WO2001007685A2 - Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant - Google Patents

Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant Download PDF

Info

Publication number
WO2001007685A2
WO2001007685A2 PCT/FR2000/002061 FR0002061W WO0107685A2 WO 2001007685 A2 WO2001007685 A2 WO 2001007685A2 FR 0002061 W FR0002061 W FR 0002061W WO 0107685 A2 WO0107685 A2 WO 0107685A2
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
plating
conductor
treatment
tank
Prior art date
Application number
PCT/FR2000/002061
Other languages
English (en)
Other versions
WO2001007685A3 (fr
Inventor
Gabriel Colombier
Jean-Sylvestre Safrany
Bernard Loreau
Original Assignee
Aluminium Pechiney
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney filed Critical Aluminium Pechiney
Priority to AT00953251T priority Critical patent/ATE291111T1/de
Priority to EP00953251A priority patent/EP1204787B1/fr
Priority to DE60018764T priority patent/DE60018764T2/de
Publication of WO2001007685A2 publication Critical patent/WO2001007685A2/fr
Publication of WO2001007685A3 publication Critical patent/WO2001007685A3/fr
Priority to US10/050,896 priority patent/US6780303B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium

Definitions

  • the invention relates to conductors made of nickel-plated aluminum or aluminum alloy. It relates more specifically to the nickel plating processes of aluminum or aluminum alloy conductors, as well as the devices making it possible to implement them.
  • the invention also relates to electric wires and cables with an aluminum or aluminum alloy core comprising at least one nickel-plated conductor.
  • the word “aluminum” is used in the broad sense of aluminum and its alloys. This will be the case throughout the text.
  • the word “conductor” here designates an electrically conductive body, of elongated shape, the length of which is large compared to its transverse dimensions, such as a wire, a strip, a bar or a tube.
  • Aluminum electrical conductors are widely used in the transport of electrical energy. These conductors are most often in the form of bars, flats, wires or cables.
  • Aluminum core electric wires and cables which may include a coating of insulating material, are generally obtained from a continuously rolled "machine" wire, which is then drawn to the desired diameter. Unit wires or strands can then be assembled to form the conductive core of a cable.
  • aluminum conductors can be used in the raw state, that is to say without special treatment of the surface of the conductor, in addition to a brushing any parts of the conductor intended for establishing an electrical contact.
  • the conductor circulates in at least one electrolytic nickel plating tank.
  • This tank is provided with a nickel electrode which acts as an anode and which, for this purpose, is connected to the positive terminal of an electrical supply.
  • the conductor to be treated acts as a blank cathode and, for this, is electrically connected to the negative terminal of this supply.
  • the applicant has proposed a process and a device for electrolytic nickel-plating on the passing of an aluminum conductor making it possible to reach running speeds of 300 m /minute.
  • the electrolytic current is transmitted to the conductor by a so-called liquid current socket, that is to say without mechanical contact, which avoids the drawbacks of mechanical current sockets, in particular electric arcs.
  • the conductor to be coated circulates in a first tank provided with a negatively polarized electrode, then in a second tank provided with a positively polarized electrode; an electric current then flows through the conductor as it passes through the tanks.
  • the first tank contains an aqueous ionic solution capable of transmitting the electric current from the electrode to said conductor.
  • the second tank contains the nickel plating bath.
  • the nickel plating of the conductors however constitutes an additional operation, the aim of which is both to minimize the cost and to maximize the productivity.
  • satisfactory costs and productivity are obtained by carrying out nickel plating of the elementary wires at high speed.
  • certain markets, such as that of aeronautics wish have nickel-plated aluminum wires with a diameter between 0.1 and 0.5 mm, and cables made up of such wires.
  • the Applicant has therefore sought means to obtain nickel-plated aluminum conductors with a diameter of less than 1 mm which avoid the drawbacks of the prior art while maintaining acceptable profitability and productivity, with the lowest possible investment costs. .
  • the subject of the invention is a process for continuous nickel plating (or "passing") of an aluminum conductor.
  • the process for nickel-plating an aluminum conductor comprises a pre-treatment step P capable of promoting the adhesion of the nickel layer and a step of electrolytic nickel-plating N, and is characterized in what said preprocessing P is also able to confer on said driver sufficient contact properties to allow mechanical electrical contact and in that the nickel-plating current is transmitted to said conductor via a mechanical electrical contact on the part of the conductor resulting from the pretreatment step.
  • the electrolytic nickel-plating step N makes it possible to form, by electrodeposition, a uniform nickel layer on said conductor.
  • the subject of the invention is also a device for continuous nickel plating (or "in the process") of an aluminum conductor.
  • the invention relates mainly to aluminum conductors intended for electrical applications, it also applies to aluminum conductors intended for non-electrical uses, such as thermal uses (which exploit the high thermal conductivity of aluminum, such as a heat exchanger) or, possibly, essentially mechanical uses.
  • the invention can also be applied to the nickel plating of aluminum products, such as aluminum wires, strips or tubes, intended to be brazed.
  • the invention relates to the use of the method or the device according to the invention for nickel plating an aluminum product so as to allow it to be brazed.
  • the nickel layer with a thickness typically of the order of 1 ⁇ m, can allow the formation of a satisfactory brazed joint without having recourse to a specific brazing flux.
  • the invention also relates to a method of manufacture of an assembled product, characterized in that it comprises the use of a nickel-plated aluminum product according to the invention. Said manufacturing process optionally includes a brazing operation of said nickel-plated aluminum product.
  • Figure 1 schematically illustrates a first preferred embodiment of the nickel plating process according to the invention.
  • the pre-treatment step P is carried out electrolytically and is carried out with mechanical contact means common to those of the nickel-plating step N.
  • FIG. 2 schematically illustrates a second preferred embodiment of the invention according to which the pretreatment step P is configured in a liquid current socket.
  • FIG. 3 illustrates a mechanical contact means according to the invention comprising one or more wheels.
  • FIG. 4 illustrates another contact means according to the invention comprising three wheels.
  • Said mechanical contact (7) preferably comprises at least one mechanical contact means by bearing (70) which typically comprises at least one grooved wheel or a sheave.
  • the contact properties are sufficient when it is possible to pass the full intensity of the nickel-plating current through mechanical contact without damaging the conductor.
  • the mechanical contact must make it possible to pass a nickel-plating current of the order of 5 A for a wire of 0.15 mm in diameter when the running speed is 50 m / minute.
  • Mechanical electrical contact can be achieved, for example, using rollers, rollers, rubbing contacts or brushes.
  • the composition of the nickel-plating bath is advantageously as follows: 300 ⁇ 30 g / 1 of Ni (NH 2 SO 3 ) 2 (sulfamate), 30 ⁇ 5 g / 1 of NiCl 2 , 6H 2 O, 30 ⁇ 5 g / 1 of H 3 BO 3 .
  • the device for nickel-plating at least one aluminum conductor (or "treatment line") comprises a nickel-plating tank (30) comprising a tank (2) capable of containing a nickel-plating bath (4) and at least one electrode (3) containing nickel, called anode, at least one power supply (5) for applying an electric voltage (Vi) between the anode and said conductor, and means (21, 22) for scrolling the, or each, conductor (1) in the nickel-plating bath (4), and is characterized in that it also comprises at least one pretreatment tank (40, 41, 42) comprising a tank (17, 43, 46 ) capable of containing a pre-treatment bath (16, 44, 47), and means for scrolling the, or each, conductor in the pre-treatment bath (16, 44, 47), and in that it comprises mechanical contact means (7, 13, 14) for applying said electrical voltage to the part (6) of the, or each, said conductor (1) resulting from the pre-stroke step ement P.
  • a nickel-plating tank comprising a tank (2) capable of
  • the pre-treatment stage is chosen to give the conductor sufficient contact properties to allow mechanical electrical contact on the latter.
  • the pre-treatment stage P is preferably carried out electrolytically, which makes it easier to control the pre-treatment as a function of the operating conditions of the treatment line.
  • the pre-treatment tank (40) is provided with at least one electrode (15) and the device comprises an electrical supply (8) intended for the pre-treatment.
  • the electric voltage V 2 delivered by this supply can be alternating, continuous or pulsed, or a combination of these.
  • the socket on the conductor is produced by a mechanical contact placed downstream of the pre-treatment tank (40). This mechanical outlet is advantageously common to that of the nickel plating step, as illustrated in FIG. 1, which makes it possible to simplify the device without causing an overload of the mechanical contact means (1, 13, 14) because the intensity of the pre-treatment current (I) is generally much lower than the intensity of the nickel-plating current ( ⁇ ⁇ ).
  • the pretreatment step P comprises activation A in a strongly acidic or alkaline bath which allows, in particular, rapid dissolution of the surface oxides.
  • Activation is carried out in an activation tank (40, 42) comprising a tank (17, 46) capable of containing the activation bath (16, 47), in which the conductor (1) runs.
  • the activation tank (40, 42) also comprises at least one electrode (15, 48) and the device comprises an electrical supply (8) intended for this activation.
  • the electric voltage V 2 delivered by this supply can be alternating, continuous or pulsed, or a combination of these.
  • the pre-treatment step P comprises, in addition to an activation step A to dissolve in particular the oxides present on the surface of the conductor (1), a pre-nickel-plating step PN for coating the aluminum conductor (1) of a "primary" nickel deposit.
  • the nickel-plating current (I I ) is then transmitted to said conductor by means of mechanical contact means (7, 13, 14) on the part (6) of the conductor (1) coated with said primary nickel deposit.
  • primary nickel deposition means a layer of nickel, which is in the form of nodules, the equivalent thickness of which is significantly less than the target thickness of the final layer. It has been found preferable to aim for an equivalent thickness which is, on average, less than about 0.1 of the final thickness. Typically, the thickness of the final layer being approximately 1 ⁇ m, we will aim for an equivalent thickness of the pre-nickel plating layer of less than approximately 0.1 ⁇ m.
  • the pre-nickel plating is carried out in a tank (40, 41) comprising a tank (17, 43) capable of containing the pre-nickel plating bath (16, 44), in which the conductor (1) runs.
  • the pre-nickel plating bath (16, 44) contains a nickel salt so as to coat the aluminum conductor with a primary nickel deposit when the conductor passes through this bath.
  • the pre-nickel plating step is preferably carried out electrolytically, which makes it easier to control the thickness of the layer as a function of the operating conditions of the treatment line.
  • the pre-nickel plating tank (40, 41) is provided with at least one electrode (15, 45) containing nickel and the device comprises an electrical supply (8) intended for pre-nickel plating.
  • the electric voltage V 2 delivered by this supply can be alternating, continuous or pulsed, or a combination of these.
  • the pre-nickel plating step PN is, in whole or in part, combined with the activation step A, which makes it possible to considerably simplify the device.
  • the pre-nickel plating and activation steps are carried out in conjunction with a liquid outlet.
  • FIG. 2 illustrates a device which makes it possible to implement this variant of the invention.
  • This device comprises an electrolytic activation tank (42) and an electrolytic pre-nickel plating tank (41), preferably close to each other and possibly adjacent, a first electrical supply (8) common to these two tanks , an electrolytic nickel-plating tank (30), a second electrical supply (5) and mechanical contact means (7, 13, 14) on the part (6) of the conductor (1) situated between the pre-nickel-plating tank ( 41) and the nickel-plating tank (30).
  • the first electrical supply (8) is preferably direct current, optionally modulated or pulsed; the positive terminal is connected to at least one electrode (45) submerged, in whole or in part, in the pre-nickel plating bath (44) and the negative terminal is connected to at least one submerged electrode (48), in whole or in part , in the activation bath (47).
  • the current flows through the conductor (1) by a liquid current pickup effect.
  • the same power supply (8) is used for activation and pre-nickel plating.
  • the second power supply (5) is direct current, possibly modulated or pulsed; the positive terminal is connected to at least one electrode (3) containing nickel immersed, in whole or in part, in the nickel-plating bath (4) and the negative terminal is connected to the part (6) of the conductor (1) located between the pre-nickel plating tank (41) and the nickel plating tank (30) by means of mechanical contact means (7, 13, 14).
  • the PN pre-nickel-plating and activation A stages can be carried out simultaneously, in the same bath (40) and with common electrodes (15) (and having the same polarization), as illustrated in FIG. 1
  • the pretreatment step operates a dual function of activation and pre-nickel plating.
  • the bath activation / pre-nickel plating (16) is then able to operate the two treatments, for example by having a mixed composition which allows both satisfactory activation and sufficient pre-nickel plating.
  • the Applicant has found that it is possible to effectively perform these two functions using a single bath.
  • the first electrical supply (8) is direct current, optionally modulated or pulsed, the positive terminal being connected to the conductor (1) via the mechanical contact (7) and the negative terminal being connected to at least an electrode (15) submerged, in whole or in part, in said activation / pre-nickel plating bath (16).
  • the second power supply (5) is direct current, possibly modulated or pulsed; the positive terminal is connected to an electrode (3) containing nickel immersed, in whole or in part, in the nickel-plating bath (4) and the negative terminal is connected to the part (6) of the conductor (1) located between the tank activation / pre-nickel plating (40) and the nickel plating tank (30) by means of mechanical contact means (7, 13, 14), preferably common to those of the first supply (8).
  • the mechanical contact is immersed in a liquid (14) such as water or a neutral solution, so as to avoid fusion of the conductor at the mechanical contact.
  • a liquid (14) such as water or a neutral solution
  • the device may include an intermediate tank (13), generally of small dimensions, containing the liquid (14) and the mechanical contact (7).
  • the liquid (14) can optionally be cooled.
  • the mechanical contact can comprise several parallel wheels rotating around a common axis (as illustrated in FIG. 3).
  • the mechanical rolling contact means (70) illustrated in FIG. 3, which corresponds to a preferred embodiment of the invention, comprises one or more wheels (71) rotating around an axle (73) whose axis central (75) is substantially perpendicular to said wheels (71).
  • the (or each) wheel (71) is preferably provided with a groove (74) in which the conductor (6) rests, which in particular makes it possible to avoid variations in the position thereof.
  • the electric current flows from the axle (73) to the conductor (6) via the wheel (71).
  • the axle-wheel assembly (s) (70) can be immersed in a liquid (14).
  • the contact means (70) may comprise a ring (72), typically made of graphite, to facilitate the rolling of the wheels (71) around the axle (73) and improve the electrical contact. This latter variant also avoids the need for a ball bearing.
  • the wheels (71) were made of copper (possibly nickel-plated) and the axle (73) was made of stainless steel.
  • the mechanical contact means illustrated in FIG. 4, which also corresponds to a preferred embodiment of the invention, comprises a set of at least three wheels (701, 702, 703) which cooperate to ensure satisfactory electrical contact on the (or each) driver (6).
  • each conductor comprises such means when several conductors are treated simultaneously.
  • At least one of said mechanical contact means (7, 13, 14) comprises such contact means.
  • Each wheel rotates around its own axis (731, 732, 733) and exerts a force (FI, F2, F3) on the driver. In practice, it is sufficient to adjust the effort exerted on the driver by moving only the central wheel (702).
  • the three wheels can be immersed in a liquid (14).
  • the temperature of the various baths is generally chosen so that the ionic conductivity and the reactivity of the baths are sufficient. Typically, the temperature of the baths is between 45 and 60 ° C.
  • the method according to the invention may comprise additional steps, such as shaving and / or possible degreasing of the conductor in the raw state (10) before the activation and / or pre-nickel-plating step.
  • the conductor is typically made of an AA 1370 alloy, AA 1110 or AA 6101 according to the nomenclature of the Aluminum Association.
  • the invention also relates to cables comprising at least one elementary nickel-plated wire according to the invention.
  • the process for manufacturing an aluminum electric cable can comprise a nickel-plating operation according to the invention of at least one of the elementary wires.
  • the device comprises means for simultaneously scrolling two or more conductors in at least one of said treatment tanks.
  • plies of conductors from a series of separate unwinders circulate in parallel in said baths and, after treatment, are wound on a series of separate winders.
  • the contact means (7, 13, 14) on the part of the conductors (6) resulting from the pre-treatment step may be, in whole or in part, common to these; for example, said means can comprise a strip of carbon material which can be brought into contact with all the conductors of a sheet.
  • the conductor (s) can pass horizontally, vertically or at a certain angle with respect to the horizontal.
  • Tests were carried out on the wires with a diameter of 0.20 mm, according to the prior art and according to the invention.
  • the activation and nickel-plating currents were of the same intensity and came from a common supply configured as a liquid current socket (as described in application FR 2 646 174); screens were interposed between the nickel electrodes and the wire (as described in application FR 2 609 292).
  • the activation and nickel-plating baths had the same composition, namely: 125 ⁇ 15 g / 1 of nickel chloride (NiCl 2 , 6 H 2 O), 12.5 ⁇ 2 g / 1 of orthoboric acid and 6 ⁇ 2 ml / 1 hydrofluoric acid.
  • the tests according to the invention were carried out using a device similar to that of FIG. 2.
  • the electrodes (48) of the activation tank (42) were made of graphite and the electrodes (45) of the pre-nickel plating tank (41) were made of nickel.
  • the activation and pre-nickel plating baths had the following composition: 125 ⁇ 15 g / 1 of nickel chloride (NiCl 2 , 6 HO), 12.5 ⁇ 2 g / 1 of orthoboric acid and 6 ⁇ 2 ml / 1 hydrofluoric acid.
  • the nickel-plating bath had the following composition: 300 ⁇ 30 g / 1 of Ni (NH 2 SO 3 ) 2 (sulfamate), 30 ⁇ 5 g / 1 of NiCl 2 , 6H 2 O, 30 ⁇ 5 g / 1 of H 3 BO 3 .
  • Table I below groups together the main treatment parameters used in these tests and certain characteristics of the treated yarns.
  • the contact resistance was measured using a so-called "cross wire” method, at an intensity of 0.1 mA and with a pressing force of 0.2 N.
  • the adhesion of the layer nickel on the wire was measured by winding the wire on its own diameter; she is considered as excellent if the nickel layer uniformly follows the deformation of the wire without detaching from the surface.
  • the electrolytic pre-nickel plating layer was in the form of nodules which did not cover the entire surface of the conductor.
  • the Applicant has observed that it was not necessary for said primary nickel deposit (or "pre-nickel plating layer") to be uniform or for it to completely cover the surface of the conductor; it has proved sufficient to achieve an equivalent recovery rate corresponding to approximately 0.1 of the final thickness of the nickel layer.
  • the Applicant has hypothesized that such a recovery rate confers a quality of electrical contact sufficient to allow the transmission by mechanical contact of high nickel plating current intensities without degrading the surface of the conductor and ensures a high adhesion of the layer of final nickel.
  • the term "primary nickel deposition” means a layer of nickel whose thickness is typically, on average, about 0.1 ⁇ m.
  • the nickel layer obtained according to the invention therefore has great adhesion and low electrical contact resistance.
  • the invention makes it possible to nickel effectively, and with great productivity, wires of different diameters.
  • it allows easy adjustment of treatment parameters to production conditions, thanks to the decoupling between the pre-treatment and nickel-plating stages. It is in particular possible to independently adjust the intensity of the pre-treatment and nickel-plating currents, and in particular to impose a low current intensity in the pre-treatment stage and high in the nickel-plating stage.
  • the invention makes it possible to benefit from the advantages of mechanical sockets, in particular the possibility of passing high intensities, and of avoiding the disadvantages thereof, in particular the propensity to form electric arcs which can damage the surface of the conductor.
  • the low intensity of the pretreatment current required according to the invention leads to a significantly slower aluminum enrichment of the pretreatment bath, which makes it possible to considerably reduce the frequency of replacement of this bath.
  • the low intensity of the pre-treatment current also limits the dissolution of the metal and, consequently, the formation of roughness on the surface of the wire.
  • the pre-treatment step according to the invention also makes it possible to confer on the surface of the conductor a defined roughness in order to obtain optimal mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Conductive Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Wire Processing (AREA)

Abstract

Le procédé de nickelage au défilé d'un conducteur (1) en aluminium selon l'invention comprend une étape de pré-traitement P apte à favoriser l'adhérence de la couche de nickel et une étape de nickelage électrolytique N, et est caractérisé en ce que ledit pré-traitement P est également apte à conférer au dit conducteur (1) des propriétés de contact suffisantes pour permettre un contact électrique mécanique et en ce que le courant de nickelage (In=I1) est transmis au dit conducteur par l'intermédiaire d'un contact électrique mécanique (7) sur la partie (6) du conducteur (1) issue de l'étape de pré-traitement P. Le dispositif de nickelage au défilé d'au moins un conducteur (1) en aluminium selon l'invention comprend une cuve de nickelage (30) comprenant un bac (2) apte à contenir un bain de nickelage (4) et au moins une électrode (3), dite anode, contenant du nickel, au moins une alimentation électrique (5) pour appliquer une tension électrique (V1) entre la, ou chaque, électrode (3) et le, ou chaque, dit conducteur (1), et des moyens (21, 22) pour faire défiler le conducteur (1) dans le bain de nickelage (4), et est caractérisé en ce qu'il comprend aussi au moins une cuve de pré-traitement (40, 41, 42) comprenant un bac (17, 43, 46) apte à contenir un bain de pré-traitement (16, 44, 47), et des moyens pour faire défiler le, ou chaque, conducteur (1) dans le bain de pré-traitement (16, 44, 47), et en ce qu'il comprend des moyens de contact mécaniques (7, 13, 14) pour appliquer ladite tension électrique au, ou à chaque, conducteur sur la partie (6) du conducteur (1) issue de l'étape de pré-traitement P.

Description

PROCEDE DE NICKELAGE EN CONTINU D'UN CONDUCTEUR EN ALUMINIUM ET DISPOSITIF CORRESPONDANT
Domaine de l'invention
L'invention concerne les conducteurs en aluminium ou en alliage d'aluminium nickelés. Elle concerne plus spécifiquement les procédés de nickelage des conducteurs en aluminium ou en alliage d'aluminium, ainsi que les dispositifs permettant de les mettre en œuvre. L'invention concerne également les fils et câbles électriques à âme en aluminium ou en alliage d'aluminium comprenant au moins un conducteur nickelé.
Le mot "aluminium" s'entend au sens large de l'aluminium et ses alliages. Il en sera ainsi dans toute la suite du texte. Le mot "conducteur" désigne ici un corps électriquement conducteur, de forme allongée, dont la longueur est grande par rapport à ses dimensions transversales, tel qu'un fil, une bande, une barre ou un tube.
Etat de la technique
Les conducteurs électriques en aluminium sont largement utilisés dans le transport de l'énergie électrique. Ces conducteurs se présentent le plus souvent sous forme de barres, méplats, fils ou câbles.
Les fils et câbles électriques à âme en aluminium, qui peuvent comprendre un revêtement en matériau isolant, sont généralement obtenus à partir d'un fil "machine" coulé et laminé en continu qui est ensuite tréfilé jusqu'au diamètre souhaité. Des fils, ou brins, unitaires peuvent ensuite être assemblés pour former l'âme conductrice d'un câble.
Dans une grande partie des applications, telles que le transport et la distribution d'énergie électrique, les conducteurs en aluminium peuvent être utilisés à l'état brut, c'est-à-dire sans traitement particulier de la surface du conducteur, outre un brossage éventuel des parties du conducteur destinées à l'établissement d'un contact électrique. Pour certaines applications, cependant, il est préférable de revêtir le conducteur en aluminium d'une couche de nickel, de manière à améliorer les propriétés de contact électrique.
Selon les procédés connus de nickelage au défilé, le conducteur circule dans au moins une cuve de nickelage électrolytique. Cette cuve est munie d'une électrode de nickel qui fait fonction d'anode et qui, dans ce but, est raccordée à la borne positive d'une l'alimentation électrique. Le conducteur à traiter fait fonction de cathode vierge et, pour cela, est relié électriquement à la borne négative de cette alimentation.
Dans la demande française FR 2 526 052 (correspondant au brevet américain US 4 492 615), la demanderesse a proposé un procédé et un dispositif de nickelage électrolytique au défilé d'un conducteur en aluminium permettant d'atteindre des vitesses de défilement de 300 m/minute. Selon ce procédé, le courant électrolytique est transmis au conducteur par une prise dite de courant liquide, c'est-à-dire sans contact mécanique, ce qui évite les inconvénients des prises de courant mécaniques, notamment les arcs électriques. Plus précisément, le conducteur à revêtir circule dans une première cuve munie d'une électrode polarisée négativement, puis dans une seconde cuve munie d'une électrode polarisée positivement ; un courant électrique circule alors dans le conducteur lors de son passage dans les cuves. La première cuve contient une solution ionique aqueuse apte à transmettre le courant électrique de l'électrode au dit conducteur. La seconde cuve contient le bain de nickelage.
Problème posé
Le nickelage des conducteurs constitue toutefois une opération supplémentaire dont on cherche, à la fois, à minimiser le coût et à maximiser la productivité. Dans le cas des conducteurs sous forme de fil ou de câble, on obtient des coûts et une productivité satisfaisants en réalisant le nickelage des fils élémentaires au défilé à grande vitesse. Or, certains marchés, tels que celui de l'aéronautique, souhaitent disposer de fils d'aluminium nickelé de diamètre compris entre 0,1 et 0,5 mm, et de câbles constitués de tels fils.
La méthode selon la demande française FR 2 526 052 permet difficilement de nickeler de manière satisfaisante, et avec une grande productivité, des fils de diamètre inférieur à 1 mm. En effet, la demanderesse a constaté que la qualité du revêtement de nickel devenait insuffisante lorsque la vitesse de défilement dépassait les 20 m/minute. D'autre part, puisque toute l'intensité du courant de nickelage transite dans le conducteur à traiter, les risques de rupture du conducteur en cours de traitement augmentent de manière rédhibitoire en dessous de 1 mm de diamètre lorsque, pour une épaisseur de la couche de nickel donnée, l'on cherche à maintenir la vitesse de déroulement (et par conséquent le courant de nickelage) à une valeur élevée. Par ailleurs, cette solution impose un courant dans la première cuve égal au courant de nickelage dans la seconde cuve. Les très fortes densités surfaciques de courant atteintes entraînent une attaque importante du conducteur dans la première cuve et, par conséquent, des irrégularités de la surface du conducteur qui le rendent plus fragile. Enfin, il s'est avéré, à l'usage, que la durée de vie des bains était relativement limitée, notamment en raison de l'important courant transitant dans le premier bain et entraînant un dépôt important de précipités.
Dans la demande française FR 2 646 174 (correspondant au brevet américain US 5 015 340), la demanderesse a proposé de résoudre certains de ces inconvénients en utilisant des bains de composition identique, l'un pour une première étape dite d'activation et l'autre pour l'étape suivante de nickelage, ce qui permet de maintenir immergé le conducteur lors du passage d'une cuve à l'autre. Cette solution permet certes d'atteindre des vitesses de défilement de l'ordre de 130 m/minute, mais elle ne permet pas de limiter l'intensité du courant d'activation aux valeurs strictement nécessaires puisqu'elle est imposée par l'intensité du courant de nickelage. Cette solution ne résout pas les problèmes liés à la prise de courant liquide.
Dans la demande française FR 2 609 292 (correspondant au brevet américain US 4 741 811), la demanderesse a également proposé de moduler la densité de courant le long du parcours du conducteur en réduisant la densité de courant dans la partie amont du bain de nickelage et/ou aval du bain dit d'activation et en réglant l'acidité du bain de nickelage à une valeur de pH comprise entre 1 et 5. Cette modulation est obtenue en pratique par l'utilisation de séries d'électrodes et d'écrans interposés entre les électrodes et le conducteur. Cette solution permet de nickeler des fils de diamètres compris entre 0,51 et 0,15 mm, à des vitesses de défilement comprises entre 25 et 50 m/minute. Toutefois, cette solution nécessite un dispositif complexe qui nécessite réglage précis des dimensions et de la position des composants, qui de surcroît peut évoluer dans le temps.
Dans la demande française FR 2 650 696, il a été proposé un procédé de revêtement en continu d'un conducteur à base d'aluminium comprenant un pré-traitement chimique de la surface du conducteur pour y créer des points d'accrochage sous forme de germes métalliques microscopiques et le dépôt d'une couche métallique sur le conducteur par électrodéposition. Le procédé et le dispositif décrits dans ce document présentent l'inconvénient de fonctionner à vitesse de défilement réduite (les temps d'immersion sont de l'ordre de 20 à 24 secondes).
La demanderesse a donc recherché des moyens pour obtenir des conducteurs d'aluminium nickelé de diamètre inférieur à 1 mm qui évitent les inconvénients de l'art antérieur tout en maintenant une rentabilité et une productivité acceptables, avec des coûts d'investissement le plus bas possible.
Description de l'invention
L'invention a pour objet un procédé de nickelage en continu (ou "au défilé") d'un conducteur en aluminium.
Plus précisément, le procédé de nickelage au défilé d'un conducteur en aluminium selon l'invention comprend une étape de pré-traitement P apte à favoriser l'adhérence de la couche de nickel et une étape de nickelage électrolytique N, et est caractérisé en ce que ledit pré-traitement P est également apte à conférer au dit conducteur des propriétés de contact suffisantes pour permettre un contact électrique mécanique et en ce que le courant de nickelage est transmis au dit conducteur par l'intermédiaire d'un contact électrique mécanique sur la partie du conducteur issue de l'étape de prétraitement.
L'étape de nickelage électrolytique N permet de former, par électrodéposition, une couche de nickel uniforme sur ledit conducteur.
La demanderesse a constaté, de manière inattendue, que, grâce à l'opération de pré- traitement, il était possible d'utiliser des contacts mécaniques sur des conducteurs de très faible diamètre et de faire transiter toute l'intensité de nickelage dans le conducteur par ces contacts (appelés aussi "prises de courant"). Elle a de surplus observé que, de manière surprenante, cette solution permettait d'atteindre des vitesses de défilement nettement supérieures à 20 m/minute, comme le met en évidence l'exemple présenté plus loin.
L'invention a aussi pour objet un dispositif de nickelage en continu (ou "au défilé") d'un conducteur en aluminium.
Même si l'invention concerne principalement les conducteurs en aluminium destinés aux applications électriques, elle s'applique également aux conducteurs en aluminium destinés à des usages non électriques, tels que des usages thermiques (qui exploitent la conductivité thermique élevée de l'aluminium, comme un échangeur thermique) ou, éventuellement, des usages essentiellement mécaniques.
L'invention peut également être appliquée au nickelage de produits en aluminium, tels que des fils, des bandes ou des tubes en aluminium, destinés à être brasés. En particulier, l'invention a pour objet l'utilisation du procédé ou du dispositif selon l'invention pour le nickelage d'un produit en aluminium de manière à permettre un brasage de celui-ci. La couche de nickel, avec une épaisseur typiquement de l'ordre de 1 μm, peut permettre la formation d'un joint brasé satisfaisant sans avoir recours à un flux de brasage spécifique. L'invention a également pour objet un procédé de fabrication d'un produit assemblé, caractérisé en ce qu'il comprend l'utilisation d'un produit en aluminium nickelé selon l'invention. Ledit procédé de fabrication comprend éventuellement une opération de brasage dudit produit en aluminium nickelé.
Description des figures
La figure 1 illustre schématiquement un premier mode de réalisation préféré du procédé nickelage au défilé selon l'invention. Dans ce mode de réalisation, l'étape de pré-traitement P est effectuée par voie électrolytique et est réalisée avec des moyens de contact mécanique communs à ceux de l'étape de nickelage N.
La figure 2 illustre schématiquement un deuxième mode de réalisation préféré de l'invention selon lequel l'étape de pré-traitement P est configurée en prise de courant liquide.
La figure 3 illustre un moyen de contact mécanique selon l'invention comprenant une ou plusieurs roues.
La figure 4 illustre un autre moyen de contact selon l'invention comprenant trois roues.
Description détaillée de l'invention
Le procédé de nickelage au défilé d'au moins un conducteur (1) en aluminium selon l'invention comprend une étape de pré-traitement P apte à favoriser l'adhérence d'une couche de nickel et une étape de nickelage électrolytique N dans laquelle ladite couche de nickel est déposée sur ledit conducteur par l'action d'un courant dit de nickelage (In = L), et est caractérisé en ce que ledit pré-traitement P est également apte à conférer au dit conducteur (1) des propriétés de contact suffisantes pour permettre un contact électrique mécanique et en ce que le courant de nickelage (In = Ii) est transmis au dit conducteur par l'intermédiaire d'un contact électrique mécanique (7), de préférence immergé dans un liquide (14), sur la partie (6) du conducteur (1) issue de l'étape de pré-traitement P.
Ledit contact mécanique (7) comprend de préférence au moins un moyen de contact mécanique par roulement (70) qui comporte typiquement au moins une roue à gorge ou une réa.
Les propriétés de contact sont suffisantes lorsqu'il est possible de faire transiter toute l'intensité du courant de nickelage par le contact mécanique sans endommager le conducteur. Typiquement, le contact mécanique doit permettre de faire transiter un courant de nickelage de l'ordre de 5 A pour un fil de 0,15 mm de diamètre lorsque la vitesse de défilement est de 50 m/minute.
Le contact électrique mécanique peut être réalisé, par exemple, à l'aide de roulettes, galets, contacts frottants ou de brosses.
La composition du bain de nickelage est avantageusement la suivante : 300 ± 30 g/1 de Ni(NH2SO3)2 (sulfamate), 30 ± 5 g/1 de NiCl2,6H2O, 30 ± 5 g/1 de H3BO3.
Le dispositif de nickelage au défilé d'au moins un conducteur en aluminium (ou "ligne de traitement") selon l'invention comprend une cuve de nickelage (30) comprenant un bac (2) apte à contenir un bain de nickelage (4) et au moins une électrode (3) contenant du nickel, dite anode, au moins une alimentation électrique (5) pour appliquer une tension électrique (Vi) entre l'anode et ledit conducteur, et des moyens (21, 22) pour faire défiler le, ou chaque, conducteur (1) dans le bain de nickelage (4), et est caractérisé en ce qu'il comprend aussi au moins une cuve de prétraitement (40, 41, 42) comprenant un bac (17, 43, 46) apte à contenir un bain de prétraitement (16, 44, 47), et des moyens pour faire défiler le, ou chaque, conducteur dans le bain de pré-traitement (16, 44, 47), et en ce qu'il comprend des moyens de contact mécaniques (7, 13, 14) pour appliquer ladite tension électrique sur la partie (6) du, ou de chaque, dit conducteur (1) issue de l'étape de pré-traitement P. Typiquement, le conducteur à l'état brut (10), provenant d'au moins un premier dérouleur (22), transite successivement dans les bains de traitement (40, 41, 42, 30) et s'enroule, à l'état nickelé (11), sur au moins un deuxième dérouleur (21).
L'étape de pré-traitement est choisie pour conférer au conducteur des propriétés de contact suffisantes pour permettre un contact électrique mécanique sur celui- -cci.
L'étape de pré-traitement P est de préférence réalisée par voie électrolytique, ce qui permet de maîtriser plus facilement le pré-traitement en fonction des conditions de fonctionnement de la ligne de traitement. Dans ce cas, la cuve de pré-traitement (40) est munie d'au moins une électrode (15) et le dispositif comprend une alimentation électrique (8) destinée au pré-traitement. La tension électrique V2 délivrée par cette alimentation peut être alternative, continue ou puisée, ou une combinaison de celles- ci. La prise de courant sur le conducteur est réalisée par un contact mécanique placé en aval de la cuve de pré-traitement (40). Cette prise de courant mécanique est avantageusement commune à celle de l'étape de nickelage, tel qu'illustré à la figure 1, ce qui permet de simplifier le dispositif sans entraîner une surcharge des moyens de contact mécanique (1, 13, 14) car l'intensité du courant de pré -traitement (I ) est généralement nettement inférieur à l'intensité du courant de nickelage (ï\).
Selon une première variante de l'invention, l'étape de pré-traitement P comprend une activation A dans un bain fortement acide ou alcalin qui permette, notamment, une dissolution rapide des oxydes de surface. L'activation est réalisée dans une cuve d'activation (40, 42) comprenant un bac (17, 46) apte à contenir le bain d'activation (16, 47), dans lequel défile le conducteur (1). Lorsque l'étape d'activation est réalisée par voie électrolytique, la cuve d'activation (40, 42) comprend également au moins une électrode (15, 48) et le dispositif comprend une alimentation électrique (8) destinée à cette activation. La tension électrique V2 délivrée par cette alimentation peut être alternative, continue ou puisée, ou une combinaison de celles-ci.
Selon une deuxième variante de l'invention, l'étape de pré-traitement P comprend, outre une étape d'activation A pour dissoudre notamment les oxydes présents en surface du conducteur (1), une étape de pré-nickelage PN permettant de revêtir le conducteur d'aluminium (1) d'un dépôt de nickel "primaire". Le courant de nickelage (II) est alors transmis au dit conducteur par l'intermédiaire de moyens de contact mécanique (7, 13, 14) sur la partie (6) du conducteur (1) revêtue dudit dépôt de nickel primaire.
Le terme "dépôt de nickel primaire" s'entend d'une couche de nickel, qui se présente sous forme de nodules, dont l'épaisseur équivalente est nettement inférieure à l'épaisseur visée de la couche finale. Il a été trouvé préférable de viser une épaisseur équivalente qui est, en moyenne, inférieure à environ 0,1 de l'épaisseur finale. Typiquement, l'épaisseur de la couche finale étant de 1 μm environ, on visera une épaisseur équivalente de la couche de pré-nickelage inférieure à 0, 1 μm environ.
Le pré-nickelage est réalisé dans une cuve (40, 41) comprenant un bac (17, 43) apte à contenir le bain de pré-nickelage (16, 44), dans lequel défile le conducteur (1). Le bain de pré-nickelage (16, 44) contient un sel de nickel de manière à revêtir le conducteur d'aluminium d'un dépôt de nickel primaire lorsque le conducteur défile dans ce bain.
L'étape de pré-nickelage est de préférence réalisée par voie électrolytique, ce qui permet de maîtriser plus facilement l'épaisseur de la couche en fonction des conditions de fonctionnement de la ligne de traitement. Dans ce cas la cuve de pré- nickelage (40, 41) est munie d'au moins une électrode (15, 45) contenant du nickel et le dispositif comprend une alimentation électrique (8) destinée au pré-nickelage. La tension électrique V2 délivrée par cette alimentation peut être alternative, continue ou puisée, ou une combinaison de celles-ci.
Avantageusement, l'étape de pré-nickelage PN est, en tout ou partie, combinée à l'étape d'activation A, ce qui permet de simplifier considérablement le dispositif. Dans une variante préférée de ce mode de réalisation, les étapes de pré-nickelage et d'activation sont réalisées de manière conjointe avec une prise de courant liquide. La figure 2 illustre un dispositif qui permet de mettre en œuvre cette variante de l'invention. Ce dispositif comprend une cuve d'activation électrolytique (42) et une cuve de pré-nickelage électrolytique (41), de préférence proches l'une de l'autre et éventuellement adjacentes, une première alimentation électrique (8) commune à ces deux cuves, une cuve de nickelage électrolytique (30), une seconde alimentation électrique (5) et des moyens de contact mécanique (7, 13, 14) sur la partie (6) du conducteur (1) située entre la cuve de pré-nickelage (41) et la cuve de nickelage (30).
La première alimentation électrique (8) est, de préférence, en courant continu, éventuellement modulé ou puisé ; la borne positive est raccordée à au moins une électrode (45) immergée, en tout ou partie, dans le bain de pré-nickelage (44) et la borne négative est raccordée à au moins une électrode (48) immergée, en tout ou partie, dans le bain d'activation (47). Le courant transite dans le conducteur (1) par un effet de prise de courant liquide. Ainsi, la même alimentation électrique (8) est utilisée pour l'activation et le pré-nickelage.
La deuxième alimentation électrique (5) est en courant continu, éventuellement modulé ou puisé ; la borne positive est raccordée à au moins une électrode (3) contenant du nickel immergée, en tout ou partie, dans le bain de nickelage (4) et la borne négative est raccordée sur la partie (6) du conducteur (1) située entre la cuve de pré-nickelage (41) et la cuve de nickelage (30) par l'intermédiaire de moyens de contact mécanique (7, 13, 14).
Pour la variante illustrée à la figure 2, il a été trouvé avantageux d'utiliser la composition suivante pour les bains d'activation et de pré-nickelage : 125 ± 15 g/1 de chlorure de nickel (NiCl2, 6 H O), 12,5 ± 2 g/1 d'acide orthoborique et 6 ± 2 ml/1 d'acide fluorhydrique.
Les étapes de pré-nickelage PN et d'activation A peuvent être réalisées de manière simultanée, dans un même bain (40) et avec des électrodes (15) communes (et ayant la même polarisation), tel qu'illustré à la figure 1. Dans ce cas, l'étape de prétraitement opère une double fonction d'activation et de pré-nickelage. Le bain d'activation/pré-nickelage (16) est alors apte à opérer les deux traitements, par exemple en ayant une composition mixte qui permet à la fois une activation satisfaisante et un pré-nickelage suffisant. La demanderesse a constaté qu'il était possible de réaliser efficacement ces deux fonction à l'aide d'un bain unique. La composition suivante a donné d'excellents résultats : 125 ± 15 g/1 de chlorure de nickel (NiCl2, 6 H2O), 12,5 ± 2 g/1 d'acide orthoborique et 6 ± 2 ml/1 d'acide fluorhydrique.
Dans cette variante, la première alimentation électrique (8) est en courant continu, éventuellement modulé ou puisé, la borne positive étant raccordée au conducteur (1) par l'intermédiaire du contact mécanique (7) et la borne négative étant raccordée à au moins une électrode (15) immergée, en tout ou partie, dans ledit bain d'activation/pré-nickelage (16). La deuxième alimentation électrique (5) est en courant continu, éventuellement modulé ou puisé ; la borne positive est raccordée à une électrode (3) contenant du nickel immergée, en tout ou partie, dans le bain de nickelage (4) et la borne négative est raccordée sur la partie (6) du conducteur (1) située entre la cuve d'activation/pré-nickelage (40) et la cuve de nickelage (30) par l'intermédiaire des moyens de contact mécanique (7, 13, 14), de préférence communs à ceux de la première alimentation (8).
Pour les conducteurs de très faible section, notamment pour les fils de diamètre inférieur à 0,2 mm, il est préférable que le contact mécanique soit immergé dans un liquide (14) tel que de l'eau ou une solution neutre, de manière à éviter la fusion du conducteur au droit du contact mécanique. Dans ce but, le dispositif peut comprendre un bac intermédiaire (13), généralement de petites dimensions, contenant le liquide (14) et le contact mécanique (7). Le liquide (14) peut éventuellement être refroidi.
La demanderesse a également noté que, afin d'atteindre des vitesses de défilement élevées, il était préférable d'utiliser des moyens de contact mécanique qui limitent le plus possible le frottement entre ceux-ci et le conducteur car un coefficient de frottement élevé peut conduire à la fusion du conducteur même lorsque le contact électrique est immergé dans un liquide. Il a été trouvé particulièrement avantageux d'utiliser des contacts mécaniques comprenant au moins une roue, de préférence à gorge, en particulier tel qu'illustré aux figures 3 et 4. L'utilisation de roues de contact permet notamment d'éviter les problèmes d'étincelage et de dégradation de la surface du conducteur après tré-traitement.
Pour le traitement de deux ou plusieurs conducteurs en parallèle (traitement "en nappe"), le contact mécanique peut comprendre plusieurs roues parallèles tournant autour d'un axe commun (tel qu'illustré à la figure 3).
Le moyen de contact mécanique par roulement (70) illustré à la figure 3, qui correspond à un mode de réalisation préféré de l'invention, comprend une ou plusieurs roues (71) tournant autour d'un essieu (73) dont l'axe central (75) est sensiblement perpendiculaire aux dites roues (71). La (ou chaque) roue (71) est de préférence pourvue d'une gorge (74) dans laquelle s'appuie le conducteur (6), ce qui permet notamment d'éviter les variations de position de celui-ci. Le courant électrique transite de l'essieu (73) au conducteur (6) par l'intermédiaire de la roue (71). L'ensemble essieu-roue(s) (70) peut être immergé dans un liquide (14). Le moyen de contact (70) peut comprendre une bague (72), typiquement en graphite, pour faciliter le roulement des roues (71) autour de l'essieu (73) et améliorer le contact électrique. Cette dernière variante permet également d'éviter le recours à un roulement à billes. Dans les essais de la demanderesse, les roues (71) étaient en cuivre (éventuellement nickelé) et l'essieu (73) était en acier inoxydable.
Le moyen de contact mécanique illustré à la figure 4, qui correspond également à un mode de réalisation préféré de l'invention, comprend un ensemble d'au moins trois roues (701, 702, 703) qui coopèrent pour assurer un contact électrique satisfaisant sur le (ou chaque) conducteur (6). De préférence, chaque conducteur comprend de tels moyens lorsque plusieurs conducteurs sont traités simultanément. Au moins un desdits moyens de contacts mécaniques (7, 13, 14) comprend un tel moyen de contact. Chaque roue tourne autour d'un axe propre (731, 732, 733) et exerce un effort (FI, F2, F3) sur le conducteur. En pratique, il est suffisant d'ajuster l'effort exercé sur le conducteur en ne déplaçant que la roue centrale (702). Les trois roues peuvent être immergées dans un liquide (14).
La température des différents bains est généralement choisie de manière à ce que la conductivité ionique et la réactivité des bains soient suffisantes. Typiquement, la température des bains est comprise entre 45 et 60°C.
Le procédé selon l'invention peut comprendre des étapes complémentaires, telles qu'un rasage et/ou un dégraissage éventuels du conducteur à l'état brut (10) avant l'étape d'activation et/ou de pré-nickelage.
Le conducteur est typiquement en un alliage AA 1370, le AA 1110 ou le AA 6101 selon la nomenclature de l'Aluminium Association.
L'invention a également pour objet les câbles comprenant au moins un fil élémentaire nickelé selon l'invention. En particulier, le procédé de fabrication d'un câble électrique en aluminium peut comprendre une opération de nickelage selon l'invention d'au moins un des fils élémentaires.
Selon une autre variante de l'invention, plusieurs conducteurs sont traités simultanément, notamment dans les bains de pré-traitement et de nickelage. Dans ce but, on peut, par exemple, disposer deux ou plusieurs conducteurs en parallèle, lesquels conducteurs peuvent passer simultanément d'une cuve à la suivante à l'aide de moyens de défilement individuels pour chaque conducteur ou communs à l'ensemble des conducteurs. En d'autres termes, le dispositif comprend des moyens pour faire défiler simultanément deux ou plusieurs conducteurs dans au moins une desdites cuves de traitement. Par exemple, des nappes de conducteurs provenant d'une série de dérouleurs distincts circulent en parallèle dans lesdits bains et, après traitement, s'enroulent sur une série d'enrouleurs distincts. Les moyens de contact (7, 13, 14) sur la partie des conducteurs (6) issue de l'étape de pré-traitement peuvent être, en tout ou partie, communs à ceux-ci ; par exemple, lesdits moyens peuvent comprendre une bande en matériau carboné qui peut être mise en contact avec l'ensemble des conducteurs d'une nappe.
Le ou les conducteurs peuvent défiler horizontalement, verticalement ou avec un certain angle par rapport à l'horizontale.
Exemple
Des essais ont été réalisés, sur les fils d'un diamètre de 0,20 mm, selon l'art antérieur et selon l'invention.
Dans les essais correspondant à l'art antérieur, les courants d'activation et de nickelage étaient de même intensité et provenaient d'une alimentation commune configurée en prise de courant liquide (tel que décrit dans la demande FR 2 646 174) ; des écrans avaient été interposés entre les électrodes de nickel et le fil (tel que décrit dans la demande FR 2 609 292). Les bains d'activation et de nickelage avaient la même composition, à savoir : 125 ± 15 g/1 de chlorure de nickel (NiCl2, 6 H2O), 12,5 ± 2 g/1 d'acide orthoborique et 6 ± 2 ml/1 d'acide fluorhydrique.
Les essais selon l'invention ont été réalisés à l'aide d'un dispositif similaire à celui de la figure 2. Les électrodes (48) de la cuve d'activation (42) étaient en graphite et les électrodes (45) de la cuve de pré-nickelage (41) étaient en nickel. Les bains d'activation et de pré-nickelage avaient la composition suivante : 125 ± 15 g/1 de chlorure de nickel (NiCl2, 6 H O), 12,5 ± 2 g/1 d'acide orthoborique et 6 ± 2 ml/1 d'acide fluorhydrique. Le bain de nickelage avait la composition suivante : 300 ± 30 g/1 de Ni(NH2SO3)2 (sulfamate), 30 ± 5 g/1 de NiCl2,6H2O, 30 ± 5 g/1 de H3BO3.
Le tableau I ci-dessous regroupe les principaux paramètres de traitement utilisés dans ces essais et certaines caractéristiques des fils traités. La résistance de contact a été mesurée à l'aide d'une méthode dite de "fil en croix", sous une intensité de 0,1 mA et avec un force d'appui de 0,2 N. L'adhérence de la couche de nickel sur le fil a été mesurée par un enroulement du fil sur son propre diamètre ; elle est considérée comme étant excellente si la couche de nickel suit uniformément la déformation du fil sans se détacher de la surface.
Tableau I
Figure imgf000017_0001
Dans les essais selon l'art antérieur, il n'a pas été possible d'effectuer le traitement à une vitesse de défilement aussi élevée que 80 m/min. En effet, à une vitesse aussi élevée, on observait une "brûlure" du dépôt, c'est-à-dire un dépôt noir non-adhérent provoqué par une densité de courant trop importante dans l'étape d'activation.
La couche de pré-nickelage obtenue par voie électrolytique se présentait sous forme de nodules qui ne recouvraient pas toute la surface du conducteur. La demanderesse a observé qu'il n'était pas nécessaire que ledit dépôt de nickel primaire (ou "couche de pré-nickelage") soit uniforme ou qu'elle revête entièrement la surface du conducteur ; il s'est avéré suffisant d'atteindre un taux de recouvrement équivalent correspondant à environ 0,1 de l'épaisseur finale de la couche de nickel. La demanderesse a émis l'hypothèse qu'un tel taux de recouvrement confère une qualité de contact électrique suffisante pour permettre la transmission par contact mécanique de fortes intensités de courant de nickelage sans dégrader la surface du conducteur et assure une adhérence élevée de la couche de nickel finale. Ainsi, le terme "dépôt de nickel primaire", s'entend d'une couche de nickel dont l'épaisseur est typiquement, en moyenne, de 0,1 μm environ. La couche de nickel obtenue selon l'invention présente donc une grande adhérence et une faible résistance de contact électrique.
Avantages
L'invention permet de nickeler efficacement, et avec une grande productivité, des fils de différents diamètres. Elle permet notamment un ajustement aisé des paramètres de traitement aux conditions de production, grâce au découplage entre les étapes de prétraitement et de nickelage. Il est en particulier possible d'ajuster indépendamment l'intensité des courants de pré-traitement et de nickelage, et notamment d'imposer une intensité de courant faible dans l'étape de pré-traitement et élevée dans l'étape de nickelage.
L'invention permet de bénéficier des avantages des prises de courant mécaniques, notamment la possibilité de faire transiter de fortes intensités, et d'en éviter les inconvénients, notamment la propension à former des arcs électriques qui peuvent endommager la surface du conducteur.
La faible intensité du courant de pré-traitement requise selon l'invention conduit à un enrichissement en aluminium nettement plus lent du bain de pré-traitement, ce qui permet de réduire considérablement la fréquence de remplacement de ce bain. La faible intensité du courant de pré-traitement limite aussi la dissolution du métal et, en conséquence, la formation de rugosités sur la surface du fil. En d'autres termes, l'étape de pré -traitement selon l'invention permet également de conférer à la surface du conducteur une rugosité définie pour obtenir des propriétés mécaniques optimales.

Claims

REVENDICATIONS
1. Procédé de nickelage au défilé d'au moins un conducteur (1) en aluminium comprenant une étape de pré-traitement (P) apte à favoriser l'adhérence d'une couche de nickel et une étape de nickelage électrolytique (N) dans laquelle ladite couche de nickel est déposée sur ledit conducteur par l'action d'un courant dit de nickelage (In = Ii), et caractérisé en ce que ledit pré-traitement (P) est également apte à conférer au dit conducteur (1) des propriétés de contact suffisantes pour permettre un contact électrique mécanique et en ce que le courant de nickelage In est transmis au dit conducteur par l'intermédiaire d'un contact électrique mécanique (7) sur la partie (6) du conducteur (1) issue de l'étape de prétraitement (P).
2. Procédé selon la revendication 1, caractérisé en ce que l'étape de pré-traitement (P) est réalisée par voie électrolytique.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape de prétraitement (P) comprend une activation (A) dans un bain fortement acide ou alcalin qui permette, notamment, une dissolution rapide des oxydes de surface.
Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'étape de pré-traitement (P) comprend une étape de pré-nickelage (PN) permettant de revêtir le conducteur d'aluminium (1) d'un dépôt de nickel primaire.
5. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'étape de pré-traitement (P) comprend une activation (A) dans un bain (47) fortement acide ou alcalin qui permette, notamment, une dissolution rapide des oxydes de surface et une étape de pré-nickelage (PN) dans un bain de pré-nickelage (44) qui permette de revêtir le conducteur d'aluminium (1) d'un dépôt de nickel primaire, et en ce que les étapes de pré-nickelage (PN) et d'activation (A) sont réalisées de manière conjointe, par voie électrolytique, avec une prise de courant liquide.
6. Procédé selon la revendication 5, caractérisé en ce que le bain d'activation (47) et le bain de pré-nickelage (44) ont sensiblement la même composition.
7. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'étape de pré-traitement (P) comprend une activation (A) dans un bain fortement acide ou alcalin qui permette, notamment, une dissolution rapide des oxydes de surface et une étape de pré-nickelage (PN) qui permette de revêtir le conducteur d'aluminium (1) d'un dépôt de nickel primaire, et en ce que les étapes de pré- nickelage (PN) et d'activation (A) sont réalisées simultanément dans un même bain (16).
8. Procédé selon l'une quelconque des revendications 4 à 7, caractérisé en ce que ledit dépôt de nickel primaire a une épaisseur moyenne équivalente inférieure à environ 0,1 μm.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le contact mécanique (7) est immergé dans un liquide (14), éventuellement refroidi, tel que de l'eau ou dans une solution neutre.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit contact mécanique (7) comprend au moins un moyen de contact mécanique par roulement (70).
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que plusieurs conducteurs sont traités simultanément.
12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le conducteur (1) en aluminium est en un alliage choisi parmi le AA 1370, le AA 1110 ou le AA 6101 selon la nomenclature de l'Aluminium Association.
13. Procédé de fabrication d'un câble électrique en aluminium comprenant une opération de nickelage d'au moins un des fils élémentaires selon le procédé de nickelage de l'une quelconque des revendications 1 à 12.
14. Dispositif de nickelage au défilé d'au moins un conducteur (1) en aluminium pour mettre en œuvre le procédé de nickelage selon l'une quelconque des revendications 1 à 12, ledit dispositif comprenant une cuve de nickelage (30) comprenant un bac (2) apte à contenir un bain de nickelage (4) et au moins une électrode (3), dite anode, contenant du nickel, au moins une alimentation électrique (5) pour appliquer une tension électrique (Vi) entre la, ou chaque, électrode (3) et ledit conducteur (1), et des moyens (21, 22) pour faire défiler le conducteur (1) dans le bain de nickelage (4), ledit dispositif étant caractérisé en ce qu'il comprend aussi au moins une cuve de pré-traitement (40, 41, 42) comprenant un bac (17, 43, 46) apte à contenir un bain de pré -traitement (16, 44,
47), et des moyens pour faire défiler le, ou chaque, conducteur (1) dans le bain de pré-traitement (16, 44, 47), et en ce qu'il comprend des moyens de contact mécaniques (7, 13, 14) pour appliquer ladite tension sur la partie (6) du, ou de chaque, dit conducteur (1) issue de l'étape de pré-traitement (P).
15. Dispositif selon la revendication 14, caractérisé en que la, ou chaque, cuve de pré-traitement (40, 41, 42) est munie d'au moins une électrode (15, 45, 48) et en ce que le dispositif comprend au moins une alimentation électrique (8) pour le pré-traitement (P).
16. Dispositif selon la revendication 15, caractérisé en que la tension électrique des alimentation de nickelage (5) et de pré-traitement (8) est appliquée au conducteur (1) par l'intermédiaire des mêmes dits moyens de contact mécaniques (7, 13, 14).
17. Dispositif selon l'une quelconque des revendications 14 à 16, caractérisé en ce que les moyens de contact mécanique (7, 13, 14) comprennent un bac (13) apte à contenir un liquide (14) permettant d'immerger le contact mécanique (7).
18. Dispositif selon l'une quelconque des revendications 14 à 17, caractérisé en ce qu'il comprend une cuve d'activation (42) comprenant un bac (46) apte à contenir un bain d'activation (47) et au moins une électrode (48), en ce qu'il comprend une cuve de pré-nickelage (41) comprenant un bac (43) apte à contenir un bain de pré-nickelage (44) et au moins une électrode (45), et en ce qu'il comprend au moins une alimentation électrique . (8) commune pour l'activation (A) et le pré-nickelage (PN).
19. Dispositif selon la revendication 18, caractérisé en ce que l'alimentation électrique des cuves d'activation (42) et de pré-nickelage (41) est configurée en prise de courant liquide par l'intermédiaire du conducteur (1).
20. Dispositif selon quelconque l'une des revendications 14 à 19, caractérisé en ce qu'il permet le nickelage de plusieurs conducteurs simultanément.
21. Dispositif selon l'une quelconque des revendications 14 à 19, caractérisé en ce qu'il comprend des moyens pour faire défiler simultanément deux ou plusieurs conducteurs dans au moins une desdites cuves de traitement.
22. Dispositif selon l'une quelconque des revendications 14 à 21, caractérisé en ce que les dits moyens de contact mécanique (7, 13, 14) comprennent au moins un moyen de contact mécanique par roulement (70).
23. Dispositif selon la revendication 22, caractérisé en ce que le, ou chaque, moyen de contact mécanique par roulement comprend une ou plusieurs roues (71) tournant autour d'un essieu (73) dont l'axe central (75) est sensiblement perpendiculaire aux dites roues (71).
24. Dispositif selon la revendication 23, caractérisé en ce que la, ou chaque, roue (71) comprend une bague (72), typiquement en graphite, pour faciliter le roulement des roues (71) autour de l'essieu (73) et améliorer le contact électrique.
25. Dispositif selon l'une quelconque des revendications 22 à 24, caractérisé en ce au moins un desdits moyens de contacts mécanique (1, 13, 14) comprend un ensemble d'au moins trois roues (701, 702, 703) qui coopèrent pour assurer un contact électrique sur le conducteur (6).
26. Dispositif selon l'une quelconque des revendications 23 à 25, caractérisé en ce que la ou chaque roue est pourvue d'une gorge.
27. Utilisation du procédé selon l'une quelconque des revendications 1 à 13 ou du dispositif selon l'une quelconque des revendications 14 à 26 pour le nickelage d'un produit en aluminium, tel qu'une bande ou un tube en aluminium, de manière à permettre un brasage dudit produit.
28. Procédé de fabrication d'un produit assemblé caractérisé en ce qu'il comprend l'utilisation d'un produit en aluminium nickelé selon le procédé de l'une quelconque des revendications 1 à 13 ou à l'aide du dispositif selon l'une quelconque des revendications 14 à 26.
29. Procédé selon la revendication 28, caractérisé en ce qu'il comprend une opération de brasage dudit produit en aluminium nickelé.
PCT/FR2000/002061 1999-07-22 2000-07-18 Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant WO2001007685A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT00953251T ATE291111T1 (de) 1999-07-22 2000-07-18 Verfahren zum kontinuierlichen vernickeln eines aluminium-leiters und vorrichtung dazu
EP00953251A EP1204787B1 (fr) 1999-07-22 2000-07-18 Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant
DE60018764T DE60018764T2 (de) 1999-07-22 2000-07-18 Verfahren zum kontinuierlichen vernickeln eines aluminium-leiters und vorrichtung dazu
US10/050,896 US6780303B2 (en) 1999-07-22 2002-01-18 Continuous nickel plating process for an aluminum conductor and corresponding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9909690A FR2796656B1 (fr) 1999-07-22 1999-07-22 Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant
FR99/09690 1999-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/050,896 Continuation-In-Part US6780303B2 (en) 1999-07-22 2002-01-18 Continuous nickel plating process for an aluminum conductor and corresponding device

Publications (2)

Publication Number Publication Date
WO2001007685A2 true WO2001007685A2 (fr) 2001-02-01
WO2001007685A3 WO2001007685A3 (fr) 2001-10-25

Family

ID=9548528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002061 WO2001007685A2 (fr) 1999-07-22 2000-07-18 Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant

Country Status (7)

Country Link
US (1) US6780303B2 (fr)
EP (1) EP1204787B1 (fr)
AT (1) ATE291111T1 (fr)
DE (1) DE60018764T2 (fr)
ES (1) ES2238300T3 (fr)
FR (1) FR2796656B1 (fr)
WO (1) WO2001007685A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018159A1 (de) 2012-09-14 2014-03-20 Feindrahtwerk Adolf Edelhoff Gmbh & Co. Kg Verfahren zum Beschichten von Aluminiumleitern

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942765B2 (en) * 2001-05-31 2005-09-13 Surfect Technologies, Inc. Submicron and nano size particle encapsulation by electrochemical process and apparatus
US20060011487A1 (en) * 2001-05-31 2006-01-19 Surfect Technologies, Inc. Submicron and nano size particle encapsulation by electrochemical process and apparatus
US7451906B2 (en) * 2001-11-21 2008-11-18 Dana Canada Corporation Products for use in low temperature fluxless brazing
US20060102696A1 (en) * 2001-11-21 2006-05-18 Graham Michael E Layered products for fluxless brazing of substrates
US20040035910A1 (en) * 2001-11-21 2004-02-26 Dockus Kostas F. Low temperature fluxless brazing
US20040038070A1 (en) * 2001-11-21 2004-02-26 Dockus Kostas F. Fluxless brazing
US6815086B2 (en) * 2001-11-21 2004-11-09 Dana Canada Corporation Methods for fluxless brazing
US20040035911A1 (en) * 2001-11-21 2004-02-26 Dockus Kostas F. Fluxless brazing
AU2003298904A1 (en) * 2002-12-05 2004-06-30 Surfect Technologies, Inc. Coated and magnetic particles and applications thereof
US20050230260A1 (en) * 2004-02-04 2005-10-20 Surfect Technologies, Inc. Plating apparatus and method
FR2876493B1 (fr) * 2004-10-12 2007-01-12 F S P One Soc Par Actions Simp Cable toronne en aluminium cuivre, et procede pour sa fabrication.
US20060157352A1 (en) * 2005-01-19 2006-07-20 Corus Aluminium Walzprodukte Gmbh Method of electroplating and pre-treating aluminium workpieces
MX2007009449A (es) * 2005-02-08 2007-09-21 Dyno Nobel Inc Unidades de retardo y metodos para fabricarlas.
CN101305481B (zh) 2005-09-02 2011-01-12 A123系统公司 电池设计及其构造方法
US8084158B2 (en) * 2005-09-02 2011-12-27 A123 Systems, Inc. Battery tab location design and method of construction
DE102007022632A1 (de) * 2007-05-11 2008-11-13 Visteon Global Technologies Inc., Van Buren Verfahren zum Verbinden von Bauteilen aus hochfestem Aluminium-Material und nach diesem Verfahren montierter Wärmeübertrager
US8236441B2 (en) 2007-07-24 2012-08-07 A123 Systems, Inc. Battery cell design and methods of its construction
PL3242347T3 (pl) * 2007-11-30 2019-11-29 Lithium Werks Tech Bv Konstrukcja ogniwa baterii z asymetrycznymi zaciskami
WO2010006313A1 (fr) * 2008-07-10 2010-01-14 Robert Norman Calliham Procédé pour produire un fil d'aluminium plaqué de cuivre
US8794152B2 (en) 2010-03-09 2014-08-05 Dyno Nobel Inc. Sealer elements, detonators containing the same, and methods of making
CN102560579B (zh) * 2011-12-10 2015-02-25 中国振华集团永光电子有限公司 一种硅铝合金电镀镍的方法
USD779440S1 (en) 2014-08-07 2017-02-21 Henkel Ag & Co. Kgaa Overhead transmission conductor cable
FR3057180B1 (fr) 2016-12-12 2018-10-12 Constellium Issoire Procede d'amelioration du mouillage d'une surface d'un substrat solide par un metal liquide
CN110494597A (zh) * 2017-03-31 2019-11-22 古河电气工业株式会社 镀敷线棒材及其制造方法以及使用其形成的电缆、电线、线圈和弹簧构件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492615A (en) * 1982-04-29 1985-01-08 Aluminium Pechiney Process for plating a long span of metal with a metal layer
DE3822503A1 (de) * 1988-07-03 1990-01-04 Lpw Galvanotechnik Gmbh Anlage fuer die galvanotechnische behandlung von continu-behandlungsgut
FR2650696A1 (fr) * 1989-08-04 1991-02-08 Axon Cable Sa Procede de revetement en continu d'un conducteur au moins partiellement a base d'aluminium
US5015340A (en) * 1989-04-25 1991-05-14 Aluminium Pechiney Method of continuous coating of electrically conductive substrates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867265A (en) * 1971-03-29 1975-02-18 Ericsson Telefon Ab L M Process for electroplating an aluminum wire
US4126522A (en) * 1976-08-09 1978-11-21 Telefonaktiebolaget L M Ericsson Method of preparing aluminum wire for electrical conductors
JPH10237674A (ja) * 1997-02-20 1998-09-08 Totoku Electric Co Ltd めっきアルミニウム電線、絶縁めっきアルミニウム電線およびそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492615A (en) * 1982-04-29 1985-01-08 Aluminium Pechiney Process for plating a long span of metal with a metal layer
DE3822503A1 (de) * 1988-07-03 1990-01-04 Lpw Galvanotechnik Gmbh Anlage fuer die galvanotechnische behandlung von continu-behandlungsgut
US5015340A (en) * 1989-04-25 1991-05-14 Aluminium Pechiney Method of continuous coating of electrically conductive substrates
FR2650696A1 (fr) * 1989-08-04 1991-02-08 Axon Cable Sa Procede de revetement en continu d'un conducteur au moins partiellement a base d'aluminium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14, 31 décembre 1998 (1998-12-31) & JP 10 237674 A (TOTOKU ELECTRIC CO LTD), 8 septembre 1998 (1998-09-08) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018159A1 (de) 2012-09-14 2014-03-20 Feindrahtwerk Adolf Edelhoff Gmbh & Co. Kg Verfahren zum Beschichten von Aluminiumleitern

Also Published As

Publication number Publication date
EP1204787A2 (fr) 2002-05-15
DE60018764T2 (de) 2006-04-13
DE60018764D1 (de) 2005-04-21
FR2796656A1 (fr) 2001-01-26
WO2001007685A3 (fr) 2001-10-25
EP1204787B1 (fr) 2005-03-16
US20020139685A1 (en) 2002-10-03
ATE291111T1 (de) 2005-04-15
ES2238300T3 (es) 2005-09-01
FR2796656B1 (fr) 2001-08-17
US6780303B2 (en) 2004-08-24

Similar Documents

Publication Publication Date Title
EP1204787B1 (fr) Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant
EP0285476B1 (fr) Electrode mince supportée sur feuillard conducteur électronique et procédé de fabrication
EP0093681B1 (fr) Procédé et dispositif pour revêtir une grande longueur de métal d'une couche métallique
BE1005928A5 (fr) Materiau structurel pour electrode insoluble.
EP0395542A1 (fr) Procédé et dispositif de revêtement en continu de substrats conducteurs de l'électricité par électrolyse à grande vitesse
CA1309690C (fr) Procede et dispositif pour deposer electrolytiquement au defile un film continu de nickel sur du fil metallique a usage electrique
EP1106293B1 (fr) Electrode pour l'usinage d'une pièce par électroérosion et son procédé de fabrication
EP0004824B1 (fr) Dispositif à contact amovible entre deux conducteurs et procédé de revêtement d'une pièce en aluminium par une couche de nickel
EP0955396A1 (fr) Procédé et dispositif pour la fabrication d'un fil électrode pour électroérosion
CH634436A5 (fr) Procede d'etirage d'un conducteur.
CH655265A5 (en) Method for manufacturing a wire electrode for electron discharge machining (spark erosion machining)
EP0693141B1 (fr) Procede de fabrication d'un conducteur en aluminium argente, dispositif pour la mise en oeuvre du procede et conducteur ainsi obtenu
EP0222724B1 (fr) Dispositif de fabrication d'une feuile métallique extra-mince par dépôt électrolytique et procédé pour sa mise en oeuvre
CH633905A5 (fr) Procede de fabrication de fils electriques isoles.
FR2745208A1 (fr) Procede de fabrication d'un fil stratifie de petit diametre et en particulier d'un fil electrode pour usinage par electroerosion et fil electrode obtenu
EP0910489A1 (fr) Element d'une lingotiere pour la coulee continue des metaux, comprenant une paroi refroidie en cuivre ou en alliage de cuivre comportant sur sa surface externe un revetement metallique, et procede pour son revetement
EP0279803B1 (fr) Installation pour la fabrication en continu d'une feuille métallique extra-mince par dépôt électrolytique
FR2995617A1 (fr) Procede de revetement de conducteurs electriques en aluminium
EP0521569A1 (fr) Fil électrode pour le découpage par électroérosion
FR2650696A1 (fr) Procede de revetement en continu d'un conducteur au moins partiellement a base d'aluminium
FR3060610A1 (fr) Procede electrolytique pour extraire de l'etain et/ou du plomb compris dans un melange conducteur
FR2682691A1 (fr) Procede perfectionne de galvanoplastie d'une bande metallique.
WO1986007552A1 (fr) Procede de fabrication d'une electrode filiforme pour l'usinage par electro-erosion
EP0538095B1 (fr) Procédé d'électrozingage d'une bande métallique
FR2722512A1 (fr) Strucutre d'electrode et son procede de fabrication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 10050896

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000953251

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000953251

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000953251

Country of ref document: EP