EP0285476B1 - Electrode mince supportée sur feuillard conducteur électronique et procédé de fabrication - Google Patents

Electrode mince supportée sur feuillard conducteur électronique et procédé de fabrication Download PDF

Info

Publication number
EP0285476B1
EP0285476B1 EP88400546A EP88400546A EP0285476B1 EP 0285476 B1 EP0285476 B1 EP 0285476B1 EP 88400546 A EP88400546 A EP 88400546A EP 88400546 A EP88400546 A EP 88400546A EP 0285476 B1 EP0285476 B1 EP 0285476B1
Authority
EP
European Patent Office
Prior art keywords
strip
lithium
process according
roller
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88400546A
Other languages
German (de)
English (en)
Other versions
EP0285476A1 (fr
Inventor
André Belanger
Michel Gauthier
Michel Robitaille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Societe National Elf Aquitaine
Original Assignee
Hydro Quebec
Societe National Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec, Societe National Elf Aquitaine filed Critical Hydro Quebec
Priority to AT88400546T priority Critical patent/ATE76702T1/de
Publication of EP0285476A1 publication Critical patent/EP0285476A1/fr
Application granted granted Critical
Publication of EP0285476B1 publication Critical patent/EP0285476B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the invention relates to supported thin lithium electrodes as well as to a process for producing these electrodes. More specifically, the present invention relates to a method for manufacturing thin electrodes, supported on an electronic conductive strip, of lithium, of lithium alloys or of doped lithium as well as the electrodes obtained by this method.
  • (+) / Ni where nickel is chosen as an example, it becomes necessary to have very thin films if one wants to avoid an excess of lithium.
  • the excess of lithium is indeed unfavorable on the cost of the raw material and on the density of stored energy, especially in terms of volume energy; this excess even becomes crucial for accumulators designed to work at room temperature and where the quantities of lithium required (1-2 Coulombs / cm2) are very low, and correspond to thicknesses of lithium varying from 1 to 5 ⁇ m.
  • controlling the thickness of lithium films is much more critical than in galvanizing processes.
  • the lithium if the lithium is too thin, part of the collector may be exposed during discharge and thus cause irreversible or at least severe problems when recharging. It is known in fact that the redeposition of lithium can be carried out a large number of times (> 500 cycles) provided that the lithium is redeposited on itself and not on a metal collector, for example nickel.
  • the control of the thickness is essential to avoid the addition of excess thickness during the manufacture of complete stacks, which thicknesses are penalizing in cost and stored energy. This control of the thickness is ultimately necessary to ensure the precise balancing of the surface capacities (Coulombs / cm2) of the electrodes when assembling cells in series, otherwise the capacity of the individual cells will evolve divergent during cycling.
  • the present invention aims to overcome the difficulties mentioned above in the use of lithium electrodes and to produce quickly, economically and in a particularly reproducible manner from one batch to another, lithium films of variable thicknesses. , especially between 40 ⁇ m and around 0.1 ⁇ m.
  • the present invention also aims to bring into play the remarkable wetting properties of molten, alloyed or doped lithium, in the molten state, on metals, in particular nickel and copper.
  • An object of the invention is the development of a rapid process for producing rolls of lithium spread on a preferably metallic support or other metallized or heat-resistant materials, using the rapidity of wetting by lithium from thin strips the thickness of which can vary between approximately 1 and 20 ⁇ m.
  • Another object of the invention consists in using the speed of the process to reduce the residence time of the molten lithium with the support material and to avoid its chemical or thermal attack by the molten lithium.
  • Another object of the invention consists in adjusting the device used and the speed of unwinding of the preferably metallic strip so as to allow thermal treatments of lithium, such as the speed of solidification (microcrystallinity of lithium) or controlled chemical treatments.
  • Another object of the invention lies in the manufacture of supported lithium electrodes intended for accumulators with polymer electrolytes by using molten lithium applied by methods which allow a rigorous control of the thickness of the deposit of lithium.
  • Another object of the invention is to ensure thin and reproducible deposits by controlling the thickness and therefore the capacity of the lithium layer, which has the other effect of reducing the excess of lithium and on the other hand to ensure proper electrochemical operation during the recycling of the lithium electrode and of the accumulator.
  • the process also lends itself to the preparation of a collector covered with lithium on both sides.
  • the method according to the present invention can be applied to the coating with lithium, alloyed lithium or doped lithium, of a strip which has already been coated on the face which receives no lithium, material d 'a positive electrode, or even material of the positive electrode covered with an electrolyte.
  • the strip consists of a metal, an alloy, a metallized fiberglass or a charged or metallized plastic.
  • the preferred metal is chosen from copper, nickel, iron and molybdenum.
  • the strip is made of an alloy, this (this is preferably based on nickel, copper or iron, for example, it may be made of bronze, brass, monel or steel. In practice, it is preferred to use a strip nickel.
  • the element in the molten state may be metallic lithium, or lithium-rich compounds or alloys whose melting point is close to that of lithium, at ⁇ 50 ° C., for example alloyed lithium or doped with antimony, bismuth, boron, tin, silicon, magnesium.
  • the bath is maintained at a temperature varying between the melting point of lithium and about 400 ° C.
  • the strip is unwound over the bath of the element in the molten state.
  • the roughness on the surface of the roll can be arbitrary, they are preferably formed by patterns of regular geometry constituting cavities regularly distributed on the surface of the roll which collect the molten material and deposit it on the metal strip.
  • the cavities distributed on the surface of the roller are in particular calibrated as a function of the thickness of the deposit of the element.
  • the unwinding of the strip is preferably carried out at a speed whose value is between 0.5 cm / s and 100 cm / s.
  • the roller can be heated to prevent lithium, pure, doped or alloyed, from freezing to solidify before depositing it on the face of the strip to be covered with the element in the molten state,
  • the strip is subjected to a heat treatment before and / or after having applied the element in the molten state to said face.
  • a doctor blade is provided making it possible to remove any excess molten material from the surface of the roller before applying the latter against the face to be coated with metal strip.
  • the coated side of the strip is treated with a scraper making it possible to reduce the thickness of the applied element and, where appropriate, d '' standardize any surface imperfections left by the roller.
  • the molten element bath and the strip are kept in the vicinity of said bath in an inert atmosphere containing neither oxygen nor water vapor in order to prevent any undesirable reaction.
  • the device illustrated schematically in Figure 1 consists of a coil 1 of metal or metallized strip 3.
  • a take-up reel 5 ensuring the traction of the strip during the treatment which will be described later.
  • the apparatus further comprises a bath 7 intended to contain molten lithium 9.
  • a heating element 11 has been provided as well as thermal insulation 13. It will be noted that the heating element is connected in a conventional manner to an alternating current source 15.
  • an area or the bath as well as the strip 13 in the process of to be treated will be maintained under a controlled atmosphere so as to eliminate oxygen, water vapor and other gases which may react with lithium.
  • This area is entirely conventional and is not part of the invention.
  • the coater used to deposit a molten lithium film 3 ′ on the underside of the metal strip 3 consists of a textured roller 19 whose surface pattern allows, due to its capillarity, the deposition of lithium on the underside of the strip 3.
  • this textured roller 19 is provided with conventional heating means 21 making it possible to adequately control the temperature of the molten lithium on the surface of the roller. It is possible, if desired, to provide a doctor blade 22 (illustrated in dotted lines in FIG. 1) allowing remove any excess molten material from the surface of the roller before applying the latter against side 3, to be coated with metal strip.
  • rods 2,2a are provided which rest on the upper face of the strip 3 and make it possible to adjust the contact angle of the strip 3 on the roll textured 19.
  • a temperature conditioner 23 is provided before the strip 3 enters the zone defined by the molten lithium.
  • another temperature conditioner 25 is provided which is adjusted either to produce a heat treatment or to cause a cooling of the couple Li ° / strip before it is wound on the roller 5.
  • FIG. 2 A modification of the apparatus shown diagrammatically in FIG. 1 has been illustrated in FIG. 2.
  • the parts of which with the apparatus illustrated in FIG. 1 are identified by the same reference numbers, it will be seen that has provided a roller 27 allowing friction drive of the metal strip 3 between the rollers 19 and 27.
  • this roller 27 is provided with heating means 29 in order to ensure an adequate temperature for the strip when the latter is under treatment.
  • the device illustrated in FIG. 2 can be provided with a scraper 31 making it possible to reduce the thickness and or to standardize surface imperfections that the engraving roller 19 could have left This additional tool must be hot to allow the scraped excess to return to the bath in liquid way. This is made possible by the introduction heating means (not shown) and entirely conventional.
  • a support roller 33 is provided immediately above the scraper 31. At 35, the homogenized surface of the strip coated with molten lithium is illustrated. This device is particularly useful when depositing large thicknesses of lithium. In this case, the very pattern of the engraving roller may leave marks on the lithium after cooling.
  • the heated scraper 33 can eliminate these surface imperfections.
  • the product obtained according to the invention can be used to constitute an accumulator as illustrated in FIG. 4. It will be seen that the latter comprises a copper collector 37 whose thickness is approximately 10 ⁇ m.
  • the lithium layer 39 obtained by the process according to the invention has a thickness of approximately 20 ⁇ m.
  • the accumulator consists, on the other hand, of a polymer electrolyte 41 20 ⁇ m thick, and of the positive electrode 43 of 40 ⁇ m thick and of a copper collector 45 10 ⁇ m thick. having a thickness of 100 ⁇ m
  • FIGs 5, 6 and 7. Examples of strips covered with lithium bands are illustrated in Figures 5, 6 and 7.
  • Figure 5 we see the metal strip 47, as well as the metallic lithium 49 deposited on the strip 47.
  • the start of spreading is illustrated in 51 while the two non-covered bands are identified by the reference numbers 53.55. If one wishes to have nickel strips covered with lithium with repeated patterns, one can use a coating roller 19 whose pattern will be used to produce repeated patterns 57. One can obviously prefer other patterns than that illustrated in Figure 6, for example, that illustrated in Figure 7 at 59.
  • An electrolytic copper strip roll (width: 7.6 cm and thickness: 25 ⁇ m) was used to make lithium electrodes.
  • the device chosen was that of FIG. 1 confined in a glove box (helium atmosphere), H2O ⁇ 10 ppm and 02 ⁇ 10 ppm).
  • the strip was placed as shown in Figure 1.
  • the unwinding, provided by the tractor roller was fixed at a speed of 2 cm / s.
  • the stainless steel coating roll is 7 cm wide and is placed in the center of the copper strip.
  • the roll has a diameter of 2.5 cm and its surface is made of a pattern the characteristics of which are as follows: pyramidal shape; 79 patterns per cm; pattern depth: 24 ⁇ m; pattern volume: 7.7 x 10 ⁇ 4 cm3 per cm2, according to the description made by the company INTA ROTO INC. from Richmond, Virginia.
  • the temperature of the lithium bath is maintained at 260 ° C during the test. About 30% of the volume of the roller soaks in the liquid.
  • the stainless steel tank the dimensions of which are 10x5x2 cm, contains approximately 50cm3 of "Battery" quality lithium.
  • the conditioning plates (23 and 25) are not used. In this way, some 10 meters of lithium coated on copper were produced and wound on the take-up reel.
  • the lithium thus obtained has a very metallic appearance, the surface of which is free from defects ( ⁇ 0.5 ⁇ m).
  • the edges of lithium on copper are straight and without burrs.
  • the average thickness of the lithium is 5 ⁇ m and of good regularity: variations less than 0.5 ⁇ m in all directions.
  • Lithium consumption is around 3 for a thickness of 5 ⁇ m.
  • Example 2 The same device was used for this example as in Example 1, but this time using an "ink roller" whose surface pattern is slightly more marked: ie: pyramidal shape; 10 patterns per cm; pattern depth: 33 ⁇ m; volume of the motif: 111 x 10 ⁇ 4 cm3 per cm2.
  • speed 2 cm / s
  • T of the bath 260 ° C.
  • the bath and its immediate environment are maintained under helium while the take-up reel is kept in dry air. (dry air: a dew point (dew-point) ⁇ -25 ° C to 70 ° C).
  • the speed of unwinding of the strip has been quintupled (about 10 cm / s) and the same resultant thickness of lithium has been obtained by preheating a nickel strip (width 7 cm; thickness 8 ⁇ m) to 300 ° C using the temperature conditioner 23 and heating the "ink” roller to 300 ° C while maintaining the temperature of the tank at 260 ° C.
  • a light jet of helium is used at 25 to cool the Li / Ni assembly before reaching the take-up reel.
  • Example 1 The lithium produced in Example 1 was used to assemble small batteries (4 cm2). A 4 cm2 washer was taken from the former. 1 using a cookie cutter. On this lithium was affixed a 75 ⁇ m thick electrolyte film consisting of a mixture of polyox of ethylene and lithium perchlorate in a 20/1 ratio. On this half-cell, a positive electrode based on tiS2 was placed on a nickel collector, the surface capacity of which is 1.5 Coulomb / cm2. Brought to 80 ° C, this battery could be cycled for more than 100 cycles without any apparent depletion of the lithium.
  • Example 2 Using the lithium electrode prepared in Example 2, another 4 cm2 battery was assembled with an electrolyte based on copolymer but using a positive electrode of higher capacity made based on V6O13: 5 coulombs / cm2 . Thus at 10 ⁇ m of lithium (ie: 7.3 coulombs / cm2) or in the vicinity of half an excess of lithium vs the positive electrode, we were able to perform at 60 ° C more than 75 deep cycles without dendritic or other growth phenomenon which would be linked to the malfunction of the lithium electrode.
  • Example 3 Thanks to the thin lithium still prepared in Example 3, it was possible to assemble a battery of more than 50 volts containing the superposition in series of 17 elementary batteries whose voltage was close to 3.5 volts per unit. .
  • the positive electrode was made from MnO2 and the electrolyte from copolymer as described above.
  • the particularity of this assembly lies in the exceptional thinness of this stack: less than a millimeter thick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Coating With Molten Metal (AREA)
  • Manufacture Of Switches (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

  • L'invention est relative à des électrodes de lithium, minces supportées ainsi qu'à un procédé pour produire ces électrodes. Plus précisément, la présente invention concerne un procédé de fabrication d'électrodes minces, supportées sur un feuillard conducteur électronique, de lithium, d'alliages de lithium ou de lithium dopé ainsi que les électrodes obtenues par ce procédé.
  • Le développement des générateurs au lithium évolue très rapidement depuis quelques années avec l'apparition sur le marché de générateurs au lithium rechargeables (Moli Energy Ltd., Burnaby, B.C. Canada ) et l'apparition récente des accumulateurs tout-solides à électrolytes polymères. Ces nouveaux systèmes ont tous un trait commun, c'est la tendance à mettre en oeuvre des technologies de films minces où les densités de courant sont faibles et par conséquent favorables à la bonne redéposition et au cyclage des électrodes de lithium. Cette tendance a accentué le besoin de produire des électrodes de lithium de plus en plus minces:∼100 µmpour les piles à électrolytes liquides et < 30 µm =>∼1 µmpour les électrolytes polymères.
  • La mise en oeuvre et la manipulation de films minces de lithium est relativement facile lorsque les épaisseurs du film demeurent voisines de 100 µm et des films produits commercialement sont disponibles à un prix de l'ordre de 100 dollars la lb (0.45 Kg). Toutefois le coût de films plus minces croît rapidement pour des films qui doivent alors être produits par extrusion puis par laminage, cette dernière étape étant alors plus lente et plus délicate à mettre en oeuvre (coût de main d'oeuvre élevé) ce qui a pour effet de tripler au moins le coût du lithium produit. Cela est d'autant plus vrai que le lithium constitue une partie non négligeable des coûts de l'accumulateur, le coût d' lithium pouvant représenter jusqu'à 50% des coûts de l'accumulateur. En plus du coût plus élevé des films très minces (< 50 µ m)le film devient aussi difficile à manipuler à cause de la grande déformabilité du Li résultant de sa maléabilité et de son adhésion avec la plupart des matériaux usuels. Cela se traduit par une difficulté énorme de manipulation de films minces de lithium dans des procédés continus d'assemblage de piles constituées de films superposés: électrode (+)/électrolyte/électrode de lithium.
  • La technologie de fabrication de piles au lithium à électrolytes polymères qui intéresse plus particulièrement la présente invention est particulièrement exigeante à ce sujet puisque les épaisseurs de lithium requises compte tenu des caractéristiques des électrolytes actuellement connus varient entre 30 et ∼ 1 µm d'épaisseur. Des astuces peuvent être mises en jeu pour contourner cette difficulté comme l'utilisation d'électrodes négatives bifaces qui permettent l'utilisation du double de l'épaisseur voulue (Third International Meeting on Lithium Batteries, 27 au 30 mai 1986, Kyoto, Japan, Abstract #ST-11). Toutefois si l'on cherche à construire des accumulateurs de type bipolaires correspondant à la séquence: Li/Electrolyte/(+)/Ni/Li/Electrolyte/(+)/Ni/Li....(+)/Ni,
    Figure imgb0001
    où le nickel est choisi comme exemple, il devient nécessaire de disposer de films très minces si l'on veut éviter un excès de lithium. L'excès de lithium est en effet défavorable sur le coût de la matière première et sur la densité d'énergie stockée, surtout en terme d'énergie volumique; cet excès devient même crucial pour des accumulateurs conçus pour travailler à la température ambiante et où les quantités de lithium requises (1-2 Coulombs/cm2) sont très faibles, et correspondent à des épaisseurs de lithium variant de 1 à 5 µm.
  • Divers procédés ont été suggérés pour produire des films ultra minces de lithium, notamment dans le cas de films déposés sur un collecteur de lithium. C'est le cas par exemple du dépôt de lithium par évaporation thermique ou par "sputtering" ou par "electron beam". Ces techniques sont cependant relativement lentes et coûteuses car elles s'effectuent sous vide haussé et dans des conditions de propreté rigoureuses. Des films minces peuvent ainsi être obtenus notamment pour des épaisseurs inférieures au micron. D'autres procédés tels que le laminage puis couchage par transfert sur support métallique ont été décrits U.S. 3.756.789, 4 septembre 1973, Alder et U.S. 3.721.113, 20 mars 1973, Hovsepian, ou encore, la coextrusion à chaud avec un film de matière plastique (Demandes de brevets européens 0 146 241, Park et coll., 26 juin 1985 et 0 145 498, Cook et coll. 19 juin 1985). Ces procédés ont tous des inconvénients importants lorsque l'on cherche à les appliquer aux piles rechargeables à électrolytes polymères.
  • D'autre part, il existe des méthodes de plaquage de feuilles d'acier par déroulement de cette dernière dans un bain de zinc. On peut mentionner à ce sujet les brevets suivants:
    Figure imgb0002

    La technique préconisée dans ces brevets n'est de toute évidence pas adaptable à la production de couche mince de lithium sur un feuillet métallique. On peut aussi mentionner la galvanisation au rouleau sur une seule face d'une feuille d'acier d'après un procédé Nippon Steel (L'Usine Nouvelle, Décembre 1986).
  • Pour les applications batterie, le contrôle de l'épaisseur des films de lithium est beaucoup plus critique que dans les procédés de galvanisation. D'une part, si le lithium est trop mince, une partie du collecteur pourra être mise à nu lors de la décharge et ainsi provoquer des problèmes irréversibles ou tout au moins sévères à la recharge. On sait en effet que la redéposition du lithium peut être effectuée un grand nombre de fois ( > 500 cycles) pourvu que le lithium soit redéposé sur lui-même et non sur un collecteur métallique, par exemple le nickel. D'autre part, le contrôle de l'épaisseur est indispensable pour éviter l'addition de surépaisseur lors de la fabrication de piles complètes, lesquelles épaisseurs sont pénalisantes en coût et en énergie stockée. Ce contrôle de l'épaisseur est finalement nécessaire pour assurer le balancement précis des capacités surfaciques (Coulombs/cm²) des électrodes lors d'assemblage de piles en série sous peine de voir la capacité des piles individuelles évoluer de façon divergente lors du cyclage.
  • La présente invention vise à s'affranchir des difficultés mentionnées ci-dessus de mise en oeuvre d'électrodes de lithium et à produire rapidement, économiquement et de façon particulièrement reproductible d'un lot à l'autre des films de lithium d'épaisseurs variables, notamment entre 40 µm et environ 0,1 µm.
  • La présente invention vise aussi à mettre en jeu les remarquables propriétés de mouillage du lithium fondu, allié ou dopé, à l'état fondu, sur les métaux, notamment le nickel et le cuivre.
  • Un objet de l'invention est la mise au point d'un procédé rapide d'élaboration de rouleaux de lithium épandus sur un support préférentiellement métallique ou d'autres matériaux métallisés ou résistant à la chaleur, en se servant de la rapidité de mouillage par le lithium de feuillards minces dont l'épaisseur peut varier entre environ 1 et 20 µm.
  • Un autre objet de l'invention consiste à se servir de la rapidité du procédé pour réduire le temps de résidence du lithium fondu avec le matériau du support et d'éviter son attaque chimique ou thermique par le lithium fondu.
  • Un autre objet de l'invention consiste à régler le dispositif utilisé et la vitesse de déroulement du feuillard préférentiellement métallique de façon à permettre des traitements thermiques du lithium, tels la vitesse de solidification (microcristallinité du lithium) ou des traitements chimiques contrôlés.
  • Un autre objet de l'invention réside dans la fabrication d'électrodes de lithium supportées destinées à des accumulateurs à électrolytes polymères en se servant de lithium fondu appliqué par des méthodes qui permettent un contrôle rigoureux de l'épaisseur du dépôt de lithium.
  • Un autre objet de l'invention est d'assurer des dépôts minces et reproductibles en contrôlant l'épaisseur et donc la capacité de la couche de lithium, ce qui a pour effet d'autre part de réduire l'excès de lithium et d'autre part d'assurer un bon fonctionnement électrochimique lors du recyclage de l'électrode de lithium et de l'accumulateur.
  • Dans un aspect large, l'invention concerne un procédé de fabrication d'électrodes minces, supportées sur un feuillard conducteur électronique, d'un élément choisi parmi le lithium, le lithium allié ou dopé dont le point de fusion ne s'écarte pas du point de fusion du lithium par plus ou moins 50°C, et d'épasseur constante dudit élément, à partir d'un enroulement du feuillard et d'une source de l'élément. Selon ce procédé :
    • . l'on déroule en continu ledit feuillard,
    • . l'on applique continuellement sur au moins l'une des deux faces dudit feuillard, une quantité constante de l'élément à l'état fondu, de manière à produire un film sur ledit feuillard dont l'épaisseur est constante et se situe entre environ 0,1 et environ 40 µm et dont la surface est homogène et uniforme, ladite application étant réalisée en faisant circuler de façon continue dans le bain un rouleau enducteur d'élément fondu, qui possède un axe parallèle à la surface du bain d'élément à l'état fondu et dont la base est immergée dans l'élément en fusion et le sommet est en contact avec ladite face du feuillard, la surface du rouleau comportant des aspérités permettant d'enduire le rouleau avec de l'élément fondu et de déposer uniformément ce dernier sur la face du feuillard,
    • . l'on empêche l'élément à l'état fondu de figer au contact du feuillard, et
    • . l'on provoque la solidification contrôlée dudit élément sur le feuillard après formation du film de cet élément sur ledit feuillard.
  • Il va de soi que le procédé se prête également à la préparation de collecteur recouvert de lithium sur les'deux faces. Par exemple, le procédé selon la présente invention peut s'appliquer à l'enduction par le lithium, le lithium allié ou le lithium dopé, d'un feuillard qui a déjà été enduit sur la face quine reçoit pas de lithium, du matériau d'une électrode positive, ou même du matériau de l'électrode positive recouvert d'un électrolyte.
  • Selon une réalisation préférée de l'invention, le feuillard est constituée par un métal, un alliage, une fibre de verre métallisée ou un plastique chargé ou métallisé. Le métal préféré est choisi parmi le cuivre, le nickel, le fer et le molybdène. Lorsque le feuillard est en alliage, celui-(ci est de préférence à base de nickel, cuivre ou fer, par exemple, il peut être en bronze, en laiton, en monel ou en acier.. En pratique, on préfère utiliser un feuillard en nickel.
  • Quant à l'élément à l'état fondu, ce peut être du lithium métallique, ou des composés ou alliages riches en lithium dont le point de fusion est voisin de celui du lithium, à ±50°C, par exemple le lithium allié ou dopé avec l'antimoine, le bismuth, le bore, l'étain, le silicium, le magnésium.
  • Selon une autre réalisation préférée de l'invention, l'on maintient le bain à une température variant entre le point de fusion du lithium et environ 400°C .
  • Selon une autre réalisation préférée de l'invention, l'on déroule le feuillard au-dessus du bain de l'élément à l'état fondu.
  • Bien que les aspérités à la surface du rouleau puissent être quelconques, elles sont de préférence constituées par des motifs à géométrie régulière constituant des cavités régulièrement distribuées sur la surface du rouleau lesquelles recueillent le matériau en fusion et le déposent sur le feuillard métallique. Les cavités distribuée à la surface du rouleau sont notamment calibrées en fonctions de l'épaisseur du dépôt de l'élément.
  • Le déroulement du feuillard s'effectue de préférence à une vitesse dont la valeur se situe entre 0,5 cm /s et 100 cm /s. De plus, on peut, selon les circonstances chauffer le rouleau afin d'empécher le lithium, pur, dopé ou allié, en fusion de figer avant de le déposer sur la face du feuillard à recouvrir de l'élément à l'état fondu,
  • Selon une autre réalisation de l'invention, l'on fait subir un traitement thermique au feuillard avant et/ou après lui avoir appliqué l'élément à l'état fondu sur ladite face.
  • Selon une autre réalisation de l'invention, on a prévu une racle permettant d'enlever tout excès de matériau en fusion de la surface du rouleau avant d'appliquer ce dernier contre la face à enduire du feuillard métallique.
  • Selon une autre réalisation de la présente invention, après avoir enduit le feuillard métallique au moyen de l'élément en fusion, on traite la face enduite du feuillard avec un racloir permettant de réduire l'épaisseur de l'élément appliqué et le cas échéant d'uniformiser les imperfections de surface éventuellement laissées par le rouleau.
  • De préférence, on maintient le bain d'élément fondu ainsi que le feuillard au voisinage dudit bain dans une atmosphère inerte ne contenant ni oxygène ni vapeur d'eau afin de prévenir toute réaction indésirable.
  • Il va de soi que le dispositif décrit peut être modifé de façon à enduire au besoin les deux faces du collecteur métallique ainsi que cela apparaîtra évident à l'homme de l'art.
  • L'invention va maintenant être illustrée par les dessins annexés donnés à titre d'exemple et sans caractère limitatif. Dans les dessins:
    • la FIGURE 1 est un schéma représentant un appareil permettant la mise en oeuvre du procédé selon la présente invention;
    • la FIGURE 2 est un schéma d'un autre appareil permettant la mise en oeuvre du procédé;
    • la FIGURE 3 est un autre schéma illustrant un racloir pouvant être adapté aux appareils des figures 1 et 2;
    • la FIGURE 4 est une coupe d'un accumulateur incorporant une anode selon la présente invention;
    • la FIGURE 5 est une vue en plan d'un feuillard métallique recouvert d'une bande de lithium;
    • la FIGURE 6 est une autre vue en plan d'un feuillard métallique avec motif répété; et
    • la FIGURE 7 est une autre vue en plan d'un feuillard métallique avec un autre motif répété.
  • L'appareil illustré schématiquement en Figure 1 est constitué d'une bobine 1 d'alimentation en feuillard 3 métallique ou métallisé. D'autre part, pour recevoir le feuillard une fois celui-ci traité, on retrouve une bobine réceptrice 5 assurant la traction du feuillard lors du traitement qui sera décrit plus loin. L'appareil comprend d'autre part un bain 7 destiné à contenir du lithium fondu 9. Pour s'assurer que le lithium 9 sera maintenu à l'état fondu et conservera une température contrôlée, on a prévu un élément chauffant 11 ainsi qu'une isolation thermique 13. On notera que l'élément chauffant est relié de façon conventionnelle à une source de courant alternatif 15. Enfin, on a illustré de façon schématique en 17, une zone ou le bain ainsi que le feuillard 13 en train d'être traité seront maintenus sous une atmosphère contrôlée de façon à éliminer l'oxygène, la vapeur d'eau et les autres gaz risquant de réagir avec le lithium. Cette zone, est tout à fait conventionnelle et ne fait pas partie de l'invention.
  • L'enducteur utilisé pour déposer un film de lithium fondu 3' sur la face inférieure du feuillard métallique 3 est constitué d'un rouleau texturé 19 dont le motif en surface permet à cause de sa capillarité le dépôt de lithium sur la face inférieure du feuillard 3. De plus, afin de conserver une température adéquate au lithium fondu, ce rouleau texturé 19 est muni des moyens de chauffe conventionnels 21 permettant de contrôler adéquatement la température du lithium fondu sur la surface du rouleau. On peut, si on le désire prévoir une racle 22 (illustrée en pointillé sur la figure 1) permettant d'enlever tout excès de matériau en fusion de la surface du rouleau avant d'appliquer ce dernier contre la face 3, à enduire du feuillard métallique.
  • Afin d'assurer un contact adéquat du feuillard sur le rouleau texturé 19, on a prévu des tiges 2,2a qui s'appuient sur la face supérieure du feuillard 3 et permettent d'ajuster l'angle de contact du feuillard 3 sur le rouleau texturé 19. Avant que le feuillard 3 ne pénètre dans la zone définie par le lithium fondu, on a prévu un conditionneur de température 23 permettant d'ajuster la température du feuillard à son arrivée au-dessus du bain de lithium fondu. De même, on a prévu un autre conditionneur de température 25 lequel est ajusté soit pour produire un traitement thermique ou provoquer un refroidissement du couple Li°/feuillard avant son enroulement sur le rouleau 5.
  • On a illustré sur la Figure 2 une modification de l'appareil schématisé en Figure 1. Dans cette réalisation, dont les parties communes avec l'appareil illustré sur la Figure 1 sont identifiées par les mêmes chiffres de référence, on verra que l'on a prévu un rouleau 27 permettant l'entraînement par friction du feuillard métallique 3 entre les rouleaux 19 et 27. D'autre part, ce rouleau 27 est muni de moyens de chauffage 29 afin d'assurer une température adéquate au feuillard lorsque celui-ci est sous traitement.
  • En se référant maintenant à la Figure 3, on verra que le dispositif illustré en Figure 2 peut être muni d'un racloir 31 permettant de réduire l'épaisseur et ou d'uniformiser des imperfections de surface qu'aurait pu laisser le rouleau engraveur 19. Cet outil supplémentaire doit être chaud pour permettre aux excès raclés de retourner au bain en voie liquide. Cela est rendu possible par l'introduction de moyens de chauffage (non illustrés) et tout à fait conventionnels. De plus, afin que la surface raclée soit bien homogène, on a prévu un rouleau d'appui 33 immédiatement au-dessus du racloir 31. En 35, on illustre la surface homogénéisée du feuillard enduit de lithium fondu. Ce dispositif est particulièrement utile quand on dépose des épaisseurs importantes de lithium. Dans ce cas, le motif même du rouleau graveur risque de laisser des marques sur le lithium après le refroidisse-ment. Le racloir 33 chauffant peut éliminer ces imperfections de surface.
  • On peut utiliser le produit obtenu selon l'invention pour constituer un accumulateur tel qu'illustré en Figure 4. On verra que ce dernier comporte un collecteur de cuivre 37 dont l'épaisseur est environ 10 µm. La couche de lithium 39 obtenue par le procédé selon l'invention a une épaisseur d'environ 20 µm. L'accumulateur est constitué d'autre part d'un électrolyte polymère 41 de 20 µm d'épaisseur, et de l'électrode positive 43 de 40 µm d'épaisseur et d'un collecteur de cuivre 45 de 10 yµmd'épaisseur le tout ayant une épaisseur de 100 µm
  • Des exemples de feuillards recouverts de bandes de lithium sont illustrés aux Figures 5, 6 et 7. Dans la Figure 5, on voit le feuillard métallique 47, ainsi que le lithium métallique 49 déposé sur le feuillard 47. Le début de l'épandage est illustré en 51 tandis que les deux bandes non recouvertes sont identifiées par les chiffres de référence 53,55. Si l'on désire avoir des feuillards de nickel recouverts de lithium à motifs répétés, on peut se servir d'un rouleau enducteur 19 dont le motif servira à produire des motifs répétés 57. On peut évidemment préférer d'autres motifs que celui illustré dans la Figure 6, par exemple, celui illustré en Figure 7 en 59.
  • Les exemples suivants sont donnés à titre purement illustratif mais sans caractère limitatif.
  • L'invention va maintenant être illustrée par les exemples qui suivent donnés sans caractère limitatif.
  • Exemple 1
  • Un rouleau de feuillard de cuivre électrolytique (largeur: 7,6 cm et épaisseur: 25 µm) a été utilisé pour fabriquer des électrodes de lithium. Le dispositif choisi fut celui de la Figure 1 confiné dans une boîte à gants (atmosphère d'hélium), H₂O < 10 ppm et 0₂ < 10 ppm). Le feuillard a été placé tel qu'indiqué sur la Figure 1. Le déroulement, assuré par le rouleau tracteur a été fixé à une vitesse de 2 cm/s . Le rouleau enducteur d'acier inoxydable a une largeur de 7 cm et est placé au centre du feuillard de cuivre. Le rouleau a un diamètre de 2,5 cm et sa surface est faite d'un motif dont les caractéristiques sont les suivantes : forme pyramidale; 79 motifs par cm ; profondeur du motif : 24 µm ; volume du motif : 7,7 x 10⁻⁴ cm³ par cm², selon la description faite par la compagnie INTA ROTO INC. de Richmond en Virginie. La température du bain de lithium est maintenue à 260°C durant l'essai. Environ 30% du volume du rouleau trempe dans le liquide. Le bac d'acier inoxydable dont les dimensions sont de 10x5x2 cm contient approximativement 50cm³ de lithium de qualité "Batterie". Pour cet essai, les plaques de conditionnement (23 et 25) ne sont pas utilisées. De cette façon, quelques 10 mètres de lithium enduit sur cuivre ont été produits et enroulés sur la bobine réceptrice.
  • Le lithium ainsi obtenu a un aspect très métallique dont la surface est exempte de défauts (< 0,5 µm). Les arètes du lithium sur le cuivre sont droites et sans bavure.
  • L'épaisseur moyenne du lithium est de 5 µm et d'une bonne régularité: variations inférieures à 0,5 µm dans toutes les directions.
  • La consommation de lithium est de l'ordre de 3 pour une épaisseur de 5 µm.
  • Remarque: pour produire des quantités plus importantes de lithium en continu, il faut tout simplement prévoir l'ajout régulier de lithium frais au bac.
  • Exemple 2
  • On a utilisé pour cet exemple le même dispositif qu'à l'exemple 1 mais cette fois en utilisant un rouleau "encreur" dont le motif de surface est un peu plus marqué: i.e.: forme pyramidale ; 10 motifs par cm ; profondeur du motif : 33 µm ; volume du motif : 111 x 10⁻⁴ cm³ par cm². Les mêmes conditions expérimentales ont été utilisées: vitesse= 2 cm/s ; T du bain = 260°C. L'épaisseur résultante de lithium sur le cuivre a été en moyenne de 8 microns. Ce qui, traduit en consommation de lithium, correspond à 7 cm³ de lithium sur 10 mètres ou 14 Ampère-heure de charge électrique. Le bain et son environnement immédiat sont maintenus sous hélium alors que la bobine réceptrice est gardée sous air sec. (air sec: un point de rosée (dew-point) < -25°C à 70°C ).
  • Exemple 3
  • Avec le dispositif de la figure 1 toujours, on a quintuplé (environ 10 cm/s ) la vitesse de déroulement du feuillard et obtenu une même épaisseur de lithium résultante en préchauffant un feuillard de nickel (largeur 7 cm; épaisseur 8 µm) à 300°C à l'aide du conditionneur de température 23 et en chauffant le rouleau "encreur" à 300°C tout en maintenant la température du bac à 260°C. Un léger jet d'hélium est utilisé en 25 pour refroidir l'assemblage Li/Ni avant d'atteindre la bobine d'enroulement.
  • Exemple 4
  • Le lithium produit à l'exemple 1 a été utilisé pour assembler des piles de petites dimensions (4cm²). Une rondelle de 4 cm² a été prélevée de l'ex. 1 à l'aide d'un emporte-pièce. Sur ce lithium a été apposé un film d'éléctrolyte de 75 µm d'épaisseur constitué d'un mélange de polyox de d'éthylène et de perchlorate de lithium dans un rapport 20/1. Sur cette demi-pile on a placé une életrode positive à base de tiS₂ sur collecteur de nickel et dont la capacité surfacique est de 1,5 Coulomb/cm². Portée à 80°C cette pile a pu être cyclée plus de 100 cycles sans épuisement apparent du lithium.
  • Exemple 5
  • En utilisant un électrolyte plus conducteur, par exemple en remplaçant le polyoxyde d'éthylène par un copolymère de synthèse tel que décrit dans la demande de brevet canadien No. 479.862 du 23 avril 1985 Brevet Canadien N° 1269 700, d'une épaisseur de 50 µm, on a pu atteindre 50 cycles de décharges et charges profondes sans qu'il y ait apparition de dendrites ou autre signe de malfonctionnement de l'électrode de lithium.
  • Exemple 6
  • En utilisant l'électrode de lithium préparée à l'exemple 2, une autre pile de 4 cm² a été assemblée avec un électrolyte à base de copolymère mais en utilisant une électrode positive de capacité plus élevée faite à base de V₆O₁₃: 5 coulombs/cm₂. Ainsi à 10 µm de lithium (i.e.: 7,3 coulombs/cm²) soit au voisinage d'un demi excès de lithium vs l'électrode positive, on a pu à 60°C réaliser plus de 75 cycles profonds sans croissance dendritique ou autre phénomène qui serait relié au mauvais fonctionnement de l'électrode de lithium.
  • Exemple 7
  • Grâce au lithium mince préparé toujours à l'exemple 3, on a pu réaliser l'assemblage d'une pile de plus de 50 volts contenant la superposition en série de 17 piles élémentaires dont la tension était voisine de 3,5 volts l'unité.
  • Dans cet exemple, l'électrode positive était fabriquée à base de MnO₂ et l'électrolyte à base de copolymère comme décrit précédemment. La particularité de ce montage se situe dans la minceur exceptionnelle de cette pile: moins d'un millimètre d'épaisseur.

Claims (20)

1. Procédé de fabrication d'électrodes minces, supportées sur un feuillard conducteur électronique, d'un élément choisi parmi le lithium, le lithium allié ou dopé dont le point de fusion ne s'écarte pas du point de fusion du lithium par plus ou moins 50°C, et d'épaisseur constante dudit élément, à partir d'un enroulement dudit feuillard et d'une source dudit élément, caractérisé en ce que
. l'on constitue un bain dudit élément à l'état fondu maintenu sous atmosphère inerte,
. l'on déroule en continu ledit feuillard,
. l'on applique continuellement sur au moins l'une des deux faces dudit feuillard, une quantité constante de l'élément à l'état fondu, de manière à produire un film sur ledit feuillard dont l'épaisseur est constante et se situe entre environ 0,1 et environ 40 µm et dont la surface est homogène et uniforme, ladite application étant réalisée en faisant circuler de façon continue dans le bain un rouleau enducteur d'élément fondu, qui possède un axe parallèle à la surface du bain d'élément à l'état fondu et dont la base est immergée dans l'élément en fusion et le sommet est en contact avec ladite face du feuillard, la surface du rouleau comportant des aspérités permettant d'enduire le rouleau avec de l'élément fondu et de déposer uniformément ce dernier sur la face du feuillard,
. l'on empêche l'élément à l'état fondu de figer au contact du feuillard, et
. l'on provoque la solidification contrôlée dudit élément sur le feuillard après formation du film de cet élément sur ledit feuillard.
2. Procédé selon la revendication 1, caractérisé en ce que le feuillard est choisi dans le groupe constitué par un métal, un alliage, une fibre de verre métallisée et un plastique chargé ou métallisé.
3. Procédé selon la revendication 2, caractérisé en ce que le feuillard est en un métal choisi parmi cuivre, nickel, fer et molybdène.
4. Procédé selon la revendication 2, caractérisé en ce que le feuillard est constitué d'alliages à base de nickel, de cuivre ou de fer.
5. Procédé selon la revendication 4, caractérisé en ce que le feuillard est en laiton, en bronze, en acier ou en monel.
6. Procédé selon la revendication 2, caractérisé en ce que le feuillard est en nickel.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'élément est du lithium métallique.
8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'élément est le lithium allié ou dopé.
9. Procédé selon la revendication 8, caractérisé en ce que le lithium est allié ou dopé avec l'antimoine, le bismuth, le bore, l'étain, le silicium, le magnésium.
10. Procédé selon la revendication 7, caractérisé en ce que l'on maintient le bain à une température variant entre le point de fusion du lithium et environ 400°C.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'on déroule le feuillard au-dessus du bain de l'élément à l'état fondu.
12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que les aspérités présentes sur la surface du rouleau sont constituées de motifs à géométrie régulière formant des cavités régulièrement distribuées sur la surface du rouleau, lesdites cavités recueillant l'élément en fusion et le déposant sur le feuillard métallique.
13. Procédé selon la revendication 12, caractérisé en ce que les cavités distribuées sur la surface du rouleau sont calibrées en fonction de l'épaisseur du dépôt de l'élément.
14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que l'on déroule le feuillard à une vitesse comprise entre 0,5 cm/s et 100 cm/s.
15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que l'on chauffe le rouleau afin d'empêcher l'élément en fusion de figer avant de le déposer sur la face du feuillard à enduire.
16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que l'on fait subir un traitement thermique au feuillard avant et après lui avoir appliqué l'élément à l'état fondu sur au moins l'une de ses faces.
17. Procédé selon l'une des revendications 1 à 16, caractérisé en ce qu'après avoir enduit le feuillard métallique au moyen de l'élément en fusion, on traite la face enduite du feuillard avec un racloir permettant de réduire l'épaisseur de l'élément appliqué et le cas échéant d'uniformiser les imperfections de surface éventuellement laissées par le rouleau.
18. Procédé selon l'une des revendications 1 à 17, caractérisé en ce que l'on maintient le bain d'élément fondu ainsi que le feuillard au voisinage dudit bain dans une atmosphère inerte ne contenant ni oxygène ni vapeur d'eau.
19.- Procédé selon l'une des revendications 1 à 18, caractérisé en ce que l'on prévoit une racle permettant d'enlever tout excès d'élément en fusion de la surface du rouleau avant d'appliquer ce dernier contre la face à enduire du feuillard.
20. Procédé selon l'une des revendications 1 à 19, caractérisé en ce que le feuillard arrivant au contact du rouleau enducteur passe entre ledit rouleau enducteur et un rouleau muni de moyens de chauffage et prévu pour permettre l'entraînement par friction dudit feuillard entre lesdits rouleaux.
EP88400546A 1987-03-11 1988-03-09 Electrode mince supportée sur feuillard conducteur électronique et procédé de fabrication Expired - Lifetime EP0285476B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88400546T ATE76702T1 (de) 1987-03-11 1988-03-09 Von einem elektrisch leitenden streifen getragene duenne elektrode und verfahren zu ihrer herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000531715A CA1288473C (fr) 1987-03-11 1987-03-11 Electrode mince supportee sur feuillard conducteur electronique et procede de fabrication
CA531715 1987-03-11

Publications (2)

Publication Number Publication Date
EP0285476A1 EP0285476A1 (fr) 1988-10-05
EP0285476B1 true EP0285476B1 (fr) 1992-05-27

Family

ID=4135145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88400546A Expired - Lifetime EP0285476B1 (fr) 1987-03-11 1988-03-09 Electrode mince supportée sur feuillard conducteur électronique et procédé de fabrication

Country Status (8)

Country Link
US (1) US4824746A (fr)
EP (1) EP0285476B1 (fr)
JP (1) JPS63241859A (fr)
AT (1) ATE76702T1 (fr)
CA (1) CA1288473C (fr)
DE (1) DE3871417D1 (fr)
ES (1) ES2032983T3 (fr)
GR (1) GR3005547T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111344431A (zh) * 2018-05-31 2020-06-26 株式会社爱发科 收卷式成膜装置和收卷式成膜方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911995A (en) * 1987-03-11 1990-03-27 Hydro-Quebec Thin electrode supported on electronically conductive sheet and process of manufacture
FR2616969B1 (fr) * 1987-06-18 1989-09-08 Elf Aquitaine Procede de fabrication d'un ensemble electrochimique comprenant une electrode et un electrolyte et ensemble ainsi realise
US5019469A (en) * 1987-06-18 1991-05-28 Societe Nationale Elf Aquitaine Process for production of an electrochemical sub-assembly comprising an electrode and an electrolyte, and the sub-assembly obtained in this way
DE3838329A1 (de) * 1987-11-11 1989-05-24 Ricoh Kk Negative elektrode fuer sekundaerbatterie
EP0357859B1 (fr) * 1988-09-09 1993-12-22 Hydro-Quebec Procédé de fabrication d'electrodes minces sur un feuillard
US5169446A (en) * 1989-08-02 1992-12-08 Mhb Joint Venture Method and apparatus for coating alkali or alkaline earth metals
CA2021764C (fr) * 1989-08-02 2000-01-11 Rene Koksbang Methode et appareil pour le revetement de metaux alcalins ou de metaux de terres alcalines
US5080932A (en) * 1989-08-02 1992-01-14 Mhb Joint Venture Method for coating lithium on a substrate
DE69221007T2 (de) * 1991-04-25 1997-11-13 Nippon Steel Corp Verfahren und Vorrichtung zum Aufbringen von schmelzflüssigen Metallüberzügen
CA2051611C (fr) * 1991-09-17 1996-01-23 Michel Gauthier Procede de preparation d'ensembles collecteurs-electrodes pour generateurs de films minces, ensembles collecteurs- electrodes et generateurs obtenus
CA2068290C (fr) * 1992-05-08 1999-07-13 Michel Gauthier Prise de contact electrique sur des anodes de lithium
US5411764A (en) * 1993-03-30 1995-05-02 Valence Technology, Inc. Method of making lithium electrode
CA2099526C (fr) * 1993-07-02 2005-06-21 Hydro-Quebec Additifs pour lubrifiants utilises dans le laminage de feuillards de lithium en films minces
CA2099524C (fr) * 1993-07-02 1999-05-18 Patrick Bouchard Procede de laminage de film de lithium mince par decollement controle
CA2143047A1 (fr) * 1994-02-22 1995-08-23 Yoshinori Takada Alliage pour electrode negative de pile secondaire au lithium et pile secondaire au lithium
WO1995029509A1 (fr) * 1994-04-20 1995-11-02 Valence Technology, Inc. Procede de fabrication d'une electrode de faible porosite
US5522955A (en) * 1994-07-07 1996-06-04 Brodd; Ralph J. Process and apparatus for producing thin lithium coatings on electrically conductive foil for use in solid state rechargeable electrochemical cells
EP1000674B1 (fr) 1994-07-12 2005-05-11 Hydro-Quebec Procédé d'élaboration d'un film mince de métal alcalin ou d'alliage de métal alcalin, par laminage d'un feuillard en présence d'une composition lubrifiante
US6104967A (en) * 1997-07-25 2000-08-15 3M Innovative Properties Company Fault-tolerant battery system employing intra-battery network architecture
US6100702A (en) * 1997-07-25 2000-08-08 3M Innovative Properties Company In-situ fault detection apparatus and method for an encased energy storing device
US6120930A (en) 1997-07-25 2000-09-19 3M Innovative Properties Corporation Rechargeable thin-film electrochemical generator
US6146778A (en) 1997-07-25 2000-11-14 3M Innovative Properties Company Solid-state energy storage module employing integrated interconnect board
US6087036A (en) * 1997-07-25 2000-07-11 3M Innovative Properties Company Thermal management system and method for a solid-state energy storing device
US6099986A (en) 1997-07-25 2000-08-08 3M Innovative Properties Company In-situ short circuit protection system and method for high-energy electrochemical cells
US5952815A (en) * 1997-07-25 1999-09-14 Minnesota Mining & Manufacturing Co. Equalizer system and method for series connected energy storing devices
US6117584A (en) * 1997-07-25 2000-09-12 3M Innovative Properties Company Thermal conductor for high-energy electrochemical cells
US6046514A (en) * 1997-07-25 2000-04-04 3M Innovative Properties Company Bypass apparatus and method for series connected energy storage devices
US6235425B1 (en) 1997-12-12 2001-05-22 3M Innovative Properties Company Apparatus and method for treating a cathode material provided on a thin-film substrate
JP2002212705A (ja) * 2001-01-22 2002-07-31 Sumitomo Electric Ind Ltd 薄膜製造方法および薄膜製造設備
US6933077B2 (en) * 2002-12-27 2005-08-23 Avestor Limited Partnership Current collector for polymer electrochemical cells and electrochemical generators thereof
ITMI20042516A1 (it) * 2004-12-27 2005-03-27 Getters Spa Processo per produrre mediante deposizione di lega bassofondente dispositivi portanti almeno un materiale attivo
CA2552282A1 (fr) 2006-07-18 2008-01-18 Hydro Quebec Materiau multi-couches a base de lithium vif, procedes de preparation et applications dans les generateurs electrochimiques
JP2011026707A (ja) * 2010-09-13 2011-02-10 Sumitomo Electric Ind Ltd 薄膜製造方法および薄膜製造設備
US9385397B2 (en) 2011-08-19 2016-07-05 Nanotek Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
KR101816763B1 (ko) * 2013-05-08 2018-01-09 주식회사 엘지화학 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
EP3126475B1 (fr) * 2014-04-01 2021-10-13 Hydro-Québec Utilisation de polymères comme agents lubrifiants dans la production de films de métaux alcalins
KR102023293B1 (ko) * 2017-01-05 2019-09-19 가부시키가이샤 아루박 권취식 성막 장치 및 권취식 성막 방법
KR102258758B1 (ko) * 2017-12-14 2021-06-07 주식회사 엘지에너지솔루션 리튬 금속 전극의 표면에 부동태막을 형성하는 리튬 이차전지의 연속 제조 방법 및 이의 제조 방법으로 제조된 리튬 이차전지
CN108336298B (zh) * 2018-01-07 2021-01-01 合肥国轩高科动力能源有限公司 一种制备复合锂金属负极的装置及制备方法
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR962471A (fr) * 1950-06-10
GB905611A (en) * 1957-10-01 1962-09-12 Technograph Printed Circuits L Improvements in and relating to the coating of metallic surfaces
US4011372A (en) * 1975-12-09 1977-03-08 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell
CA1047600A (fr) * 1976-02-02 1979-01-30 Majesty (Her) The Queen In Right Of Canada, As Represented By The Minister Of National Defence Construction de cathodes souples en chlorure de plomb
US4109035A (en) * 1977-04-19 1978-08-22 Scott Paper Company Tension wire metering of applicator roll
US4239817A (en) * 1979-04-27 1980-12-16 Thyssen Aktiengesellschaft Vorm. August Thyssen-Hutte Process and apparatus for coating one side of a metal strip with molten metal
SE434017B (sv) * 1980-06-10 1984-07-02 Inventing Ab Sett och anordning for en samtidig, tvasidig behandling av en lopande pappersbana med samma behandlingsmedel
AT369436B (de) * 1981-05-12 1982-12-27 Voest Alpine Ag Verfahren zum kontinuierlichen einseitigen beschichten eines blanken metallbandes mit geschmolzenem metall sowie vorrichtung zur durch- fuehrung des verfahrens
JPS58126679A (ja) * 1982-01-22 1983-07-28 Hitachi Ltd 薄膜リチウム電池の電極形成法
JPS60151968A (ja) * 1984-01-20 1985-08-10 Mitsubishi Electric Corp 燃料電池用電極の製造方法
CA1222543A (fr) * 1984-04-11 1987-06-02 Hydro-Quebec Anodes denses d'alliages de lithium pour batteries tout solide
JPS61239561A (ja) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd 金属電極の製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111344431A (zh) * 2018-05-31 2020-06-26 株式会社爱发科 收卷式成膜装置和收卷式成膜方法
CN111344431B (zh) * 2018-05-31 2021-04-13 株式会社爱发科 收卷式成膜装置和收卷式成膜方法

Also Published As

Publication number Publication date
ATE76702T1 (de) 1992-06-15
GR3005547T3 (fr) 1993-06-07
JPS63241859A (ja) 1988-10-07
CA1288473C (fr) 1991-09-03
EP0285476A1 (fr) 1988-10-05
DE3871417D1 (de) 1992-07-02
US4824746A (en) 1989-04-25
ES2032983T3 (es) 1993-03-01

Similar Documents

Publication Publication Date Title
EP0285476B1 (fr) Electrode mince supportée sur feuillard conducteur électronique et procédé de fabrication
CA1326261C (fr) Procede d&#39;assemblage de constituants d&#39;un generateur electrochimique au lithium en films minces
US4911995A (en) Thin electrode supported on electronically conductive sheet and process of manufacture
CA2051611C (fr) Procede de preparation d&#39;ensembles collecteurs-electrodes pour generateurs de films minces, ensembles collecteurs- electrodes et generateurs obtenus
US5830336A (en) Sputtering of lithium
EP0556136B1 (fr) Feuille pour électrode de condensateur électrolytique et procédé de fabrication
WO2001007685A2 (fr) Procede de nickelage en continu d&#39;un conducteur en aluminium et dispositif correspondant
FR2463496A1 (fr) Procede de deposition d&#39;un film metallique poreux sur un substrat metallique ou plastique et application a la fabrication de condensateurs electrolytiques
EP3024066B1 (fr) Procédé d&#39;enrichissement en espèce ionique d&#39;une électrode d&#39;une microbatterie
EP0415501A1 (fr) Fil-électrode multicouches
EP0533575A1 (fr) Feuillards métalliques supportés sur plastique obtenu par métallisation-placage
EP0357859B1 (fr) Procédé de fabrication d&#39;electrodes minces sur un feuillard
EP3028321A1 (fr) Fabrication d&#39;une electrode grille par demouillage d&#39;argent
CA3195802A1 (fr) Ensembles anodes metalliques au lithium et appareil et procede de fabrication
EP0685571B1 (fr) Procédé et dispositif pour la formation d&#39;un revêtement sur un substrat par pulvérisation cathodique
FR2473792A1 (fr) Procede de fabrication de piles solaires
EP0279803B1 (fr) Installation pour la fabrication en continu d&#39;une feuille métallique extra-mince par dépôt électrolytique
EP0538081B1 (fr) Procédé perfectionné de galvanoplastie d&#39;une bande métallique
EP0794026A1 (fr) Procédé de fabrication d&#39;un fil stratifié de petit diamètre et en particulier d&#39;un fil électrode pour usinage par électroérosion et fil électrode obtenu
CA2043793A1 (fr) Dispositif de traitement superficiel d&#39;une bande d&#39;un materiau metallique en defilement par plasma basse temperature
EP4333139A1 (fr) Procédé de fabrication d&#39;un empilement électrochimique pour batterie, comprenant un apport de froid pour décoller un revêtement
JP2635713B2 (ja) シート基板上に支持された薄膜電極の製造方法
WO2023133627A1 (fr) Procédé de production d&#39;une anode pour batteries au lithium
EP0521569A1 (fr) Fil électrode pour le découpage par électroérosion
BE828005R (fr) Dispositifs photovoltaiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19900718

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 76702

Country of ref document: AT

Date of ref document: 19920615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3871417

Country of ref document: DE

Date of ref document: 19920702

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2032983

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3005547

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940301

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940324

Year of fee payment: 7

Ref country code: CH

Payment date: 19940324

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940328

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940331

Year of fee payment: 7

Ref country code: LU

Payment date: 19940331

Year of fee payment: 7

Ref country code: NL

Payment date: 19940331

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940408

Year of fee payment: 7

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88400546.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950309

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950310

Ref country code: SE

Effective date: 19950310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

Ref country code: BE

Effective date: 19950331

BERE Be: lapsed

Owner name: SOC. NATIONALE ELF AQUITAINE

Effective date: 19950331

Owner name: HYDRO-QUEBEC

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3005547

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

EUG Se: european patent has lapsed

Ref document number: 88400546.3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070307

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070619

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070227

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080308