signal to trigger the restart function.
  • the third output (A3) also changes its initial state at a predetermined third time (T3) after the second time (T2), as shown in FIG. 2f is.
  • the output signal of the third output (A3) is used to control other parts of the electronic circuit or used to control a warning signal.
  • microcomputer (MC) has ended its reset or its resumption routine at a fourth point in time (T4), so that it again supplies rectangular output signals to the input (E) at the fourth point in time (T4). Then the processes shown at the beginning of the functional description run again and all outputs (A1 - A3) return to the output states described there after a delay.
  • the device according to the embodiment of Figure 1 has the particular advantage that a first RC element (R1 C1) is provided for determining the first period (T1) and that a second RC element (R2 + R3 C2) for determining the second period (T2) is provided.
  • these periods or the time periods can be set completely independently of one another, and the device according to the invention can be adapted to almost any electronic circuit.
  • the width of the pulses present at the first output (A1) can additionally be set almost arbitrarily.
  • the width of the discharge pulses generated by the microcomputer (MC) hardly plays a role.
  • the power consumption of the device according to the invention is also low compared to the prior art, because few circuit parts are required to construct the device according to the invention required are.
  • the current requirement can be further reduced by using C-Mos circuits as the first inverter (I1), second inverter (I2), first driver (T1), second driver (T2) and inverting non-AND element (U) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Electronic Switches (AREA)

Abstract

Bei einer Vorrichtung zur Überwachung elektronischer Geräte, insbesondere von Mikrorechnern, mit einem Eingang, der mit einem Ausgang des elektronischen Geräts verbunden ist, mit einer Ladeschaltung, die ein R-C-Glied aufweist, das durch Signale des elektronischen Geräts entladbar ist, mit einem Schwingkreis, der abhängig vom Ladezustand des Kondensators schaltbar ist und der ein periodisches Rücksetzsignal erzeugt, und mit einem Ausgang, der mit einem Eingang des elektronischen Geräts verbunden ist und der das elektronische Gerät mit den Rücksetzsignalen des Schwingkreises versorgt, ist, um eine einfache und kostengünstige Anpassung der Vorrichtung an viele elektronische Schaltungen zu ermöglichen, die Ladeschaltung getrennt von dem Schwingkreis ausgebildet und weist der Schwingkreis ein zweites R-C-Glied zur Taktzeitfestlegung auf.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Überwachung elektronischer Geräte, insbesondere von Mikrorechnern, mit einem Eingang, der mit einem Ausgang des elektronischen Geräts verbunden ist, mit einer Ladeschaltung, die ein R-C-Glied aufweist, das durch Signale des elektronischen Geräts entladbar ist, mit einem Schwingkreis, der abhängig vom Ladezustand des Kondensators schaltbar ist und der ein periodisches Rücksetzsignal erzeugt, und mit einem Ausgang, der mit einem Eingang der elektronischen Schaltung verbunden ist und der das elektronische Gerät mit den Rücksetzsignalen des Schwingkreises versorgt.
  • Aus der DE-OS 33 32 383 ist eine derartige Vorrichtung bekannt. Dort sind die Ladeschaltung und der Schwingkreis derart zusammengefaßt, daß durch ein R-C-Glied sowohl die Zeitdauer bestimmt wird, in der die elektrische Schaltung Entladepulse liefern soll, als auch die Frequenz zur Erzeugung von Rücksetzsignalen vorgegeben wird.
  • Die vorbekannte Vorrichtung hat jedoch Nachteile. Dadurch, daß nur ein R-C-Glied vorhanden ist, ist es nicht möglich, die Frequenz zur Erzeugung von Rücksetzsignalen unabhängig von der Zeitdauer zu wählen, in der die elektronische Schaltung einen Entladeimpuls liefern soll. Es ist also häufig nicht möglich, die Rücksetzung an die Erfordernisse der elektronischen Schaltung anzupassen und die Zeitdauer, in der die elektronische Schaltung Entladeimpulse liefern soll, frei zu wählen.
  • Weiterhin hat die vorbekannte Vorrichtung den Nachteil, daß mit ihr keine Ausgabe eines invertierten Rücksetzsignals möglich ist. Dadurch kann die vorbekannte Vorrichtung nur schwer oder gar nicht an eine vorgegebene elektronische Schaltung angepaßt werden. Das heißt, die vorbekannte Vorrichtung ist möglicherweise nicht allgemein anwendbar.
  • Schließlich ist es nicht möglich, bei der vorbekannten Vorrichtung einen zusätzlichen Rücksetzausgang vorzusehen, der andere Teile der elektronischen Schaltung oder eine weitere elektronische Schaltung mit insbesondere dauernden Rücksetzsignalen versorgt, weil kein Schaltungspunkt vorhanden ist, der beim Ausbleiben der Entladeimpulse ein konstantes Potential aufweist. Ein derartiger zusätzlicher Rücksetzausgang ist häufig dann wünschenswert, wenn die elektronische Schaltung aus einem elektronischen Mikrorechner und weiteren Schaltungsteilen besteht. Die Anpassung der vorbekannten Vorrichtung an derartige elektronische Schaltungen ist häufig nicht möglich.
  • Die Erfindung hat die Aufgabe, eine Vorrichtung zu schaffen, die einfach und kostengünstig ist, die allgemein verwendbar ist und die die Anpassung an viele elektronische Schaltungen ermöglicht.
  • Diese Aufgabe wird dadurch gelöst, daß die Ladeschaltung getrennt von dem Schwingkreis ausgebildet ist und daß der Schwingkreis ein zweites R-C-Glied zur Taktzeitfestlegung aufweist.
  • Dabei ist durch die erfindungsgemäße Trennung von Ladeschaltung und Schwingkreis gewährleistet, daß am Ausgang der Ladeschaltung ein konstantes Potential herstellbar ist. Das heißt, es ist anders als beim Vorbekannten möglich, einen weiteren Rücksetzausgang vorzusehen, der andere Teile der elektronischen Schaltung oder eine weitere elektronische Schaltung mit Rücksetzsignalen versorgt.
  • Durch die Trennung von Ladeschaltung und Schwingkreis ist ebenfalls gewährleistet, daß ein zusätzlicher Rücksetzeingang eingerichtet werden kann, der ein invertiertes Rücksetzsignal erzeugt.
  • Durch das erfindungsgemäß vorgesehene zweite R-C-Glied ist es anders als beim Vorbekannten einfach möglich, die Frequenz zur Erzeugung von Rücksetzsignalen unabhängig von der Zeitdauer zu wählen, in der die elektronische Schaltung einen Entladeimpuls liefern soll.
  • Die erfindungsgemäße Vorrichtung hat also gegenüber dem Vorbekannten den Vorteil, daß sie allgemein verwendbar ist und daß sie die Anspassung an viele elektronische Schaltungen ermöglicht. Der dazu gegenüber dem Vorbekannten erforderliche Mehraufwand ist vernachlässigbar gegenüber den Vorteilen, die die erfindungsgemäße Vorrichtung aufweist. Der für den Betrieb der erfindungsgemäßen Vorrichtung erforderliche Mehrbedarf an elektrische Energie fällt kaum ins Gewicht, insbesondere dann, wenn als elektronische Bauteile sogenannte C-Mos-Bauteile verwendet werden.
  • Weitere vorteilhafte Ausgestaltung und Weiterbildung des Erfindungsgegenstands ergeben sich aus den Unteransprüchen.
  • Ein Ausführungsbeispiel des Erfindungsgegenstands ist in den Zeichnungen dargestellt und wird im folgendem näher erläutert.
  • Es zeigen:
    • Figur 1 eine erfindungsgemäße Vorrichtung zur Überwachung der Funktion eines Mikrorechners und
    • Figur 2 Spannungs-Zeit-Diagramme für verschiedene Meßpunkte der erfindungsgemäßen Vorrichtung nach Figur 1.
  • In der Figur 1 wird ein Mikrorechner (MC) aus einer Spannungsquelle (B), die als Batterie eines Kraftfahrzeuges ausgebildet sein kann, mit Strom versorgt. Ein Ausgang des Mikrorechners (MC) ist mit einem Eingang (E) einer erfindungsgemäßen Vorrichtung zur Überwachung des Mikrorechners leitend verbunden. Ein Ausgang (AI) der Vorrichtung zur Überwachung des Mikrorechners ist mit einem Eingang des Mikrorechners verbunden.
  • Der Mikrorechner (MC) liefert an seinem Ausgang bei einwandfreier Funktion Ausgangssignale, die über den Eingang (E) an einer ersten Elektrode eines dritten Kondensators (C3) anliegen. Die zweite Elektrode des dritten Kondensators (C3) ist über einen sogenannten Pull-Down-Widerstand (RP) mit der Masse bzw. der negativen Versorgungsspannung der Spannungsquelle (B) leitend verbunden. Weiterhin ist die zweite Elektrode des dritten Kondensators (C3) über eine dritte Diode (D3) zum Unwirksammachen von negativen Spannungsspitzen verbunden, deren Anode ebenfalls mit der negativen Versorgungsspannung verbunden ist.
  • Die zweite Elektrode des dritten Kondensators (C3) ist über einen Vorwiderstand (RV) mit dem Eingang eines als Inverter (I1) ausgebildeten invertierenden Logikelementes verbunden. Der Ausgang des Inverters (I1) ist über eine Parallelschaltung aus einem ersten Widerstand (RI) und einer Serienschaltung eines vierten Widerstandes (R4) und einer zweiten Diode (D2) mit einer ersten Elektrode eines als Elektrolytkondensator ausgebildeten ersten Kondensators (C1) verbunden, dessen zweite Elektrode mit der negativen Versorgungsspannung verbunden ist. Die zweite Diode (D2) ist derart geschaltet, daß ihre Anode mit der ersten Elektrode oder Pluselektrode des Elektrolytkondensators (C1) leitend verbunden ist. Es ist vorteilhaft, als ersten Kondensator (C1) einen Elektrolytkondensator zu verwenden, weil dessen Kapazität bei gegebener Baugröße größer ist als die Kapazität herkömmlicher Folienkondensatoren. Dies kann bei der Bemessung des Zeitraums, in dem der Mikrorechner einen Entladeimpuls ausgeben soll, von Bedeutung sein.
  • Der erste Widerstand (RI) gemeinsam mit dem ersten Kondensator (C1) bildet ein erstes R-C-Glied, wobei der erste Widerstand (RI), insbesondere bei der Aufladung des ersten Kondensators (C1), wirksam ist. Der vierte Widerstand (R4) und der erste Kondensator (C1) bilden ein viertes R-C-Glied, das bedingt durch die Schaltung der zweiten Diode (D2) nur bei der Entladung des ersten Kondensators (C1) wirksam ist. Der erste Widerstand (R1) ist wesentlich größer gewählt als der vierte Widerstand (R4), so daß sich eine langsame Aufladung des ersten Kondensators (C1) und eine schnelle Entladung des Kondensators (C1) ergibt.
  • Die erste Elektrode des ersten Kondensators (C1) ist weiterhin parallel mit einem ersten Treiber (T1) und mit einem ersten Eingang eines Nicht-Und-Gliedes (U) leitend verbunden. Der Ausgang des ersten Treibers/Puffers (T1) ist über einen fünften Widerstand (R5) mit dem Eingang eines zweiten Treibers/Puffers (T2) leitend verbunden, dessen Ausgangssignal an einem dritten Ausgang (A3) abgreifbar ist. Zwischen dem fünften Widerstand (R5) und dem Eingang des zweiten Treibers (T2) ist eine erste Elektrode eines vierten Kondensators (C4) angeschlossen, dessen zweite Elektrode leitend mit der negativen Versorgungsspannung der Batterie (B) verbunden ist.
  • Der fünfte Widerstand (R5) und der vierte Kondensator (C4) bilden ein fünftes R-C-Glied, dessen Zeitkonstante eine Verzögerungszeit bis zum Ändern des Ausgangssignals am dritten Ausgang (A3) vorgibt.
  • Der Ausgang des invertierenden Nicht-Und-Gliedes (U) ist parallel mit einem zweiten Widerstand (R2), einem dritten Widerstand (R3), einem Eingang eines zweiten, als Invertierer (I2) ausgebildeten Logikelementes und mit einem zweiten Ausgang (A2) leitend verbunden. Der Ausgang des zweiten Invertierers (I2) ist parallel mit einer ersten Elektrode eines zweiten Kondensators (C2) und mit dem ersten Ausgang (A1) leitend verbunden, der an einen Eingang des Mikrorechners (MC) ein Rücksetzsignal liefern soll. Die zweite Elektrode des zweiten Kondensators (C2) ist wiederum parallel mit der Anode einer ersten Diode (D1), deren Kathode mit dem dritten Widerstand (R3) leitend verbunden ist, mit dem zweiten Widerstand (R2) und über einen Rückkopplungswiderstand (RR) mit einem zweiten Eingang des invertierenden Nicht-Und-Gliedes (U) leitend verbunden.
  • Der zweite Widerstand (R2) und der zweite Kondensator (C2) bilden ein zweites R-C-Glied, und der dritte Widerstand (R3) und der zweite Kondensator (C2) bilden ein drittes R-C-Glied, wobei wiederum durch die erste Diode (D1) und durch die Dimensionierung der Widerstände (R2 und R3) eine unterschiedliche Auflade- und Entladezeit des zweiten Kondensators (C2) ermöglicht wird.
  • Der erste Invertierer (I1), der erste Widerstand (R1), der vierte Widerstand (R4), die zweite Diode (D2) und der erste Kondensator (C1) bilden eine Ladeschaltung (L), wobei der Ladezustand des ersten Kondensators (C1) von außen über den Eingang (E) durch den Mikrorechner (MC) beeinflußbar ist.
  • Das invertierende Nicht-Und-Glied (U), der zweite Invertierer (I2), der zweite Kondensator (C2), die erste Diode (D1), der zweite Widerstand (R2), der dritte Widerstand (R3) und der Rückkopplungswiderstand (RR) bilden einen freilaufenden Schwingkreis (S), der über den ersten Eingang des invertierenden Nicht-Und-Gliedes (U) und damit über den Ladezustand des ersten Kondensators (C1) ein- und ausschaltbar ist. Am zweiten Ausgang (A2) ist das gegenüber dem Signal am ersten Ausgang (A1) invertierte Ausgangssignal abgreifbar.
  • Die Funktion der erfindungsgemäßen Vorrichtung der Figur 1 wird nun anhand der Spannungszeitdiagramme einiger Meßpunkte der erfindungsgemäßen Vorrichtung der Figur 2 näher erläutert:
  • Bei ordnungsgemäßer Funktion des Mikrorechners (MC) liefert der Mikrorechner (MC) über dem Eingang (E) rechteckförmige Impulse mit vorgegebener gleichförmiger Frequenz an die Ladeschaltung (L), wie in Figur 2a dargestellt. Die rechteckförmigen Impulse des Mikrorechners (MC) werden, wie in der Figur 2b dargestellt, durch den dritten Kondensator (C3) zu Spannungsspitzen umgewandelt, die am ersten Meßpunkt (P1) meßbar sind und dem ersten Inverter (I1) zugeführt werden. In den Pausen zwischen zwei Spannungsspitzen am ersten Meßpunkt (P1) weist der Eingang des ersten Inverters (I) Minus- oder Masse-Potential auf, so daß der Ausgang des ersten Inverters (I1) positives Potential aufweist, das den ersten Kondensator (C1) über den ersten Widerstand (R1) auflädt, wie am zweiten Meßpunkt (P2) und in der Figur 2c dargestellt meßbar ist. Tritt eine Spannungsspitze am Eingang des ersten Inverters (I1) auf, so ändert der erste Inverter (I1) seinen Ausgangszustand auf Minus- oder Masse-Potential. Daraufhin wird der erste Kondensator (C1) auch über den ersten hochohmigen Widerstand (R1), vor allem aber über den vierten niederohmigen Widerstand (R4) und die zweite Diode (D2) sehr schnell entladen.
  • Solange der Mikrorechner (MC) die in Figur 2a dargestellten Impulse periodisch liefert, weist der erste Ausgang (A1), wie in Figur 2d dargestellt, konstant Minus- oder Masse­Potential auf. In diesem Fall weist der zweite Ausgang (A2), wie in Figur 2e dargestellt, konstant positives oder Versorgungsspannungs-Potential auf. Der dritte Ausgang (A3) weist, wie in Figur 2f dargestellt, konstant Minus- oder Masse-Potential in diesem Fall auf.
  • Um diesen Zustand aufrechtzuerhalten, darf die Periodendauer der Ausgangsimpulse des Mikrorechners (MC) oder auch der Entladeimpulse eine vorgegebene erste Periode (T1) nicht überschreiten. Diese erste Periode (T1) ist vorgegeben durch die Kapazität des ersten Kondensators (C1), die Größe des ersten Widerstandes (R1) und die Schwellenspannung am ersten Eingang des invertierenden Nicht-Und-Gliedes (U).
  • Bleiben die Entladeimpulse am Eingang (E) aus, so wird davon ausgegangen, daß der Mikrorechner (MC) nicht mehr einwandfrei funktioniert. Dann tritt innerhalb der vorgegebenen ersten Periode (T1) kein Impuls des Mikrorechners (MC) auf, und der erste Kondensator (C1) wird über den durch das Nicht-Und-Gatter (U) vorgegebenen Schwellwert hinaus aufgeladen, wie in Figur 2c dargestellt. Dies führt dazu, daß das invertierende Nicht-Und-Glied (U) seinen Ausgangszustand wechselt, und der freilaufende Schwingkreis (S) in bekannter Art und Weise beginnt zu schwingen, wie dies in Figur 2d dargestellt ist. Dort wird davon ausgegangen, daß der Entladeimpuls des Mikrorechners (MC) zum Zeitpunkt (t1) ausbleibt und daß zu einem Zeitpunkt (t2) die Spannung am ersten Kondensator (C1) den durch das Nicht-Und-Glied (U) vorgegebenen Schwellwert überschreitet und der Schwingkreis anfängt zu schwingen.
  • Am ersten Ausgang (A1) treten dann die in der Figur 2d dargestellten Rücksetzsignale oder Rücksetzimpulse auf, die als Resetimpulse einem Eingang des Mikrorechners (MC) zugeführt werden, um den Mikrorechner (MC) von einem definierten Betriebszustand aus wieder zu starten. Da es sich um einen freilaufenden Schwingkreis (S) handelt, werden diese Resetimpulse mit einer durch den Wert des zweiten Widerstandes (R2) und die Größe des zweiten Kondensators (C2) vorgegebenen zweiten Periode (T2) wiederholt. Die Breite der Resetimpulse (PB) ist durch Wahl der Widerstände (R2, R3) und der ersten Diode (D1) frei wählbar. Am zweiten Ausgang (A2) liegt, wie in der Figur 2e dargestellt, das gegenüber dem Signal am ersten Ausgang (A1) invertierte Ausgangssignal an, falls ein Rechner verwendet wird, der ein entsprechendes invertiertes Ausgangssignal zum Auslösen der Neustartfunktion benötigt.
  • Abhängig von der Größe des fünften Widerstandes (R5) und des vierten Kondensators (C4) wechselt auch der dritte Ausgang (A3) zu einer vorgegebenen dritten Zeit (T3) nach der zweiten Zeit (T2) seinen Ausgangszustand, wie dies in der Figur 2f dargestellt ist. Das Ausgangssignals des dritten Ausgangs (A3) ist zur Steuerung weiterer Teile der elektronischen Schaltung oder auch zur Steuerung eines Warnsignals verwendbar.
  • Es sei angenommen, daß der Mikrorechner (MC) zu einem vierten Zeitpunkt (T4) seinen Reset oder seine Wiederaufnahmeroutine beendet hat, so daß er zum vierten Zeitpunkt (T4) wieder rechteckförmige Ausgangssignale an den Eingang (E) liefert. Dann laufen die zu Beginn der Funktionsbeschreibung dargestellten Vorgänge erneut ab, und sämtliche Ausgänge (A1 - A3) nehmen ggf. nach einer Verzögerungszeit die dort beschriebenen Ausgangszustände wieder ein.
  • Die erfindungsgemäße Vorrichtung nach dem Ausführungsbeispiel der Figur 1 hat insbesondere den Vorteil, daß ein erstes R-C-Glied (R1 C1) zur Bestimmung der ersten Periode (T1) vorgesehen ist und daß ein zweites R-C-Glied (R2+R3 C2) zur Bestimmung der zweiten Periode (T2) vorgesehen ist. Dadurch sind diese Perioden bzw. die Zeitdauern völlig unabhängig voneinander einstellbar, und die erfindungsgemäße Vorrichtung ist an nahezu jede elektronische Schaltung anpaßbar. Durch geeignete Wahl des dritten Widerstandes (R3) und des zweiten Widerstandes (R2) und der ersten Diode (D1) kann die Breite der am ersten Ausgang (A1) anstehenden Impulse zusätzlich nahezu beliebig eingestellt werden. Die Breite der vom Mikrorechner (MC) erzeugten Entladeimpulse spielt kaum eine Rolle. Damit sind alle für die Funktion der erfindungsgemäßen Vorrichtung erforderlichen Zeitdauern unabhängig voneinander nahezu beliebig einstellbar und dadurch, daß insgesamt drei Ausgangsklemmen (A1 - A3) vorgesehen sind, ist die erfindungsgemäße Vorrichtung zur Überwachung nahezu aller möglichen elektronischen Schaltungen einfach und kostengünstig brauchbar.
  • Der Stromverbrauch der erfindungsgemäßen Vorrichtung ist auch verglichen mit dem Vorbekannten gering, weil zum Aufbau der erfindungsgemäßen Vorrichtung wenig Schaltungsteile erforderlich sind. Der Strombedarf kann weiter dadurch verringert werden, daß als erster Invertierer (I1), zweiter Invertierer (I2), erster Treiber (T1), zweiter Treiber (T2) und invertierendes Nicht-Und-Glied (U) C-Mos-Schaltkreise verwendet werden.

Claims (9)

1. Vorrichtung zur Überwachung elektronischer Geräte, insbesondere von Mikrorechnern, mit einem Eingang, der mit einem Ausgang des elektronischen Geräts verbunden ist, mit einer Ladeschaltung, die ein R-C-Glied aufweist, das durch Signale des elektronischen Geräts entladbar ist, mit einem Schwingkreis, der abhängig vom Ladezustand des Kondensators schaltbar ist und der ein periodisches Rücksetzsignal erzeugt, und mit einem Ausgang, der mit einem Eingang des elektronischen Geräts verbunden ist und der das elektronische Gerät mit den Rücksetzsignalen des Schwingkreises versorgt, dadurch gekennzeichnet, daß die Ladeschaltung (L) getrennt von dem Schwingkreis (S) ausgebildet ist und daß der Schwingkreis (S) ein zweites R-C-Glied (R2-C2) zur Taktzeitfestlegung aufweist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Schwingkreis (S) ein drittes R-C-Glied (R3-C2) zur Einstellung des Tastverhältnisses aufweist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das zweite R-C-Glied (R2-C2) und das dritte R-C-Glied (R3-C2) denselben Kondensator (C2) aufweisen und daß zwischen dem Kondensator (C2) und dem dritten Widerstand (R3) des dritten R-C-Gliedes (R3-C2) eine Diode (D2) angeordnet ist.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Schwingkreis (S) einen zweiten Ausgang (A2) aufweist, an dem ein gegenüber dem Signal des ersten Ausgangs (A1) invertiertes Signal abgreifbar ist.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Ladeschaltung (L) ein viertes R-C-Glied (R4-C1) zur Entladung des Kondensators (C1) aufweist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das vierte R-C-Glied (R4-C1) und das erste R-C-Glied (R1-C1) denselben Kondensator (C1) aufweisen und daß zwischen dem Kondensator (C1) und dem vierten Widerstand (R4) des vierten R-C-Gliedes (R4 C1) eine zweite Diode (D2) angeordnet ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Ladeschaltung (L) ein invertierendes Logikelement, insbesondere einen Inverter (I1) aufweist, dessen Ausgang parallel mit dem ersten R-C-Glied (R1 C1) und dem vierten R-C-Glied (R4 C1) verbunden ist und daß die Anode der zweiten Diode (D2) des vierten R-C-Glieds (R4 C1) mit dem Kondensator (C1) verbunden ist.
8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein dritter Ausgang (A3) vorgesehen ist, dessen Ausgangssignal abhängig vom Ladeszustand des ersten Kondensators (C1) änderbar ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß mit dem Kondensator (C1) ein fünftes R-C-Glied (R5-C4) verbunden ist.
EP88103140A 1987-05-02 1988-03-02 Vorrichtung zur Überwachung elektronischer Geräte Ceased EP0289730A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3714630 1987-05-02
DE19873714630 DE3714630A1 (de) 1987-05-02 1987-05-02 Vorrichtung zur ueberwachung elektronischer geraete

Publications (2)

Publication Number Publication Date
EP0289730A2 true EP0289730A2 (de) 1988-11-09
EP0289730A3 EP0289730A3 (de) 1990-07-04

Family

ID=6326683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88103140A Ceased EP0289730A3 (de) 1987-05-02 1988-03-02 Vorrichtung zur Überwachung elektronischer Geräte

Country Status (2)

Country Link
EP (1) EP0289730A3 (de)
DE (1) DE3714630A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2298061A (en) * 1995-02-16 1996-08-21 Gen Electric Plc Microprocessor watchdog circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4023700C2 (de) * 1990-07-26 1998-11-12 Bosch Gmbh Robert Schaltungsanordnung zur Überwachung der Freqenz einer Signalfolge einer elektronischen Vorrichtung, insbesondere eines Mikrorechners
DE4132397C2 (de) * 1991-09-26 1994-12-01 Manfred Dr Ing Riedel Schaltungsanordnung zur Erzeugung eines Reset-Impulses
DE4210216C3 (de) * 1992-03-28 1997-04-03 Dungs Karl Gmbh & Co Überwachungsschaltung für computergesteuerte Sicherheitsgeräte
DE102004018582B8 (de) * 2004-04-16 2006-06-08 Honeywell Technologies Sarl Computersystem mit einer angeschlossenen Watchdog-Vorrichtung
DE102020108341A1 (de) 2020-03-26 2021-09-30 Varroc Lighting Systems, s.r.o. Überwachungsschaltung und Verfahren zur Funktionsüberwachung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516900A1 (de) * 1985-05-10 1987-01-15 Ant Nachrichtentech Schaltungsanordnung zum sicheren ruecksetzen und starten eines mikroprozessors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557956A (en) * 1978-10-25 1980-04-30 Nissan Motor Co Ltd Malfunction prevention unit of microcomputer
DE3240707A1 (de) * 1982-11-04 1984-05-10 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur ueberwachung von elektronischen rechenbausteinen
DE3332383A1 (de) * 1983-09-08 1985-03-28 Vdo Adolf Schindling Ag, 6000 Frankfurt Schaltungsanordnung zur ueberwachung eines programmlaufs eines mikroprozessors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516900A1 (de) * 1985-05-10 1987-01-15 Ant Nachrichtentech Schaltungsanordnung zum sicheren ruecksetzen und starten eines mikroprozessors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIP ZEITSCHRIFT F]R MIKROCOMPUTER-TECHNIK, Nr. 5, Mai 1983, Seiten 144-145, W}rzburg, DE; "Lern-und ]bungskit PET-80: Klein und fein" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2298061A (en) * 1995-02-16 1996-08-21 Gen Electric Plc Microprocessor watchdog circuit

Also Published As

Publication number Publication date
DE3714630A1 (de) 1988-11-17
EP0289730A3 (de) 1990-07-04
DE3714630C2 (de) 1993-09-09

Similar Documents

Publication Publication Date Title
DE69120917T2 (de) Schnittstellenschaltung mit Gleichstromwandler
EP0127139B1 (de) Schaltungsanordnung zum Überwachen einer Betriebsspannung
DE2541131C2 (de) Schaltungsanordnung zum Konstanthalten der Schaltverzögerung von FET-Inverterstufen in einer integrierten Schaltung
DE2418177A1 (de) Elektronische zuendanlage fuer verbrennungsmotoren
EP0135121B1 (de) Schaltungsanordnung zum Erzeugen von Rechtecksignalen
DE2437156C2 (de) Verfahren und Impulsgeneratorschaltung zur Erzeugung von Subnanosekunden-Impulsen
DE2616678B2 (de) Oszillatorschaltung
DE2705006A1 (de) Datenuebertragungs- und digitales verarbeitungssystem
EP0512161A2 (de) Schalteinrichtung, insbesondere zur Verwendung in Kraftfahrzeugen
DE3421584A1 (de) Ruecksetzschaltung fuer mikroprozessoren
DE3741619A1 (de) Steuerschaltungsanordnung fuer magnetventile
DE3926178A1 (de) Aufweck-schaltungsanordnung fuer einen mikroprozessor
EP0149277B1 (de) Monolithisch integrierter RC-Oszillator
DE3889019T2 (de) Ansteuerschaltung.
DE102008034140B4 (de) Verbrauchersteuereinheit mit impulsbreitenmodulation
DE4342082C2 (de) Steuerschaltung zum Erzeugen von Schaltsignalen für Leistungstranistoren
DE3214006C2 (de)
EP0289730A2 (de) Vorrichtung zur Überwachung elektronischer Geräte
DE3318843A1 (de) Photographisches blitzentladungsgeraet
DE3781289T2 (de) Kondensatorladeschaltung.
DE10064123A1 (de) Schaltungsanordnung zur Ansteuerung eines Halbleiterschaltelements
DE3130307C2 (de)
DE69020100T2 (de) Speiseschaltung für Gleichspannungsregler mit spannungserhöhender Schaltanordnung.
EP0509343A2 (de) Verfahren zum Betreiben eines Schaltreglers sowie Anordnung
DE3532339C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR IT

17P Request for examination filed

Effective date: 19901122

17Q First examination report despatched

Effective date: 19921021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19930524