EP0288385B1 - Prefabricated construction element with integrated thermal insulation, especially a floor element, and method for its manufacture - Google Patents

Prefabricated construction element with integrated thermal insulation, especially a floor element, and method for its manufacture Download PDF

Info

Publication number
EP0288385B1
EP0288385B1 EP19880400967 EP88400967A EP0288385B1 EP 0288385 B1 EP0288385 B1 EP 0288385B1 EP 19880400967 EP19880400967 EP 19880400967 EP 88400967 A EP88400967 A EP 88400967A EP 0288385 B1 EP0288385 B1 EP 0288385B1
Authority
EP
European Patent Office
Prior art keywords
groove
girder
insulating block
building element
prefabricated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880400967
Other languages
German (de)
French (fr)
Other versions
EP0288385A1 (en
Inventor
Jean-Pierre Carbonari
Jean Roux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Recherche Et D'etudes Techniques Saret SA
Original Assignee
Recherche Et D'etudes Techniques Saret SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recherche Et D'etudes Techniques Saret SA filed Critical Recherche Et D'etudes Techniques Saret SA
Publication of EP0288385A1 publication Critical patent/EP0288385A1/en
Application granted granted Critical
Publication of EP0288385B1 publication Critical patent/EP0288385B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/26Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with filling members between the beams
    • E04B5/261Monolithic filling members
    • E04B5/263Monolithic filling members with a flat lower surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/26Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with filling members between the beams
    • E04B5/266Filling members covering the undersurface of the beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/065Light-weight girders, e.g. with precast parts
    • E04C5/0653Light-weight girders, e.g. with precast parts with precast parts

Definitions

  • the invention relates to a prefabricated building element with integrated thermal insulation, which can in particular constitute a floor element, as well as a method for its manufacture.
  • the building element according to the invention is of the type comprising an insulating block of continuous elongated shape made of a thermally insulating material, in particular of expanded polystyrene, and a resistant rib constituted by a prefabricated beam, in particular of reinforced or prestressed concrete, introduced into a longitudinal groove formed in the insulating block over its entire length and opening onto a large face or top face of the block.
  • Construction elements of this type are already known which are intended to constitute floor elements, such as interjoists, or even roofing elements. Such elements are designed to make it possible to obtain a single-piece span between two support elements, for example, between two support walls, as described in application FR-A-1,444,277.
  • the blocks of insulating material which are part of these known construction elements generally have a length of several meters for a width generally less than one meter, for example of the order of 60 cm.
  • the independent insulating blocks in which the ribs are cast constitute particularly bulky molds which occupy an important place in the manufacturing plant, especially during the manufacture and also of the storage of these elements and which require handling. excessive linked to the difficulty of industrializing this manufacturing process.
  • the invention aims in particular to avoid the drawbacks of construction elements with integrated thermal insulation of the prior art.
  • the prefabricated beam quée has an inverted T section and includes a foot disposed on the side of the top face of the insulating block and a heel disposed on the side of the other large face or underside of the insulating block, the groove also having an internal section in T overturned adapted to that of the beam, so that the introduction of the beam is allowed by interlocking towards the bottom of the groove.
  • the construction elements can be adapted to the desired length by choosing commercial joists from stock of length corresponding to the desired span, these commercial joists usually being available with a whole range of lengths s 'ranging for example from 5 to 5 cm.
  • the groove has an inverted T-shaped internal section corresponding substantially to the external section of the prefabricated beam and opening onto the top face of the insulating block by a connection zone the section of which is gradually widens from the groove towards the top face of the insulating block, the latter being provided slots or notches that open into the bottom of the groove, which allows the insulating block to be elastically deformed to widen the groove, then introduce the prefabricated beam in the enlarged groove and allow the insulating block to return to its configuration initial not deformed to thus trap the prefabricated beam in the groove.
  • the groove has an inverted internal T-section of internal section which is wider than the external section of the prefabricated beam and opens onto the top face of the insulating block by a connection zone the section gradually widens from the groove to the height of the beam to obtain a profile called "seam allowance" and is connected to the top face of the insulating block, wedging means being provided to wedge and immobilize the beam in the groove.
  • wedging means may comprise a filling mass made of a more or less rapid setting material or else they may comprise a wedging profile or shims having a cross section of shape complementary to that of the beam to ensure the blocking without play of the beam in the groove.
  • the building element further comprises an underside plate attached to the underside of the insulating block, for example by gluing or by mechanical connection means passing through the thickness of the block insulating.
  • the construction element comprises a concrete slab covering at least partially the top face of the insulating block and ensuring a connection with the foot of the prefabricated beam.
  • This concrete slab can be poured in the factory or on site after the construction element has been placed in its final position.
  • the invention relates to a method of manufacturing a building element as defined above, this method essentially consisting in fitting the prefabricated beam into the groove of the insulating block.
  • the insulating block is deformed to widen the groove, the prefabricated beam is introduced into the enlarged groove and the insulating block is allowed to return to its initial undeformed configuration to trap the prefabricated beam in the groove.
  • the deformation of the insulating block can be done manually or on an assembly table.
  • the prefabricated beam is introduced into the groove, it is moved laterally in the bottom of the groove and then the wedging means are put in place on one side of the beam.
  • This last operation can consist in pouring a filling mass in a material with a more or less rapid setting or else in introducing a wedging profile or shims in the free space (s) formed between the beam prefabricated and the groove.
  • FIG. 1 showing a construction element according to the invention during its manufacture.
  • This building element which may in particular constitute a floor element, comprises an insulating block 10 of continuous elongated shape, made of a thermally insulating material, preferably of expanded polystyrene.
  • This block has the general shape of a parallelepiped of substantially rectangular section and comprises a large face or top face 12 and another large opposite face or underside 14. The two faces 12 and 14 are plane and parallel to each other when the block 10 is in its normal non-deformed configuration.
  • the block 10 is laterally limited by two longitudinal edges 16 and 18, parallel to each other, and having complementary profiles so as to allow the assembly, by their adjacent longitudinal edges, of two contiguous construction elements.
  • a longitudinal groove 20 which opens, over its entire length, on the top face 12 of the insulating block 10 and which also opens on the two transverse end faces (not shown) of the block insulator 10.
  • the rib 20 is intended to receive by interlocking a prefabricated beam 22, with inverted T section, which, in the example, is a prestressed concrete beam which can be chosen from beams of different heights in the same family.
  • the beam 22 comprises a foot 24 and a heel 26 and is provided with longitudinal prestressing frames 28.
  • the beam 22 may also include frames 29 which project outside the foot 24 to facilitate the "seam" connection between the beam and a concrete slab.
  • Such prefabricated beams are commercially available in a range of lengths which can range from 5 to 5 cm.
  • the groove 20 has an inverted T-shaped internal section corresponding, to within the height, to the external section of the prefabricated beam, this groove opening onto the top face 12 by a connection zone 30, the cross section of which gradually widens from the groove 20 towards the top face 12.
  • This connection zone is bounded laterally by two inclined edges 32 and 34 which are connected, at the level of the entry of the groove 20, with two other edges, respectively 36 and 38.
  • the edges 36 and 38 are intended to bear respectively on the lateral sides 40 and 42 of the foot 24 of the beam.
  • edges 36 and 38 are connected to two shoulders 44 and 46 intended to cooperate with the lateral sides of the heel 26 of the beam.
  • the edges 44 and 46 are attached to a bottom wall 48 parallel to the face 14 and suitable for receiving the face 50 limiting the heel of the beam.
  • the insulating block 10 is provided with slots or notches 52 and 54 which open into the bottom of the groove 20 and which extend laterally the bottom wall 48 of the groove 20 and two notches 53 and 55 which also open in the bottom of the groove 20 and which are located at the shoulders 44 and 46. These slots or notches extend parallel or perpendicular to the underside 14 and over a sufficient depth to allow the deformation of the insulating block as shown in Figure 1.
  • the insulating block 10 constitutes a modular element with a constant section, honeycombed or full, which can preferably be produced by continuous molding in a single or double profile mold.
  • the insulating block 10 can be obtained according to standard widths and thicknesses, for example with a width of the order of 60 cm for thicknesses of 15 to 25 cm, and with a continuous length adapted to the desired span.
  • This block is made of an insulating material, such as expanded polystyrene, which has sufficiently elastic properties to allow its deformation from its normal configuration to a deformed configuration as shown in Figure 1, and this for the introduction of the beam 22 in the groove 20.
  • the deformation of the block 10 takes place thanks to the elasticity of the insulating material and to the presence of the slots or notches 52, 53, 54 and 55 which make it possible to separate the edges 36 and 38 of the groove 20 so that the distance between these two edges is at least equal to the width of the heel 26 of the beam 22.
  • the insulating block 10 After deformation of the insulating block 10, it suffices to introduce the beam 22 as indicated by the arrow F on the Figure 1 or vice versa to present the insulating block on the beam.
  • the insulating block 10 is allowed to return to its initial non-deformed configuration so as to trap the beam 22 in the groove 20 (FIG. 2).
  • the height of the groove 20 is substantially equal to the minimum height of the beam 22 so that the face 60 of the lowest beam is located at the connection of the edges 32 and 36 and edge connection 34 and 38 of block 16.
  • the connection zone 30 can be poured later, either at the time of manufacture, or on site, a concrete table (not shown) which will be in connection with the beam 22 by the seam reinforcements 29 protruding outside the face 60, which ensures the anchoring between the concrete table and the beam 22.
  • the insulating block 10 may include pre-cutouts 62 close to the connection zone 30 to allow removal, depending on the type of mounting, of excess parts of the insulating material and thus widening the contour of liaison. We then obtain a connection of the concrete table with the concrete of the beam 22 only by adhesion, which eliminates the seam reinforcements 29 for beams from 11 cm in height (seam exemption).
  • connection between the beam 22 and the insulating block 10 can be improved by placing an adhesive in the groove 20 before the introduction of the beam 22.
  • a sub-face plate 64 to the sub-face 14 of the block 10.
  • This sub-plate face, fire-resistant protection can be made in particular of reinforced plaster, rock wool, or other materials.
  • the underside plate 64 is bonded by bonding to the underside 14 by means of adhesive pads 66 previously arranged on the internal face 68 of the plate 64.
  • the underside plate 64 is linked to the insulating block 10 by means of mechanical connections passing through the thickness of this block, which makes it possible to complete the connection in the case of fire resistance.
  • these are metal nails 70 introduced successively through the thickness of the plate 64 and through the thickness of the insulating block 10.
  • the head 72 of each nail comes to be embedded in the plate 64 and the tip 74 crosses the bottom of one of the grooves 56 and 58 and is then bent after immobilization by clips introduced on the rods of the nails until contact with the insulating material.
  • the respective points 74 of the nails 70 can thus be anchored in the concrete table (not shown) which will later be cast on the top of the insulating block 10.
  • metallic lines 75 are used which surround the insulating block to ensure the fixing of the underside plate 64.
  • the block 10 has the general shape of the block shown in Figures 1 to 3. It has a longitudinal groove 76 which extends over the entire length of the block and which is intended to receive by interlocking a beam 22, but without prior deformation of the block 10.
  • the groove 76 has the general shape of an inverted T and it opens onto the top face 12 of the insulating block by a connecting zone 78 whose section widens progressively from the groove 76 towards the top face 12.
  • This zone connection 78 is limited laterally by inclined and straight faces 80 and 82 which are connected on the one hand to the face 12 and on the other hand to two continuous support spoilers 84 and 86 respectively.
  • the spoiler 84 is suitable for coming bearing on one of the sides of the beam 22, while the spoiler 86 is capable of coming to bear on wedging means 88 (FIGS. 5 to 7), the latter being adapted to come resting on the other side of the beam 22.
  • the two support spoilers 84 and 86 are connected to a flat wall 90 constituting the bottom of the groove and suitable for receiving the heel 26 of the beam 22, the width of the wall 90 being greater than that of the heel of the beam.
  • the free space provided between the two support spoilers 84 and 86 facing each other has a width L (FIG. 4) at least equal to that of the heel of the beam.
  • the height of the groove 76 is substantially less than the height of the beam 22 so that its foot 24 extends in part in the connection area 78, which ensures the table binding in concrete with the beam 22, only by adhesion and therefore to remove the seam reinforcement on the beams from 11 cm high.
  • the wedging means 88 may consist of a filling mass with a more or less rapid setting, for example made of polyurethane foam, plaster cel lular, in light mortar, etc., this mass being poured into the free space provided on one side between the beam 22 and the groove 76.
  • these wedging means may be constituted by a profile or by shims made of a resistant material.
  • these wedging means consist of a profile made of the same material as the insulating block 10, this wedging profile can be obtained integral with the insulating block 10 during its manufacture, preferably by molding. This wedging profile can be attached to the insulating block 10 by narrow bridges of material, which allows to detach the profile by breakage just before use.
  • wedging means intended to be inserted on both sides of the beam, and not on one side as described above.
  • the construction element receives a sub-face plate 64 bonded to the sub-face 14, as described previously with reference to FIG. 2.
  • the building element receives a sub-face plate 64 which is fixed to the insulating block by mechanical connection means, as described previously with reference to FIG. 3.
  • the building element receives, on the underside, a plate 92 made of expanded metal which is fixed to the insulating block 10 by means of lines 94, regularly spaced, which pass through the thickness of the insulating block. These lines 94 open into the grooves 56 and 58 and are held by clips 96. This operation is advantageously carried out on an assembly table carrying out the simultaneous insertion of all of these lines.
  • a building element as described above with reference to Figure 6 subsequently receives a table or slab 98 of reinforced concrete which extends over the entire extent of the building element.
  • This reinforced concrete slab fills the connection area 78 as well as the grooves 56 and 58 for anchoring the points 74 of the fixing nails of the underside plate 64.
  • the concrete of the slab 98 establishes the concrete connection around the foot 24 of the beam 22.
  • the plates 102 and 104 positioned at mid-range are arranged so as to make an angle of 45 ° relative to the general plane of the element, which then makes it possible to link the two adjacent elements by an angle 108 whose two wings form an angle of 90 °.
  • two adjacent construction elements can be joined together on the site by welding the angle iron 108 on the plates 100 and 104.
  • This can be done after adjusting the general level of the floor using a laying device consisting of a strip passing through the joint of the elements and tensioned for leveling using a screw jack supported on the top of the floor and a stop on the underside of the floor.
  • the building element as described with reference to Figure 8 is intended more particularly to form a finished floor element which already includes a reinforced concrete slab ready to receive a floor covering.
  • the concrete slab can be poured on the site so as to extend over several construction elements arranged contiguously.
  • the insulating block 10 receives, during manufacture, a reinforced concrete slab or table 110 which covers only part of the width of the insulating block.
  • This partial slab 110 only fills the connection area 78 and its upper surface 112 is coplanar with the top face 12 of the insulating block.
  • the slab 110 participating in the mechanical performance of the assembly also serves as anchoring to a counter-batten 114 provided with anchoring reinforcements 116 or attached by fixing.
  • a building element can be used as a roofing element or as a floor element.
  • the counter battens are used to fix roof battens for a ventilated roof, and in the second case, the counter battens are used for fixing a wooden floor.
  • the longitudinal edge 18_1 of a building block 10 has a profile 118 in the shape of a tenon suitable for fitting into a profile 120 in the form of a mortise which the longitudinal edge 16_1 of another insulating block 10.
  • Profiles 118 and 120 are complementary shapes and have a general section in the form of an isosceles trapezoid.
  • the longitudinal edge 16_2 of a building block 10 has a profile 122 in the form of a rib limited by two edges at right angles of different widths.
  • This rib 122 is suitable for fitting into a groove 124 of corresponding shape which comprises the longitudinal edge 18_2 of another construction element 10.
  • two construction elements 126 and 128 are nested one inside the other by their adjacent longitudinal edges.
  • the construction element 126 comprises a single beam 22 while the construction element 128 comprises two beams 22 parallel to each other, the width of the element 128 being substantially twice that of the element 126
  • the elements 126 and 128 receive a reinforced concrete slab 130 which is poured in situ on the two elements and in which is embedded a welded mesh 132.
  • the length of the beam 22 of the element 126 is greater than that of the insulating block 10, so that the beam protrudes at both ends of the insulating block 10.
  • FIG. 14 shows one of these support parts 134 which comes to rest on a support wall 136. This support part 134 protrudes from the insulating block over a distance D of at least 3 cm.
  • the concrete slab 130 covers all of the construction elements and extends to the right of the external wall 138 of the wall 136.
  • a chaining 140 and a frame 142 are also embedded in the slab 130 in the axis of the beam 22.
  • prestressing reinforcements 28 of the beam 22 protrude beyond its end and are also embedded in the slab 130 to ensure anchoring.
  • FIG. 15 shows the total thickness of the insulating block and the detail of lengthwise section between walls, the reinforced concrete slab 130 and the chaining 140 remaining identical to the case of FIG. 14.
  • the insulating block 10 comprises a single prefabricated beam 22 and a partial table 144 of concrete.
  • the building element serves to support joists 146 on which are mounted a floor 148 formed for example of parquet or panels derived from wood.
  • the building elements of the invention can be used in particular for the construction of individual houses to constitute a crawl space, a top of the basement with bare fireproof underside or even a top of the basement with fitted underside. an underside plate.
  • Such elements can also be used in the construction of collective buildings, offices, etc., for example to form crawl spaces with bare underside.
  • these construction elements also find an application for producing under-roofs or under-roofs, the elements then preferably being provided with an under-face plate, for example in plaster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)

Description

L'invention concerne un élément de construction préfabri­qué à isolation thermique intégrée, pouvant notamment constituer un élément de plancher, ainsi qu'un procédé pour sa fabrication.The invention relates to a prefabricated building element with integrated thermal insulation, which can in particular constitute a floor element, as well as a method for its manufacture.

L'élément de construction selon l'invention est du type comprenant un bloc isolant de forme allongée continue en un matériau thermiquement isolant, notamment en polys­tyrène expansé, et une nervure résistante constituée par une poutrelle préfabriquée, notamment en béton armé ou précontraint, introduite dans une rainure longitudinale ménagée dans le bloc isolant sur toute sa longueur et débouchant sur une grande face ou face de dessus du bloc.The building element according to the invention is of the type comprising an insulating block of continuous elongated shape made of a thermally insulating material, in particular of expanded polystyrene, and a resistant rib constituted by a prefabricated beam, in particular of reinforced or prestressed concrete, introduced into a longitudinal groove formed in the insulating block over its entire length and opening onto a large face or top face of the block.

On connait déjà des éléments de construction de ce type qui sont destinés à constituer des éléments de plancher, tels que des entrevous, ou bien des éléments de sous-­toiture. De tels éléments sont conçus pour permettre d'obtenir une portée d'un seul tenant entre deux éléments support, par exemple, entre deux murs support, ainsi que décrit dans la demande FR-A-1.444.277.Construction elements of this type are already known which are intended to constitute floor elements, such as interjoists, or even roofing elements. Such elements are designed to make it possible to obtain a single-piece span between two support elements, for example, between two support walls, as described in application FR-A-1,444,277.

Les blocs en matériau isolants qui font partie de ces éléments de construction connus ont généralement une longueur de plusieurs mètres pour une largeur généralement inférieure à un mètre, par exemple de l'ordre de 60 cm.The blocks of insulating material which are part of these known construction elements generally have a length of several meters for a width generally less than one meter, for example of the order of 60 cm.

Ces éléments de construction connus sont obtenus habituel­lement par coulée d'un matériau tel que du béton dans une rainure de forme appropriée que ménagent des blocs isolants aboutés sur la longueur pour obtenir la portée du plancher, des armatures telles que des armatures de béton armé étant, le cas échéant, noyées dans le matériau frais coulé dans la rainure.These known construction elements are usually obtained by pouring a material such as concrete into an appropriately shaped groove formed by insulating blocks butted along the length to obtain the span of the floor, reinforcements such as reinforced concrete reinforcements being , if necessary, embedded in the fresh material poured into the groove.

Ces éléments de construction connus présentent diffé­rents inconvénients, notamment en ce qui concerne leur fabrication.These known construction elements have various drawbacks, in particular as regards their manufacture.

En effet, les blocs isolants indépendants dans lesquels s'effectue la coulée des nervures constituent des moules particulièrement encombrants qui occupent une place importante dans l'usine de fabrication, spécialement lors de la fabrication et aussi du stockage de ces élé­ments et qui exigent une manutention excessive liée à la difficulté d'industrialisation de ce procédé de fabrication.Indeed, the independent insulating blocks in which the ribs are cast constitute particularly bulky molds which occupy an important place in the manufacturing plant, especially during the manufacture and also of the storage of these elements and which require handling. excessive linked to the difficulty of industrializing this manufacturing process.

Par ailleurs, il est difficile d'adapter la longueur de ces éléments de construction à la portée désirée étant donné qu'il faut à chaque fois prévoir un moule de longueur appropriée ou bien découper la nervure à la longueur voulue après durcissement du matériau qui la constitue.Furthermore, it is difficult to adapt the length of these construction elements to the desired span, since it is necessary each time to provide a mold of appropriate length or else cut the rib to the desired length after hardening of the material which forms it. constitutes.

L'invention vise notamment à éviter les inconvénients des éléments de construction à isolation thermique inté­grée de la technique antérieure.The invention aims in particular to avoid the drawbacks of construction elements with integrated thermal insulation of the prior art.

Elle propose, à cet effet, un élément de construction préfabriquée du type défini ci-dessus, dans lequel la poutrelle préfabri­ quée a une section en T renversé et comprend un pied disposé du côté de la face de dessus du bloc isolant et un talon disposé du côté de l'autre grande face ou-sous face du bloc isolant, la rainure ayant également une section interne en T renversé adaptée à celle de la poutrelle, de telle sorte que soit permise l'introduction de la poutrelle par emboitement en direction du fond de la rainure.To this end, it proposes a prefabricated construction element of the type defined above, in which the prefabricated beam quée has an inverted T section and includes a foot disposed on the side of the top face of the insulating block and a heel disposed on the side of the other large face or underside of the insulating block, the groove also having an internal section in T overturned adapted to that of the beam, so that the introduction of the beam is allowed by interlocking towards the bottom of the groove.

Ainsi, conformément à l'invention, on peut réaliser simplement, en usine ou sur chantier, des éléments de construction préfabriqués à isolation thermique intégrée à partir de poutrelles et de blocs isolants provenant de stocks et fabriqués industriellement.Thus, in accordance with the invention, it is possible to simply produce, in the factory or on site, prefabricated building elements with integrated thermal insulation from beams and insulating blocks from stocks and manufactured industrially.

La fabrication de tels éléments est particulièrement simple à mettre en oeuvre puisque la principale opération consiste en un emboîtage des poutrelles dans les blocs isolants. On évite ainsi les opérations de coulée de matériaux, nécessaires dans la technique antérieure, qui ne peuvent être mises en oeuvre qu'en usine de produc­tion.The manufacture of such elements is particularly simple to implement since the main operation consists of fitting the beams into the insulating blocks. This avoids the material casting operations, necessary in the prior art, which can only be implemented in the production plant.

En outre, conformément à l'invention, les éléments de construction peuvent être adaptés à la longueur voulue en choisissant des poutrelles du commerce sur stock de longueur correspondante à la portée souhaitée, ces poutrelles du commerce étant habituellement disponibles avec toute une gamme de longueurs s'échelonnant par exemple de 5 en 5 cm.In addition, in accordance with the invention, the construction elements can be adapted to the desired length by choosing commercial joists from stock of length corresponding to the desired span, these commercial joists usually being available with a whole range of lengths s 'ranging for example from 5 to 5 cm.

Dans une première forme de réalisation de l'invention, la rainure a une section interne en T renversé correspon­dant sensiblement à la section externe de la poutrelle préfabriquée et débouchant sur la face de dessus du bloc isolant par une zone de liaison dont la section s'élargit progressivement depuis la rainure vers la face de dessus du bloc isolant, ce dernier étant pourvu de fentes ou d'entailles qui débouchent dans le fond de la rainure, ce qui permet de déformer élastiquement le bloc isolant pour élargir la rainure, d'introduire ensuite la poutrelle préfabriquée dans la rainure élargie et de laisser le bloc isolant revenir à sa configuration initiale non déformée pour emprisonner ainsi la poutrelle préfabriquée dans la rainure.In a first embodiment of the invention, the groove has an inverted T-shaped internal section corresponding substantially to the external section of the prefabricated beam and opening onto the top face of the insulating block by a connection zone the section of which is gradually widens from the groove towards the top face of the insulating block, the latter being provided slots or notches that open into the bottom of the groove, which allows the insulating block to be elastically deformed to widen the groove, then introduce the prefabricated beam in the enlarged groove and allow the insulating block to return to its configuration initial not deformed to thus trap the prefabricated beam in the groove.

Dans une deuxième forme de réalisation de l'invention, la rainure a une section interne en T renversé de section interne plus large que la section externe de la poutrelle préfabriquée et débouchant sur la face de dessus du bloc isolant par une zone de liaison dont la section s'élargit progressivement depuis la rainure jusqu'à la hauteur de la poutrelle pour obtenir un profil dit "dérogation couture" et se raccorde à la face de dessus du bloc isolant, des moyens de calage étant prévus pour caler et immobiliser la poutrelle dans la rainure.In a second embodiment of the invention, the groove has an inverted internal T-section of internal section which is wider than the external section of the prefabricated beam and opens onto the top face of the insulating block by a connection zone the section gradually widens from the groove to the height of the beam to obtain a profile called "seam allowance" and is connected to the top face of the insulating block, wedging means being provided to wedge and immobilize the beam in the groove.

Ces moyens de calage peuvent comprendre une masse de remplissage en un matériau à prise plus ou moins rapide ou bien ils peuvent comprendre un profilé de calage ou des cales ayant une section de forme complémentaire de celle de la poutrelle pour assurer le blocage sans jeu de la poutrelle dans la rainure.These wedging means may comprise a filling mass made of a more or less rapid setting material or else they may comprise a wedging profile or shims having a cross section of shape complementary to that of the beam to ensure the blocking without play of the beam in the groove.

Selon une autre caractéristique de l'invention, l'élé­ment de construction comprend en outre une plaque de sous-face rapportée sur la sous-face du bloc isolant, par exemple par collage ou par des moyens de liaison mécanique traversant l'épaisseur du bloc isolant.According to another characteristic of the invention, the building element further comprises an underside plate attached to the underside of the insulating block, for example by gluing or by mechanical connection means passing through the thickness of the block insulating.

Selon encore une autre caractéristique de l'invention, l'élément de construction comprend une dalle en béton recouvrant au moins en partie la face de dessus du bloc isolant et assurant une liaison avec le pied de la poutrel­le préfabriquée.According to yet another characteristic of the invention, the construction element comprises a concrete slab covering at least partially the top face of the insulating block and ensuring a connection with the foot of the prefabricated beam.

Cette dalle en béton peut être coulée en usine ou bien sur chantier après mise en place de l'élément de construc­tion dans sa position définitive.This concrete slab can be poured in the factory or on site after the construction element has been placed in its final position.

Selon un autre aspect, l'invention concerne un procédé de fabrication d'un élément de construction tel que défini précédemment, ce procédé consistant essentiel­lement à emboîter la poutrelle préfabriquée dans la rainure du bloc isolant.According to another aspect, the invention relates to a method of manufacturing a building element as defined above, this method essentially consisting in fitting the prefabricated beam into the groove of the insulating block.

Pour fabriquer un élément de construction conforme à la première forme de réalisation précitée, on déforme le bloc isolant pour élargir la rainure, on introduit la poutrelle préfabriquée dans la rainure élargie et on laisse le bloc isolant revenir à sa configuration initiale non déformée pour emprisonner la poutrelle préfabriquée dans la rainure. La déformation du bloc isolant peut se faire manuellement ou sur table d'assem­blage.To manufacture a construction element in accordance with the aforementioned first embodiment, the insulating block is deformed to widen the groove, the prefabricated beam is introduced into the enlarged groove and the insulating block is allowed to return to its initial undeformed configuration to trap the prefabricated beam in the groove. The deformation of the insulating block can be done manually or on an assembly table.

Dans le cas de la fabrication d'un élément de construc­tion conforme à la deuxième forme de réalisation préci­tée, on introduit la poutrelle préfabriquée dans la rainure, on la déplace latéralement dans le fond de la rainure et on met ensuite en place les moyens de calage d'un côté de la poutrelle.In the case of the manufacture of a construction element in accordance with the aforementioned second embodiment, the prefabricated beam is introduced into the groove, it is moved laterally in the bottom of the groove and then the wedging means are put in place on one side of the beam.

En variante, on peut introduire la poutrelle dans une rainure à section générale rectangulaire et mettre ensuite des moyens de calage des deux côtés de la poutrelle, sans déplacement latéral de cette poutrelle.As a variant, it is possible to introduce the beam into a groove of generally rectangular section and then to place wedging means on the two sides of the beam, without lateral displacement of this beam.

Cette dernière opération peut consister à couler une masse de remplissage en un matériau à prise plus ou moins rapide ou bien à introduire un profilé de calage ou des cales dans le ou les espace(s) libre(s) ménagé(s) entre la poutrelle préfabriquée et la rainure.This last operation can consist in pouring a filling mass in a material with a more or less rapid setting or else in introducing a wedging profile or shims in the free space (s) formed between the beam prefabricated and the groove.

Il entre également dans le cadre de l'invention de combi­ner un procédé de fabrication par déformation du bloc isolant avec un procédé de fabrication utilisant des moyens de calage.It is also part of the invention to combine a manufacturing process by deformation of the insulating block with a manufacturing process using wedging means.

Dans la description qui suit, faite seulement à titre d'exemple, on se réfère aux dessins annexés sur lesquels :

  • _ la figure 1 est une vue en coupe transversale d'un élément de construction conforme à la première forme de réalisation précitée, dans laquelle le bloc isolant est à l'état déformé et la poutrelle est en cours d'introduction dans la rainure ;
  • _ la figure 2 est une vue analogue à la figure 1 après introduction de la poutrelle dans la rainure du bloc isolant, une plaque de sous-face étant en cours de mise en place sur le bloc isolant, si nécessaire ;
  • _ la figure 3A est une vue correspondante de l'élément de construction terminé ;
  • _ la figure 3B illustre une variante de l'élément de la figure 3A ;
  • _ la figure 4 est une vue en coupe transversale d'un élément de construction conforme à la deuxième forme de réalisation précitée, montrant la mise en place d'une poutrelle dans la rainure du bloc isolant et la mise en place d'une plaque de sous-face ;
  • _ la figure 5 est une vue en coupe analogue à celle de la figure 4 montrant la mise en place des moyens de calage ;
  • _ la figure 6 est une vue en coupe analogue à celle de la figure 5 montrant la mise en place d'une plaque de sous-face ;
  • _ la figure 7 est une vue en coupe analogue à celle de la figure 5, montrant la mise en place d'une autre plaque de sous-face permettant l'accrochage d'un revêtement de plâtre ;
  • _ la figure 8 est une vue en coupe analogue à celle de la figure 6 montrant l'élément de construction après coulée d'une dalle en béton ;
  • _ la figure 9 est un détail de l'assemblage longitudinal de deux éléments de construction conformes à la figure 8 ;
  • _ la figure 10 est une vue en coupe transversale d'un élément de construction conforme à la deuxième forme de réalisation précitée, pouvant constituer un élément de sous-toiture ;
  • _ la figure 11 est une vue partielle d'extrémité montrant l'assemblage longitudinal de deux blocs isolants ;
  • _ la figure 12 est une vue partielle d'extrémité montrant un autre assemblage longitudinal de deux blocs isolants ;
  • _ la figure 13 est une vue en coupe transversale de deux éléments de construction selon l'invention recevant une dalle en béton armé et formant un plancher ;
  • _ la figure 14 est une vue en coupe sur poutrelle suivant la ligne XIV-XIV de la figure 13 ;
  • _ la figure 15 est une vue en coupe sur bloc isolant suivant la ligne XV-XV de la figure 13 ;
  • _ la figure 16 est une vue en coupe transversale d'un élément de construction selon l'invention formant support pour un plancher en bois.
In the description which follows, given solely by way of example, reference is made to the appended drawings in which:
  • _ Figure 1 is a cross-sectional view of a building element according to the first embodiment mentioned above, wherein the insulating block is in the deformed state and the beam is being introduced into the groove;
  • _ Figure 2 is a view similar to Figure 1 after introduction of the beam in the groove of the insulating block, an underside plate being in the process of being placed on the insulating block, if necessary;
  • _ Figure 3A is a corresponding view of the completed building element;
  • _ Figure 3B illustrates a variant of the element of Figure 3A;
  • _ Figure 4 is a cross-sectional view of a building element according to the second embodiment above, showing the establishment of a beam in the groove of the insulating block and the establishment of a plate under face ;
  • _ Figure 5 is a sectional view similar to that of Figure 4 showing the establishment of wedging means;
  • _ Figure 6 is a sectional view similar to that of Figure 5 showing the establishment of an underside plate;
  • _ Figure 7 is a sectional view similar to that of Figure 5, showing the establishment of another underside plate allowing the attachment of a plaster coating;
  • _ Figure 8 is a sectional view similar to that of Figure 6 showing the building element after pouring a concrete slab;
  • _ Figure 9 is a detail of the longitudinal assembly of two construction elements according to Figure 8;
  • _ Figure 10 is a cross-sectional view of a building element according to the second embodiment mentioned above, which may constitute a roofing element;
  • _ Figure 11 is a partial end view showing the longitudinal assembly of two insulating blocks;
  • _ Figure 12 is a partial end view showing another longitudinal assembly of two insulating blocks;
  • _ Figure 13 is a cross-sectional view of two construction elements according to the invention receiving a reinforced concrete slab and forming a floor;
  • _ Figure 14 is a sectional view on a beam along the line XIV-XIV of Figure 13;
  • _ Figure 15 is a sectional view on insulating block along the line XV-XV of Figure 13;
  • _ Figure 16 is a cross-sectional view of a building element according to the invention forming support for a wooden floor.

On se réfère tout d'abord à la figure 1 montrant un élément de construction selon l'invention au cours de sa fabrication. Cet élément de construction, qui peut constituer notamment un élément de plancher, comprend un bloc isolant 10 de forme allongée continue, réalisé en un matériau thermiquement isolant, de préférence en polystyrène expansé. Ce bloc a la forme générale d'un parallélépipède de section sensiblement rectangu­laire et comprend une grande face ou face de dessus 12 et une autre grande face opposée ou sous-face 14. Les deux faces 12 et 14 sont planes et parallèles entre elles lorsque le bloc 10 est dans sa configuration normale non déformée.First of all, reference is made to FIG. 1 showing a construction element according to the invention during its manufacture. This building element, which may in particular constitute a floor element, comprises an insulating block 10 of continuous elongated shape, made of a thermally insulating material, preferably of expanded polystyrene. This block has the general shape of a parallelepiped of substantially rectangular section and comprises a large face or top face 12 and another large opposite face or underside 14. The two faces 12 and 14 are plane and parallel to each other when the block 10 is in its normal non-deformed configuration.

Par ailleurs, le bloc 10 est limité latéralement par deux rives longitudinales 16 et 18, parallèles entre elles, et ayant des profils complémentaires de manière à permettre l'assemblage, par leurs rives longitudinales adjacentes, de deux éléments de construction contigus.Furthermore, the block 10 is laterally limited by two longitudinal edges 16 and 18, parallel to each other, and having complementary profiles so as to allow the assembly, by their adjacent longitudinal edges, of two contiguous construction elements.

Dans l'épaisseur du bloc isolant 10 est ménagée une rainure longitudinale 20 qui débouche, sur toute sa longueur, sur la face de dessus 12 du bloc isolant 10 et qui débouche également sur les deux faces d'extré­mité transversales (non représentées) du bloc isolant 10.In the thickness of the insulating block 10 is formed a longitudinal groove 20 which opens, over its entire length, on the top face 12 of the insulating block 10 and which also opens on the two transverse end faces (not shown) of the block insulator 10.

La nervure 20 est destinée à recevoir par emboîtement une poutrelle préfabriquée 22, à section en T renversé, qui, dans l'exemple, est une poutrelle en béton précon­traint qui peut être choisie parmi des poutrelles de différentes hauteurs dans une même famille. La poutrelle 22 comprend un pied 24 et un talon 26 et est munie d'arma­tures longitudinales de précontrainte 28. La poutrelle 22 peut comporter également des armatures 29 qui font saillie à l'extérieur du pied 24 pour faciliter la liaison "couture" entre la poutrelle et une dalle en béton.The rib 20 is intended to receive by interlocking a prefabricated beam 22, with inverted T section, which, in the example, is a prestressed concrete beam which can be chosen from beams of different heights in the same family. The beam 22 comprises a foot 24 and a heel 26 and is provided with longitudinal prestressing frames 28. The beam 22 may also include frames 29 which project outside the foot 24 to facilitate the "seam" connection between the beam and a concrete slab.

De telles poutrelles préfabriquées sont disponibles dans le commerce suivant toute une gamme de longueurs pouvant s'échelonner de 5 en 5 cm.Such prefabricated beams are commercially available in a range of lengths which can range from 5 to 5 cm.

Dans la configuration non déformée du bloc isolant 10 (figures 2 et 3) la rainure 20 a une section interne en T renversé correspondant, à la hauteur près, à la section externe de la poutrelle préfabriquée, cette rainure débouchant sur la face de dessus 12 par une zone de liaison 30 dont la section s'élargit progressi­vement depuis la rainure 20 vers la face de dessus 12. Cette zone de liaison est limitée latéralement par deux bords inclinés 32 et 34 qui se raccordent, au niveau de l'entrée de la rainure 20, à deux autres bords, respec­tivement 36 et 38. Les bords 36 et 38 sont destinés à venir en appui respectivement sur les côtés latéraux 40 et 42 du pied 24 de la poutrelle.In the non-deformed configuration of the insulating block 10 (FIGS. 2 and 3) the groove 20 has an inverted T-shaped internal section corresponding, to within the height, to the external section of the prefabricated beam, this groove opening onto the top face 12 by a connection zone 30, the cross section of which gradually widens from the groove 20 towards the top face 12. This connection zone is bounded laterally by two inclined edges 32 and 34 which are connected, at the level of the entry of the groove 20, with two other edges, respectively 36 and 38. The edges 36 and 38 are intended to bear respectively on the lateral sides 40 and 42 of the foot 24 of the beam.

Vers leur partie inférieure, les bords 36 et 38 se rac­cordent à deux épaulements 44 et 46 destinés à coopérer avec les côtés latéraux du talon 26 de la poutrelle. Les bords 44 et 46 se rattachent à une paroi de fond 48 parallèle à la face 14 et propre à recevoir la face 50 limitant le talon de la poutrelle.Towards their lower part, the edges 36 and 38 are connected to two shoulders 44 and 46 intended to cooperate with the lateral sides of the heel 26 of the beam. The edges 44 and 46 are attached to a bottom wall 48 parallel to the face 14 and suitable for receiving the face 50 limiting the heel of the beam.

En outre, le bloc isolant 10 est pourvu de fentes ou d'entailles 52 et 54 qui débouchent dans le fond de la rainure 20 et qui prolongent latéralement la paroi de fond 48 de la rainure 20 et de deux entailles 53 et 55 qui débouchent également dans le fond de la rainure 20 et qui se trouvent au droit des épaulements 44 et 46. Ces fentes ou entailles s'étendent parallèlement ou perpendiculairement à la sous-face 14 et sur une profondeur suffisante pour permettre la déformation du bloc isolant comme représenté à la figure 1.In addition, the insulating block 10 is provided with slots or notches 52 and 54 which open into the bottom of the groove 20 and which extend laterally the bottom wall 48 of the groove 20 and two notches 53 and 55 which also open in the bottom of the groove 20 and which are located at the shoulders 44 and 46. These slots or notches extend parallel or perpendicular to the underside 14 and over a sufficient depth to allow the deformation of the insulating block as shown in Figure 1.

En outre, sur la face de dessus 12 du bloc isolant 10 sont ménagées deux rainures longitudinales parallèles 56 et 58 dont la fonction sera expliqué ultérieurement, dans le cas du montage d'une plaque de sous-face.In addition, on the top face 12 of the insulating block 10 are formed two parallel longitudinal grooves 56 and 58, the function of which will be explained later, in the case of the mounting of an underside plate.

Le bloc isolant 10 constitue un élément modulaire à section constante, alvéolée ou pleine, qui peut être réalisé de préférence par moulage continu dans un moule à simple ou double profil. Le bloc isolant 10 peut être obtenu suivant des largeurs et épaisseurs standards, par exemple avec une largeur de l'ordre de 60 cm pour des épaisseurs de 15 à 25 cm, et avec une longueur conti­nue adaptée à la portée désirée. Ce bloc est réalisé en un matériau isolant, tel que du polystyrène expansé, qui possède des propriétés suffisamment élastiques pour permettre sa déformation à partir de sa configuration normale vers une configuration déformée comme représentée à la figure 1, et ceci en vue de l'introduction de la poutrelle 22 dans la rainure 20.The insulating block 10 constitutes a modular element with a constant section, honeycombed or full, which can preferably be produced by continuous molding in a single or double profile mold. The insulating block 10 can be obtained according to standard widths and thicknesses, for example with a width of the order of 60 cm for thicknesses of 15 to 25 cm, and with a continuous length adapted to the desired span. This block is made of an insulating material, such as expanded polystyrene, which has sufficiently elastic properties to allow its deformation from its normal configuration to a deformed configuration as shown in Figure 1, and this for the introduction of the beam 22 in the groove 20.

Comme montré à la figure 1, la déformation du bloc 10 s'effectue grâce à l'élasticité du matériau isolant et à la présence des fentes ou entailles 52, 53, 54 et 55 qui permettent d'écarter les bords 36 et 38 de la rainure 20 en sorte que la distance qui sépare ces deux bords soit au moins égale à la largeur du talon 26 de la poutrelle 22. Après déformation du bloc isolant 10, il suffit d'introduire la poutrelle 22 comme indiqué par la flèche F sur la figure 1 ou inversement de présen­ter le bloc isolant sur la poutrelle. Lorsque la face 50 de la poutrelle 22 est en appui sur le fond de la rainure, on laisse le bloc isolant 10 revenir vers sa configuration initiale non déformée de manière à emprison­ner la poutrelle 22 dans la rainure 20 (figure 2).As shown in FIG. 1, the deformation of the block 10 takes place thanks to the elasticity of the insulating material and to the presence of the slots or notches 52, 53, 54 and 55 which make it possible to separate the edges 36 and 38 of the groove 20 so that the distance between these two edges is at least equal to the width of the heel 26 of the beam 22. After deformation of the insulating block 10, it suffices to introduce the beam 22 as indicated by the arrow F on the Figure 1 or vice versa to present the insulating block on the beam. When the face 50 of the beam 22 is in abutment on the bottom of the groove, the insulating block 10 is allowed to return to its initial non-deformed configuration so as to trap the beam 22 in the groove 20 (FIG. 2).

Dans la forme de réalisation des figures 1 à 3, la hauteur de la rainure 20 est sensiblement égale à la hauteur minimale de la poutrelle 22 si bien que la face 60 de la poutrelle la moins haute se trouve au niveau du raccorde­ment des bords 32 et 36 et du raccordement des bords 34 et 38 du bloc 16. Dans la zone de liaison 30 pourra être coulée ultérieurement, soit au moment de la fabri­cation, soit sur chantier, une table en béton (non repré­sentée) qui sera en liaison avec la poutrelle 22 par les armatures de couture 29 dépassant à l'extérieur de la face 60, ce qui assure l'ancrage entre la table de béton et la poutrelle 22.In the embodiment of Figures 1 to 3, the height of the groove 20 is substantially equal to the minimum height of the beam 22 so that the face 60 of the lowest beam is located at the connection of the edges 32 and 36 and edge connection 34 and 38 of block 16. In the connection zone 30 can be poured later, either at the time of manufacture, or on site, a concrete table (not shown) which will be in connection with the beam 22 by the seam reinforcements 29 protruding outside the face 60, which ensures the anchoring between the concrete table and the beam 22.

Comme montré aux figures 1 à 3, le bloc isolant 10 peut comporter des prédécoupes 62 proches de la zone de liaison 30 pour permettre d'enlever, suivant le type de montage, des parties excédentaires du matériau isolant et d'élargir ainsi le contour de liaison. On obtient alors une liaison de la table en béton avec le béton de la poutrelle 22 uniquement par adhérence, ce qui permet de supprimer les armatures de couture 29 pour des poutrelles à partir de 11 cm de hauteur (dérogation couture).As shown in FIGS. 1 to 3, the insulating block 10 may include pre-cutouts 62 close to the connection zone 30 to allow removal, depending on the type of mounting, of excess parts of the insulating material and thus widening the contour of liaison. We then obtain a connection of the concrete table with the concrete of the beam 22 only by adhesion, which eliminates the seam reinforcements 29 for beams from 11 cm in height (seam exemption).

Il est à noter que l'on peut améliorer la liaison entre la poutrelle 22 et le bloc isolant 10 en disposant une colle dans la rainure 20 avant l'introduction de la poutrelle 22.It should be noted that the connection between the beam 22 and the insulating block 10 can be improved by placing an adhesive in the groove 20 before the introduction of the beam 22.

On se réfère maintenant à la figure 2. Après mise en place de la poutrelle 22 dans le bloc isolant 10, il est possible de rapporter sur la sous-face 14 du bloc 10 une plaque de sous-face 64. Cette plaque de sous-­face, de protection résistante au feu, peut être réalisée notamment en plâtre armé, en laine de roche, ou en d'au­tres matériaux. Dans la forme de réalisation de la figure 2, la plaque de sous-face 64 est liée par collage à la sous-face 14 au moyen de plots de colle 66 disposés au préalable sur la face interne 68 de la plaque 64.Referring now to FIG. 2. After the beam 22 has been placed in the insulating block 10, it is possible to attach a sub-face plate 64 to the sub-face 14 of the block 10. This sub-plate face, fire-resistant protection, can be made in particular of reinforced plaster, rock wool, or other materials. In the embodiment of FIG. 2, the underside plate 64 is bonded by bonding to the underside 14 by means of adhesive pads 66 previously arranged on the internal face 68 of the plate 64.

Dans la variante de la réalisation de la figure 3A, la plaque de sous-face 64 est liée au bloc isolant 10 par des moyens de liaisons mécaniques traversant l'épais­seur de ce bloc, ce qui permet de compléter la liaison dans le cas de la tenue au feu. Dans l'exemple, il s'agit de clous métalliques 70 introduits successivement à travers l'épaisseur de la plaque 64 et à travers l'épais­seur du bloc isolant 10. La tête 72 de chaque clou vient s'encastrer dans la plaque 64 et la pointe 74 traverse le fond d'une des rainures 56 et 58 et est ensuite recour­bée après immobilisation par des clips introduits sur les tiges des clous jusqu'à contact avec le matériau isolant. Les pointes respectives 74 des clous 70 peuvent ainsi venir s'ancrer dans la table en béton (non représen­tée) qui sera coulée ultérieurement sur le dessus du bloc isolant 10.In the variant embodiment of FIG. 3A, the underside plate 64 is linked to the insulating block 10 by means of mechanical connections passing through the thickness of this block, which makes it possible to complete the connection in the case of fire resistance. In the example, these are metal nails 70 introduced successively through the thickness of the plate 64 and through the thickness of the insulating block 10. The head 72 of each nail comes to be embedded in the plate 64 and the tip 74 crosses the bottom of one of the grooves 56 and 58 and is then bent after immobilization by clips introduced on the rods of the nails until contact with the insulating material. The respective points 74 of the nails 70 can thus be anchored in the concrete table (not shown) which will later be cast on the top of the insulating block 10.

Dans la variante de réalisation de la figure 3B, on utilise des suspentes métalliques 75 qui ceinturent le bloc isolant pour assurer la fixation de la plaque de sous-face 64.In the variant embodiment of FIG. 3B, metallic lines 75 are used which surround the insulating block to ensure the fixing of the underside plate 64.

On se réfère maintenant à la figure 4. Dans cette forme de réalisation, le bloc 10 a la forme générale du bloc représenté aux figures 1 à 3. Il comporte une rainure longitudinale 76 qui s'étend sur toute la longueur du bloc et qui est destinée à recevoir par emboîtement une poutrelle 22, mais sans déformation préalable du bloc 10.Referring now to Figure 4. In this embodiment, the block 10 has the general shape of the block shown in Figures 1 to 3. It has a longitudinal groove 76 which extends over the entire length of the block and which is intended to receive by interlocking a beam 22, but without prior deformation of the block 10.

La rainure 76 a la forme générale d'un T renversé et elle débouche sur la face de dessus 12 du bloc isolant par une zone de liaison 78 dont la section s'élargit progressivement depuis la rainure 76 vers la face de dessus 12. Cette zone de liaison 78 est limitée latérale­ment par des faces inclinées et droites 80 et 82 qui se raccordent d'une part à la face 12 et d'autre part à deux becquets d'appui continus respectivement 84 et 86. Le becquet 84 est propre à venir en appui sur un des côtés de la poutrelle 22, tandis que le becquet 86 est propre à venir en appui sur des moyens de calage 88 (figures 5 à 7), ces derniers étant propres à venir en appui sur l'autre côté de la poutrelle 22.The groove 76 has the general shape of an inverted T and it opens onto the top face 12 of the insulating block by a connecting zone 78 whose section widens progressively from the groove 76 towards the top face 12. This zone connection 78 is limited laterally by inclined and straight faces 80 and 82 which are connected on the one hand to the face 12 and on the other hand to two continuous support spoilers 84 and 86 respectively. The spoiler 84 is suitable for coming bearing on one of the sides of the beam 22, while the spoiler 86 is capable of coming to bear on wedging means 88 (FIGS. 5 to 7), the latter being adapted to come resting on the other side of the beam 22.

Comme montré à la figure 4, les deux becquets d'appui 84 et 86 se raccordent à une paroi plane 90 constituant le fond de la rainure et propre à recevoir le talon 26 de la poutrelle 22, la largeur de la paroi 90 étant supérieure à celle du talon de la poutrelle.As shown in FIG. 4, the two support spoilers 84 and 86 are connected to a flat wall 90 constituting the bottom of the groove and suitable for receiving the heel 26 of the beam 22, the width of the wall 90 being greater than that of the heel of the beam.

Par ailleurs, l'espace libre ménagé entre les deux bec­quets d'appui 84 et 86 en vis à vis a une largeur L (figure 4) au moins égale à celle du talon de la poutrel­le.Furthermore, the free space provided between the two support spoilers 84 and 86 facing each other has a width L (FIG. 4) at least equal to that of the heel of the beam.

Pour introduire la poutrelle 22 dans la rainure 76, il suffit de déplacer la poutrelle dans le sens indiqué par la flèche F de manière que sa face 60 vienne en appui sur la paroi de fond 90. Ensuite il suffit de déplacer latéralement la poutrelle 22 de manière que le talon 26 vienne en butée et se caler sous le becquet d'appui 84. On peut également, avec une rainure de largeur L inférieure d'environ 1 cm à la largeur du talon de la poutrelle, introduire soit la poutrelle soit le bloc isolant par basculement relatif autour du becquet d'appui 86 en prenant appui dans l'angle de raccordement du pied 24 et du talon 26. Cette opération d'emboîtement étant terminée, on met en place les moyens de calage 88 comme représentés à la figure 5. Comme on peut le constater, la hauteur de la rainure 76 est sensiblement inférieure à la hauteur de la poutrelle 22 en sorte que son pied 24 s'étende en partie dans la zone de liaison 78, ce qui permet d'assurer la liaison de la table en béton avec la poutrelle 22, uniquement par adhérence et donc de supprimer les armatures de couture sur les poutrelles à partir de 11 cm de hauteur.To introduce the beam 22 into the groove 76, it suffices to move the beam in the direction indicated by the arrow F so that its face 60 comes to bear on the bottom wall 90. Then it suffices to move the beam 22 laterally so that the heel 26 comes into abutment and wedge under the support spoiler 84. It is also possible, with a groove of width L less than about 1 cm to the width of the heel of the beam, to introduce either the beam or the insulating block by relative tilting around the support spoiler 86 while taking support in the connection angle of the foot 24 and the heel 26. This fitting operation being completed, the wedging means 88 are put in place as shown in the Figure 5. As can be seen, the height of the groove 76 is substantially less than the height of the beam 22 so that its foot 24 extends in part in the connection area 78, which ensures the table binding in concrete with the beam 22, only by adhesion and therefore to remove the seam reinforcement on the beams from 11 cm high.

Les moyens de calage 88 peuvent être constitués par une masse de remplissage à prise plus ou moins rapide par exemple en mousse de polyuréthane, en plâtre cel­ lulaire, en mortier allégé, etc., cette masse étant coulée dans l'espace libre ménagé d'un côté entre la poutrelle 22 et la rainure 76.The wedging means 88 may consist of a filling mass with a more or less rapid setting, for example made of polyurethane foam, plaster cel lular, in light mortar, etc., this mass being poured into the free space provided on one side between the beam 22 and the groove 76.

En variante, ces moyens de calage peuvent être consti­tués par un profilé ou par des cales en un matériau résistant. Dans une forme de réalisation préférée de l'invention, ces moyens de calage consistent en un profilé réalisé dans le même matériau que le bloc isolant 10, ce profilé de calage peut être obtenu solidaire du bloc isolant 10 lors de sa fabrication, de préférence par moulage. Ce profilé de calage peut être rattaché au bloc isolant 10 par d'étroits ponts de matière, ce qui permet de détacher le profilé par cassure juste avant son utilisation.Alternatively, these wedging means may be constituted by a profile or by shims made of a resistant material. In a preferred embodiment of the invention, these wedging means consist of a profile made of the same material as the insulating block 10, this wedging profile can be obtained integral with the insulating block 10 during its manufacture, preferably by molding. This wedging profile can be attached to the insulating block 10 by narrow bridges of material, which allows to detach the profile by breakage just before use.

Il est possible de prévoir également des moyens de calage destinés à être intercalés des deux côtés de la poutrelle, et non pas d'un seul côté comme décrit précédemment.It is possible to also provide wedging means intended to be inserted on both sides of the beam, and not on one side as described above.

Dans les formes de réalisations des figures 4 à 10, il est possible également de coller la poutrelle 22 dans la rainure 76 et, le cas échéant, de coller le profilé de calage dans la rainure et contre la poutrelle.In the embodiments of Figures 4 to 10, it is also possible to glue the beam 22 in the groove 76 and, if necessary, to glue the wedging profile in the groove and against the beam.

Dans la forme de réalisation de la figure 4, l'élément de construction reçoit une plaque de sous-face 64 collée sur la sous-face 14, comme décrit antérieurement en référence à la figure 2.In the embodiment of FIG. 4, the construction element receives a sub-face plate 64 bonded to the sub-face 14, as described previously with reference to FIG. 2.

Dans la forme de réalisation de la figure 6, l'élément de construction reçoit une plaque de sous-face 64 qui est fixée au bloc isolant par des moyens de liaison mécaniques, comme décrit antérieurement en référence à la figure 3.In the embodiment of FIG. 6, the building element receives a sub-face plate 64 which is fixed to the insulating block by mechanical connection means, as described previously with reference to FIG. 3.

Dans la forme de réalisation de la figure 7, l'élément de construction reçoit, en sous-face, une plaque 92 en métal déployé qui est fixée au bloc isolant 10 par l'intermédiaire de suspentes 94, régulièrement espacées, qui traversent l'épaisseur du bloc isolant. Ces suspentes 94 débouchent dans les rainures 56 et 58 et sont mainte­nues par des clips 96. Cette opération est réalisée avantageusement sur une table d'assemblage effectuant l'enfoncement simultané de l'ensemble de ces suspentes.In the embodiment of FIG. 7, the building element receives, on the underside, a plate 92 made of expanded metal which is fixed to the insulating block 10 by means of lines 94, regularly spaced, which pass through the thickness of the insulating block. These lines 94 open into the grooves 56 and 58 and are held by clips 96. This operation is advantageously carried out on an assembly table carrying out the simultaneous insertion of all of these lines.

Comme montré à la figure 8, un élément de construction tel que décrit précédemment en référence à la figure 6 reçoit ultérieurement une table ou dalle 98 en béton armé qui s'étend sur toute l'étendue de l'élément de construction. Cette dalle en béton armé remplit la zone de liaison 78 ainsi que les rainures 56 et 58 d'ancrage des pointes 74 des clous de fixation de la plaque de sous-face 64. Par ailleurs, compte tenu du fait que la hauteur de la rainure 76 est inférieure à la hauteur de la poutrelle 22, le béton de la dalle 98 vient établir la liaison béton autour du pied 24 de la poutrelle 22.As shown in Figure 8, a building element as described above with reference to Figure 6 subsequently receives a table or slab 98 of reinforced concrete which extends over the entire extent of the building element. This reinforced concrete slab fills the connection area 78 as well as the grooves 56 and 58 for anchoring the points 74 of the fixing nails of the underside plate 64. Furthermore, taking into account the fact that the height of the groove 76 is less than the height of the beam 22, the concrete of the slab 98 establishes the concrete connection around the foot 24 of the beam 22.

On se réfère maintenant à la figure 9. Dans la dalle 98 et parallèlement à la rive longitudinale 16 du bloc 10 est ancrée à mi-portée une plaque métallique ponctuelle 100 munie d'armatures d'ancrage 102. De façon correspon­dante, dans un autre élément de construction adjacent est ancrée une plaque métallique ponctuelle 104 qui s'étend parallèlement à la rive longitudinale 18, cet élément 104 étant maintenu dans le béton de la dalle par des armatures 106.Referring now to Figure 9. In the slab 98 and parallel to the longitudinal edge 16 of the block 10 is anchored at mid-range a punctual metal plate 100 provided with anchoring frames 102. Correspondingly, in another an adjacent building element is anchored by a point metal plate 104 which extends parallel to the longitudinal edge 18, this element 104 being held in the concrete of the slab by reinforcements 106.

Les plaques 102 et 104 positionnées à mi-portée sont disposées de manière à faire un angle de 45° par rapport au plan général de l'élément, ce qui permet de lier ensuite les deux éléments adjacents par une cornière 108 dont les deux ailes font un angle de 90°. De cette façon, deux éléments de construction adjacents peuvent étre réunis ensemble sur le chantier en soudant la cor­nière 108 sur les plaques 100 et 104. Ceci peut se faire après avoir réglé le niveau général du plancher à l'aide d'un dispositif de pose constitué d'un feuillard passant dans le joint des éléments et mis en tension pour nivelage à l'aide d'un vérin à vis prenant appui sur le dessus du plancher et d'une butée en sous-face du plancher.The plates 102 and 104 positioned at mid-range are arranged so as to make an angle of 45 ° relative to the general plane of the element, which then makes it possible to link the two adjacent elements by an angle 108 whose two wings form an angle of 90 °. In this way, two adjacent construction elements can be joined together on the site by welding the angle iron 108 on the plates 100 and 104. This can be done after adjusting the general level of the floor using a laying device consisting of a strip passing through the joint of the elements and tensioned for leveling using a screw jack supported on the top of the floor and a stop on the underside of the floor.

L'élément de construction tel que décrit en référence de la figure 8 est destiné plus particulièrement à former un élément de plancher fini qui comporte déjà une dalle en béton armé prête à recevoir un revêtement de sol. Bien entendu, pour cette application particulière, la dalle en béton peut être coulée sur le chantier de manière à s'étendre au-dessus de plusieurs éléments de construc­tion disposés de façon contiguë.The building element as described with reference to Figure 8 is intended more particularly to form a finished floor element which already includes a reinforced concrete slab ready to receive a floor covering. Of course, for this particular application, the concrete slab can be poured on the site so as to extend over several construction elements arranged contiguously.

On se réfère maintenant à la figure 10. Dans cette forme de réalisation, le bloc isolant 10 reçoit, en fabrication, une dalle ou table en béton armé 110 qui recouvre seule­ment une partie de la largeur du bloc isolant. Cette dalle partielle 110 remplit uniquement la zone de liaison 78 et sa surface supérieure 112 est coplanaire avec la face de dessus 12 du bloc isolant. La dalle 110 partici­pant à la performance mécanique du montage sert également d'ancrage à un contre-liteau 114 pourvu d'armatures d'ancrage 116 ou rapporté par fixation. Un tel élément de construction peut être utilisé comme élément de sous-­toiture ou bien comme élément de plancher. Dans le premier cas, les contre-liteaux servent à la fixation de liteaux de couverture pour une toiture ventilée, et dans le second cas, les contre-liteaux servent à la fixation d'un plancher en bois.Reference is now made to FIG. 10. In this embodiment, the insulating block 10 receives, during manufacture, a reinforced concrete slab or table 110 which covers only part of the width of the insulating block. This partial slab 110 only fills the connection area 78 and its upper surface 112 is coplanar with the top face 12 of the insulating block. The slab 110 participating in the mechanical performance of the assembly also serves as anchoring to a counter-batten 114 provided with anchoring reinforcements 116 or attached by fixing. Such a building element can be used as a roofing element or as a floor element. In the first case, the counter battens are used to fix roof battens for a ventilated roof, and in the second case, the counter battens are used for fixing a wooden floor.

On se réfère maintenant à la figure 11. Dans cette forme de réalisation, la rive longitudinale 18_₁ d'un bloc de construction 10 comporte un profil 118 en forme de tenon propre à s'emboîter dans un profil 120 en forme de mortaise que présente la rive longitudinale 16_₁ d'un autre bloc isolant 10. Les profils 118 et 120 sont de formes complémentaires et présentent une section générale en forme de trapèze isocèle.Referring now to FIG. 11. In this embodiment, the longitudinal edge 18_₁ of a building block 10 has a profile 118 in the shape of a tenon suitable for fitting into a profile 120 in the form of a mortise which the longitudinal edge 16_₁ of another insulating block 10. Profiles 118 and 120 are complementary shapes and have a general section in the form of an isosceles trapezoid.

On se réfère maintenant à la figure 12. Dans cette forme de réalisation, la rive longitudinale 16_₂ d'un bloc de construction 10 comporte un profil 122 en forme de nervure limité par deux bords à angles droits de largeurs différentes. Cette nervure 122 est propre à s'emboîter dans une rainure 124 de forme correspondante que comporte la rive longitudinale 18_₂ d'un autre élément de construc­tion 10.Referring now to Figure 12. In this embodiment, the longitudinal edge 16_₂ of a building block 10 has a profile 122 in the form of a rib limited by two edges at right angles of different widths. This rib 122 is suitable for fitting into a groove 124 of corresponding shape which comprises the longitudinal edge 18_₂ of another construction element 10.

Comme représenté à la figure 13, deux éléments de construc­tion 126 et 128 sont emboîtés l'un dans l'autre par leurs rives longitudinales adjacentes. Dans l'exemple, l'élément de construction 126 comprend une seule poutrelle 22 tandis que l'élément de construction 128 comprend deux poutrelles 22 parallèles entre elles, la largeur de l'élément 128 étant sensiblement le double de celle de l'élément 126. Les éléments 126 et 128 reçoivent une dalle 130 en béton armé qui est coulé in situ sur les deux éléments et dans laquelle est noyé un treillis soudé 132.As shown in Figure 13, two construction elements 126 and 128 are nested one inside the other by their adjacent longitudinal edges. In the example, the construction element 126 comprises a single beam 22 while the construction element 128 comprises two beams 22 parallel to each other, the width of the element 128 being substantially twice that of the element 126 The elements 126 and 128 receive a reinforced concrete slab 130 which is poured in situ on the two elements and in which is embedded a welded mesh 132.

Comme montré à la figure 14, la longueur de la poutrelle 22 de l'élément 126 est supérieure à celle du bloc isolant 10, de manière que la poutrelle dépasse aux deux extrémi­tés du bloc isolant 10. La figure 14 montre l'une de ces parties d'appui 134 qui vient reposer sur un mur support 136. Cette partie d'appui 134 dépasse du bloc isolant sur une distance D d'au moins 3 cm. La dalle en béton 130 recouvre l'ensemble des éléments de construc­tion et s'étend jusqu'au droit de la paroi externe 138 du mur 136. Un chaînage 140 et une armature 142 sont également noyés dans la dalle 130 dans l'axe de la poutrel­le 22.As shown in FIG. 14, the length of the beam 22 of the element 126 is greater than that of the insulating block 10, so that the beam protrudes at both ends of the insulating block 10. FIG. 14 shows one of these support parts 134 which comes to rest on a support wall 136. This support part 134 protrudes from the insulating block over a distance D of at least 3 cm. The concrete slab 130 covers all of the construction elements and extends to the right of the external wall 138 of the wall 136. A chaining 140 and a frame 142 are also embedded in the slab 130 in the axis of the beam 22.

On notera que les armatures de précontrainte 28 de la poutrelle 22 dépassent au-delà de son extrémité et sont également noyées dans la dalle 130 pour en assurer l'ancrage.It will be noted that the prestressing reinforcements 28 of the beam 22 protrude beyond its end and are also embedded in the slab 130 to ensure anchoring.

La figure 15 montre l'épaisseur totale du bloc isolant et le détail de coupe en longueur entre murs, la dalle en béton armé 130 et le chaînage 140 restant identiques au cas de la figure 14.FIG. 15 shows the total thickness of the insulating block and the detail of lengthwise section between walls, the reinforced concrete slab 130 and the chaining 140 remaining identical to the case of FIG. 14.

On se réfère maintenant à la figure 16. Dans cette forme de réalisation, le bloc isolant 10 comprend une seule poutrelle préfabriquée 22 et une table partielle 144 en béton. L'élément de construction sert de support à des lambourdes 146 sur lesquelles sont montés un plan­cher 148 formé par exemple de parquet ou de panneaux dérivés du bois.Referring now to Figure 16. In this embodiment, the insulating block 10 comprises a single prefabricated beam 22 and a partial table 144 of concrete. The building element serves to support joists 146 on which are mounted a floor 148 formed for example of parquet or panels derived from wood.

Les éléments de construction de l'invention peuvent être utilisés en particulier pour la construction de maisons individuelles pour constituer un vide sanitaire, un haut de sous-sol avec sous-face nue ignifugée ou encore un haut de sous-sol avec sous-face munie d'une plaque de sous-face.The building elements of the invention can be used in particular for the construction of individual houses to constitute a crawl space, a top of the basement with bare fireproof underside or even a top of the basement with fitted underside. an underside plate.

De tels éléments peuvent être encore utilisés dans la construction de bâtiments collectifs, de bureaux, etc., par exemple pour former des vides sanitaires avec sous-­face nue.Such elements can also be used in the construction of collective buildings, offices, etc., for example to form crawl spaces with bare underside.

Enfin, ces éléments de construction trouvent aussi une application pour réaliser des sous-combles ou sous-toi­tures, les éléments étant alors de préférence munis d'une plaque de sous-face, par exemple en plâtre.Finally, these construction elements also find an application for producing under-roofs or under-roofs, the elements then preferably being provided with an under-face plate, for example in plaster.

Claims (21)

1. A prefabricated building element with integrated thermal insulation, in particular a floor element, comprising an insulating block (10) of continuous elongate shape made of a thermally insulating material, in particular expanded poly­styrene, and at least one strengthening rib constituted by a prefabricated girder (22) in particular of prestressed or reinforced concrete and inserted in a longitudinal groove (20, 76) formed along the entire length of the insulating block and opening out into a top one of the large faces (12) of the block, the element being characterized in that the prefabric­ated girder (22) has an upsidedown T-shaped section comprising a toe (24) disposed towards the top face (12) of the insulating block and a heel (26) disposed towards the other large face or underface (14) of the insulating block, and in that the groove (20, 76) likewise has an upsidedown T-shaped inside section matching that of the girder, thereby making it possible to insert the girder (22) by displacing it towards the bottom of the groove (20, 76).
2. A building element according to claim 1, characterized in that the groove (20) has an upsidedown T-shaped inside section corresponding substantially to the outside section of the prefabricated girder (22) and opening out into the top face (12) of the insulating block (10) via a link zone (30) whose section flares from the groove (20) towards the top face of the insulating block, and in that the insulating block is provided with slits or slots (52, 53, 54, 55) opening out into the bottom of the groove (20), thereby enabling the insulating block to be elastically deformed to widen the groove (20), the prefabricated girder (22) to be inserted in the widened groove, and the insulating block to return to its initial non-deformed configuration, thereby imprisoning the prefabricated girder in the groove.
3. A building element according to claim 2, characterized in that the depth of the groove (20) is substantially equal to the minimum height of the girder (22) enabling different girders of a common family to be received.
4. A building element according to claim 3, characterized in that the insulating block (10) includes previously cut-out portions (62) close to said link zone (30) to enable portions of the insulating material to be removed, thereby widening the section of the link zone (30).
5. A building element according to claim 1, characterized in that the groove (76) has an upsidedown T-shaped inside section which is wider than the outside section of the prefabricated girder (22) and which opens out to the top face (12) of the insulating block (10) via a link zone (78) whose section flares from the groove (76) towards the top face (12) of the insulating block (10), and in that wedging means (88) are provided for wedging and holding the girder (22) in the groove (76).
6. A building element according to claim 4 or 5, characterized in that the depth of the groove is substantially less than the height of the prefabricated girder (22) such that the toe (24) of the girder projects in part into the link zone (78), thereby making it possible to build without using starter bars on the girder.
7. A building element according to claim 5 or 6, characterized in that the groove (76) is delimited on either side by two bearing projections (84, 86), one of which is suitable for bearing against one side of the prefabricated girder (22) and the other of which is suitable for bearing against the wedging means (88), which wedging means are suitable for bearing against the other side of the girder (22).
8. A building element according to claim 7, characterized in that the two bearing projections (84, 86) are connected to a plane wall (90) constituting the bottom of the groove and suitable for receiving the heel (26) of the girder (22), with the width of the bottom being greater than the width of the heel of the girder, and in that the empty space left between the two inlet ribs (84, 86) has a width (L) not less than that of the heel (26) of the girder.
9. A building element according to any one of claims 5 to 8, characterized in that the wedging means (88) for the prefabricated girder (22) comprise a filler mass of a settable material.
10. A building element according to any one of claims 1 to 8, characterized in that the wedging means (88) for the prefabricated girder (22) comprise a wedging section bar or wedges having a section whose shape is complementary to that of the girder to lock the girder firmly in the groove (76).
11. A building element according to claim 10, characterized in that the wedging section bar or wedges are made of the same material as the insulating block (10) and are integrally formed therewith.
12. A building element according to any one of claims 1 to 11, characterized in that glue is provided for causing the prefabricated girder (22) to adhere to the groove (20, 76).
13. A building element according to any one of claims 1 to 12, characterized in that it further comprises an underface plate (64) applied to the underface (14) of the insulating block (10), e.g. by gluing or by mechanical link means (70) passing through the thickness of the insulating block.
14. A building element according to any one of claims 1 to 13, characterized in that it further comprises a concrete slab (98, 110) covering at least a portion of the top face (12) of the insulating block (10) and providing a link with the toe (24) of the prefabricated girder (22).
15. A method of manufacturing a building element according to any one of claims 1 to 14, characterized in that the prefabricated girder (22) is inserted by displacement towards the bottom of the groove (20, 76) of the insulating block (10).
16. A method according to claim 15, of manufacturing a building element according to any one of claims 2 to 4, characterized in that the insulating block (10) is deformed to widen the groove (20), the prefabricated girder (22) is inserted into the widened groove, and the insulating block is allowed to return to its initial, non-deformed configuration to imprison the prefabricated girder in the groove.
17. A method according to claim 15, of manufacturing a building element according to any one of claims 5 to 11, characterized in that the prefabricated girder (22) is inserted in the groove (76), the girder is displaced sideways in the bottom of the groove, after which the wedging means (88) are put into place.
18. A method according to claim 17, characterized in that the wedging means (88) are put into place by casting a filler mass of settable material into the empty space left between the prefabricated girder and the groove.
19. A method according to claim 17, characterized in that the wedging means are put into place inserting a wedging bar or wedges into the empty space left between the prefabricated girder and the groove.
20. A method according to any one of claims 15 to 19, characterized in that a glue is disposed in the groove (20, 76) prior to the prefabricated girder (22) being inserted therein.
21. A method according to any one of claims 15 to 20, characterized in that a concrete slab (98, 110) is cast on at least a portion of the top face (12) of the insulating block in order to provide a connection with the toe (24) of the prefabricated girder (22).
EP19880400967 1987-04-23 1988-04-20 Prefabricated construction element with integrated thermal insulation, especially a floor element, and method for its manufacture Expired - Lifetime EP0288385B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8705763 1987-04-23
FR8705763A FR2614336B1 (en) 1987-04-23 1987-04-23 PREFABRICATED CONSTRUCTION ELEMENT WITH INTEGRATED THERMAL INSULATION, IN PARTICULAR FLOOR ELEMENT, AND METHOD FOR THE PRODUCTION THEREOF

Publications (2)

Publication Number Publication Date
EP0288385A1 EP0288385A1 (en) 1988-10-26
EP0288385B1 true EP0288385B1 (en) 1991-03-06

Family

ID=9350410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880400967 Expired - Lifetime EP0288385B1 (en) 1987-04-23 1988-04-20 Prefabricated construction element with integrated thermal insulation, especially a floor element, and method for its manufacture

Country Status (4)

Country Link
EP (1) EP0288385B1 (en)
DE (1) DE3861895D1 (en)
ES (1) ES2021148B3 (en)
FR (1) FR2614336B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110965686A (en) * 2019-12-21 2020-04-07 济南大学 Pre-tensioning method prestressed bidirectional superposed plate type concrete combined prefabricated part
FR3127772A1 (en) * 2021-10-04 2023-04-07 Isoltop Method of manufacturing a joist and its installation.

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678665B1 (en) * 1991-07-01 1998-10-16 Ailmaud Jean WEAPON INSULATING FORMWORK.
FR2774412B1 (en) * 1998-01-30 2001-11-16 Francois Cote METHOD FOR MANUFACTURING SELF-SUPPORTING INSULATING JOISTS
ES2151416B1 (en) * 1998-08-27 2001-09-01 Sanchez Jaime Enrique Jimenez PREFABRICATED FORGING FOR FLAT BUILDING STRUCTURES.
FR2790020B1 (en) * 1999-02-18 2003-08-22 Francois Cote METHOD FOR MANUFACTURING SELF-SUPPORTING INSULATING JOISTS FOR THERMALLY INSULATED FLOORS
ES2161139B1 (en) * 1999-05-17 2002-06-16 Sanchez Jaime Enrique Jimenez MANUFACTURING PROCESS OF FORGED PLATES OF BOVEDILLA OF POLYSTYRENE AND NERVE OF PRETENSED CONCRETE AND FORGED PLATES AS WELL OBTAINED.
ES2160508B1 (en) * 1999-08-27 2002-05-16 Laguna Jose Puertas UNIDIRECTIONAL FORGED SEMIPREFABRICATED WITH NERVES AND LIGHTENING ELEMENTS, INTENDED FOR THE CONSTRUCTION OF SOILS AND COVERS AND ITS MANUFACTURING PROCEDURE.
WO2003100183A1 (en) * 2002-05-23 2003-12-04 Societe D'etudes Et Applications Composants Guiraud Freres Floor comprising a concrete cast slab which is associated with an insulating material
FR2850688B1 (en) * 2003-01-31 2005-03-18 Knauf Snc CONNECTING ELEMENT
FR2916775A1 (en) 2007-05-31 2008-12-05 Materiaux De La Nive Sa Atel BUILDING ELEMENT SUCH AS AN HOURDIS
ES2349513B1 (en) * 2008-06-13 2011-10-31 Zenet Prefabricados, S.L. MANUFACTURING PROCESS OF PREFABRICATED PREFABRICATED PLATE FOR FORGED AND PLATE OBTAINED.
ES2322424B1 (en) * 2008-10-28 2010-01-22 Somapre Hispania, S.L. MANUFACTURING PROCEDURE OF A PREMONTED AND SELF-CONTRACTING CONSTRUCTION ELEMENT.
ITMI20090567A1 (en) * 2009-04-08 2010-10-09 Quattro P S R L SELF-SUPPORTING CASSERO PANEL OF INSULATING MATERIAL, VARIABLE GEOMETRY FOR FLOORING OR COVERING, AND PREFABRICATED ELEMENT INCLUDING THIS PANEL
GB2471064B (en) * 2009-05-29 2015-01-07 Stressline Ltd Flooring System
FR2972744B1 (en) * 2011-03-18 2013-03-22 Placoplatre Sa FLOOR FORMWORK CONVEYORS IN ALVEOLA PLASTIC MATERIAL
NL2012280C2 (en) * 2014-02-18 2015-08-25 Isobouw Systems Bv FLOOR PART.
DE102016114572A1 (en) * 2016-08-05 2018-02-08 Puren Gmbh Method of manufacturing a building device and building device
CN106639093A (en) * 2017-01-17 2017-05-10 沈阳建筑大学 Close splicing seam-type laminated slab
CN112343231A (en) * 2020-11-02 2021-02-09 抚州市恒强达绿色建筑科技有限公司 Assembled house floor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB158299A (en) * 1919-09-29 1921-01-31 William Green Improvement in or relating to fireproof or other coverings for floors, ceilings or the like
DE821703C (en) * 1949-10-30 1951-11-19 Boelkow Ludwig Composite ceiling
FR1444277A (en) * 1965-05-22 1966-07-01 Preba S A Improvements in the construction of building floors
FR2093914A1 (en) * 1969-10-03 1972-02-04 Gasse Jean Hollow brickwork of expanded polystyrene
AT336234B (en) * 1973-08-03 1977-04-25 Stracke Ing Markus PRE-FULLY STRUCTURAL ELEMENT
US3979245A (en) * 1973-12-03 1976-09-07 Metal Buildings Insulation, Inc. Insulation blanket and method and apparatus for making same
LU82474A1 (en) * 1979-06-01 1980-12-16 Arnhem Bv J G CONCRETE FLOOR CONSTRUCTION ISOLATED ON THE BOTTOM AND ITS USED ELEMENTS OF INSULATION MATERIAL
NL8300022A (en) * 1983-01-05 1984-08-01 Fingo Welfsels N V FLOOR FROM BEAMS WITH WIDTHED FOOT AND INSULATION ELEMENTS.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110965686A (en) * 2019-12-21 2020-04-07 济南大学 Pre-tensioning method prestressed bidirectional superposed plate type concrete combined prefabricated part
FR3127772A1 (en) * 2021-10-04 2023-04-07 Isoltop Method of manufacturing a joist and its installation.

Also Published As

Publication number Publication date
FR2614336B1 (en) 1991-09-27
FR2614336A1 (en) 1988-10-28
EP0288385A1 (en) 1988-10-26
ES2021148B3 (en) 1991-10-16
DE3861895D1 (en) 1991-04-11

Similar Documents

Publication Publication Date Title
EP0288385B1 (en) Prefabricated construction element with integrated thermal insulation, especially a floor element, and method for its manufacture
FR2611778A1 (en) FLOOR WITH COLLABORATION WOOD-CONCRETE
EP0285465B1 (en) Structural element, especially a facing element with integrated insulation
EP2792806B1 (en) Prefabricated slab with ruptured thermal bridge, its manufacturing process and method of building of a floor with such a slab
FR2774112A1 (en) Composite wood-concrete wall or floor element
EP0011555A1 (en) Method of manufacturing prefabricated concrete beams
EP0369914B1 (en) Method for joining a matrix material to a functional support, and devices manufactured according to this method
EP0457652B1 (en) Use of embedded anchoring elements for insulating slabs, in particular for slabs made of rock wool
WO2009092890A2 (en) Prefabricated modular dry-floor element, method of producing such a modular element and dry floor comprising a plurality of modular elements
EP3070221B1 (en) Method for treating thermal bridges, associated heat-insulating element and structural connection element, and pre-slab provided with such elements
FR2927645A1 (en) Elongated combined coffer-tunnel for roller blind of e.g. building window, has front and rear parts integrated at level of their sections of wall by aliasing system that assures locking of front and rear parts in plane transversal to wall
FR2575778A1 (en) Prefabricated construction element and method for building an isothermal wall
EP3070220B1 (en) Method for treating thermal bridges
EP1775397A1 (en) Insulating formwork for concrete construction elements
FR2913993A1 (en) Interjoist i.e. slab, for constructing building floor, has shoulder whose plane part rests on upper faces of flanges of adjacent girders, where lower part of shoulder is supported on side faces of flanges to obtain spacing between girders
FR2756305A1 (en) Concrete floor
EP2789760B1 (en) Insulation assembly of a floor over a crawlspace
FR2878877A1 (en) Formwork block for e.g. manufacturing lintel, has vertical walls with flanges exceeding horizontal wall to form U-shape of height greater than beam, where inner sides of flanges have abutments separated at distance equal to beam`s thickness
FR2488303A1 (en) Insulating floor with self supporting base - has insulation forming lost shutter for cast concrete floor beams
FR2904342A1 (en) Formwork slab for forming lightweight floor of building/individual house, has plate projected over rabbets, where rabbets have width that is measured between wall and plane and is greater than/equal to sixty millimeters
FR2481727A1 (en) Prefabricated concrete floors with integral insulation blocks - pref. of expanded polystyrene as cladding for casting supporting ribs
EP3070224B1 (en) Straight edge of construction element, construction element comprising such an edge and method for manufacturing such a construction element
EP3070223A1 (en) Straight edge of a construction element and construction element comprising such an edge
FR2530705A1 (en) Structural elements especially for the prefabrication of floors.
EP1061193A1 (en) Insulating formwork for the erecting of a concrete wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES IT LI LU NL

17P Request for examination filed

Effective date: 19890204

17Q First examination report despatched

Effective date: 19900528

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES IT LI LU NL

REF Corresponds to:

Ref document number: 3861895

Country of ref document: DE

Date of ref document: 19910411

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920427

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920428

Year of fee payment: 5

Ref country code: ES

Payment date: 19920428

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920429

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920529

Year of fee payment: 5

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930430

Ref country code: CH

Effective date: 19930430

Ref country code: BE

Effective date: 19930430

BERE Be: lapsed

Owner name: S.A. DE RECHERCHE ET D'ETUDES TECHNIQUES SARET

Effective date: 19930430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050420