EP0282421B1 - Produit en alliage d'Al comprenant du Li, résistant à la corrosion sous tension et procédé d'obtention - Google Patents

Produit en alliage d'Al comprenant du Li, résistant à la corrosion sous tension et procédé d'obtention Download PDF

Info

Publication number
EP0282421B1
EP0282421B1 EP88420046A EP88420046A EP0282421B1 EP 0282421 B1 EP0282421 B1 EP 0282421B1 EP 88420046 A EP88420046 A EP 88420046A EP 88420046 A EP88420046 A EP 88420046A EP 0282421 B1 EP0282421 B1 EP 0282421B1
Authority
EP
European Patent Office
Prior art keywords
product according
hot
temperature
alloy
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88420046A
Other languages
German (de)
English (en)
Other versions
EP0282421A3 (en
EP0282421A2 (fr
Inventor
Bruno Dubost
Philippe Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8702719A external-priority patent/FR2610949B1/fr
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP0282421A2 publication Critical patent/EP0282421A2/fr
Publication of EP0282421A3 publication Critical patent/EP0282421A3/fr
Application granted granted Critical
Publication of EP0282421B1 publication Critical patent/EP0282421B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to an Al alloy product containing lithium with high specific mechanical resistance and high damage tolerance, particularly resistant to corrosion under tension in the treated (quenched-tempered) state, in particular in the recrystallized state, and a process for obtaining such a product.
  • Aluminum-lithium alloys which also exhibit excellent mechanical strength, toughness, ductility or fatigue properties (see Ph. MEYER, B. DUBOST - Al.Li Alloys III - Proceedings of the Third International Conference Sponsored by the Institute of Metals. Oxford July 8-11, 1985 - Baker Gregson Harris Peel London- 1986) are likely to exhibit corrosion resistance under insufficient stress, even in the rolling plane of thin sheets, when they are recrystallized.
  • the products according to the invention have a particular microstructure comprising, either in addition to the solid solution, numerous and fairly coarse precipitates of intermetallic phases rich in elements Al, Cu, Li, Mg and possibly Zn, or a solid solution obtained by dissolving at low temperature.
  • the invention applies to all aluminum-based alloys containing lithium, produced by molding, rapid solidification, ingot metallurgy or other production technique. It applies in particular to alloys based on Al, the main elements of which are as follows (by weight%): Li: 1.0 to 4.2% Cu: 0 to 5.5% Mg: 0 to 7.0% Zn: 0 to 15.0% with the following minor elements: Zr: 0 to 0.2 Mn: 0 to 1 Cr: 0 to 0.3 Nb: 0 to 0.2 Ni: 0 to 0.5 Fe: 0 to 0.5 If: 0 to 0.5 Other items: ⁇ 0.05 each Rest Al.
  • the products according to the invention preferably contain (by weight%) from 1.7 to 2.5 Li - 0.8 to 3% Mg - 1.0 to 3.5% Cu - up to 2% Zn, the rest consisting of Al, secondary elements such as Zr (0 to 0.20%), Mn, Cr, Ti and impurities whose total amount is less than or equal to 1% and are treated specifically.
  • the chemical composition by weight of the 2091 alloy is as follows: If ⁇ 0.20%; Fe ⁇ 0.30%; Li: 1.7-2.3%; Cu: 1.8-2.5%; Mn ⁇ 0.10; Mg: 1.1 - 1.9%; Cr ⁇ 0.10%; Zn ⁇ 0.25%; Zr: 0.04 -0.16% Ti ⁇ 0.10%; others: each ⁇ 0.05%, total ⁇ 0.15%, Al: remainder.
  • volume fraction of these particles increases with the overall content of Li, Cu, Mg and Zn and is higher the lower the solution temperature, according to the invention.
  • This volume fraction must generally be greater than 0.6% and preferably between 1 and 4%, especially in alloy 2091. Below 0.6% the resistance to corrosion under stress may be insufficient on recrystallized products. ; above 4%, the mechanical characteristics of resistance and ductility become too weak.
  • thermogram obtained evolves substantially like the baseline of the differential enthalpy analysis device (determined with 2 identical inert samples or without sample no reference), the longer the lower the solution temperature.
  • the temperature at the start of this plateau coincides in practice with the solution temperature according to the invention or annealing, if the alloy is not dissolved, this in the case where the Differential Enthalpy Analysis is performed after these thermal operations. Tempering does not significantly change the thermogram in this high temperature range. This method allows you to find with certainty the solution solution temperature, even annealing, practiced. It thus gives, on a product treated in the final state (dissolved, possibly soaked and hardened), the physical signature of the treatment according to the invention.
  • the method according to claim 1 of the invention consists of dissolution carried out in a range of temperatures T MS lower than the usual dissolution temperature which the person skilled in the art considers to be the highest. possible to obtain the maximum mechanical resistance, due to the increased dissolution of the hardening elements.
  • the dissolution time can be the same as that usually practiced at high temperature on aluminum-lithium alloys according to the prior art, generally from 10 min to 7 hours depending on the products (thin sheet to thick forged).
  • Dissolution is followed by quenching carried out under the usual conditions.
  • the income treatment is not modified compared to the usual practices for aluminum alloys containing lithium.
  • the dissolution is preferably preceded during the manufacturing range of a possible hot keeping (with or without plastic deformation).
  • This hot keeping is preferably practiced in a temperature range between 490 and 250 ° C, more particularly between 450 ° C and 350 ° C, for a time between 1 h and 48 hours, preferably between 6 h and 24 hours.
  • the maximum temperature of this hot keeping must be less than or equal to that of the subsequent dissolution.
  • This keeping hot may possibly be multi-level, provided that the last level is carried out according to the invention. It is preferably applied after the hot deformation phase for wrought alloys. It can possibly be followed by a cold deformation.
  • the alloy is cold deformed and if this deformation requires intermediate annealing, the last of them will be carried out under the conditions defined above.
  • the cooling rate after keeping hot must be greater than 10 ° C / hour and preferably greater than 25 ° C / h. This speed is the average speed between the temperature for keeping hot and 100 ° C., the cooling speed below 100 ° C. being not critical.
  • the cooling can be carried out in an oven, under a draft, in calm air, in water, or by any other technique allowing the desired cooling rates to be obtained.
  • the hot keeping is carried out at too high a temperature, the resistance to corrosion under tension is greatly reduced. If the hot keeping is carried out at too low a temperature, this results in difficulties for the subsequent cold deformation or even a reduction in the resistance to corrosion under stress.
  • the microstructures obtained are given in FIG. 1 with regard to the dissolution at 530 ° C. and in FIGS. 2 and 3 with regard to the dissolution at 500 ° C.
  • thermogram we see that the temperature of the start of the detectable pseudo-level (I) - substantially straight part very slightly endothermic compared to the baseline of the device determined beforehand - corresponds, with the accuracy of the measurement and determining the phase transformation temperatures by intersection of the tangents to the thermogram, to the effective solution temperature according to the invention, and this better than 3 ° C.
  • narrow peak (II) of beginning fusion of the eutectic constituents which begins around 535 ° C and ends just before the equilibrium fusion of the alloy (solidus). The latter is marked by a very deep and progressive picendotherm (III).
  • the starting melting peak (endothermic) appears, after thermal analysis, much deeper in the alloys treated according to the invention, than in the alloy treated at 530 ° C according to the conventional solution treatment.
  • Example 1 The combination of this differential thermal analysis method and the metallographic analysis of Example 1 therefore make it possible to characterize in a reliable and new way the products produced according to the invention which is the subject of the main patent.
  • a 2091 alloy with a composition by weight: 1.95% Li - 2.10% Cu - 1.5% Mg - 0.08% Zr - 0.04% Fe - 0.04% Si - aluminum residue is cast in trays 800 ⁇ 300 mm2 section, homogenized 24 hours at 527 ° C, scalped, then hot rolled between 470 and 380 ° C up to 3.6 mm thick and wound in a coil. It is then kept hot according to the invention 1 h 450 ° C. followed by 12 hours at 400 ° C (with oven cooling between the two stages). Cooling after keeping hot is carried out at a speed in the region of 35 ° C / hour to a temperature of 100 ° C. After keeping hot, the sheets are cold rolled to 1.6 mm.
  • FIG. 5 confirm the good level of the fatigue properties of the alloy treated according to the invention, which are superior to those of the reference alloy: 2024.
  • the two types of sheet are then cold rolled up to 1.6 mm.
  • a 2091 alloy of composition (by weight) 2.0% Li - 1.8% Cu - 1.4% Mg - 0.12% Zr - 0.06% Fe - 0.04% Si is cast in ⁇ 50 mm billets (induction heating; spinning at 430 ° C). This bar is machined to lengths of 500 mm; these lengths were reheated and stamped in several passes between 490 and 400 ° C. Before the last stamping pass, the parts are kept hot according to the invention for 6 hours at 450 ° C. and deformed at this temperature. They then undergo cooling, the speed of which is greater than 100 ° C./h up to 100 ° C. according to the invention.
  • An alloy of composition (by weight): 2.5% Li - 1.2% Cu - 1.0% Mg 0.06% Zr - 1.5% Zn - 0.06% Fe - 0.04% Si is poured into a 300 ⁇ 100 mm2 section plate, homogenized for 24 hours at 535 ° C (with rise in homogenization temperature at 25 ° C / h from 500 ° C). It is then scalped, reheated to 490 ° C, hot rolled between 480 and 300 ° C up to 3.6 mm. The raw hot rolling product thus obtained is then kept hot for 1 hour at 450 ° C., cooled by quenching in cold water and cold rolled from 3.6 to 1.2 mm.

Description

  • La présente invention concerne un produit en alliage d'Al contenant du lithium à haute résistance mécanique spécifique et haute tolérance au dommage, particulièrement résistant la corrosion sous tension à l'état traité (trempé-revenu), notamment à l'état recristallisé, et un procédé d'obtention d'un tel produit.
  • L'obtention d'alliages possédant une haute résistance à la corrosion sous tension, est un objectif essentiel pour les demi-produits métallurgiques destinés à une utilisation dans l'aéronautique ou l'espace.
  • Les alliages aluminium-lithium qui présentent par ailleurs d'excellentes propriétés de résistance mécanique, de ténacité, de ductilité ou de fatigue (voir Ph. MEYER, B. DUBOST - Al.Li Alloys III - Proceedings of the Third International Conference Sponsored by the Institute of Metals. Oxford 8-11 juillet 1985 - Baker Gregson Harris Peel London- 1986) sont susceptibles de présenter une résistance à la corrosion sous contrainte insuffisante, même dans le plan de laminage de tôles minces, lorsque celles-ci sont recristallisées.
  • Cette insuffisance est de nature à limiter leur emploi; par exemple la seule pose de rivets avec forte interférence peut conduire, comme dans le cas d'alliages conventionnels sensibles à la corrosion sous tension (CST) (voir Kaneko Siemenz - Corrosion Thresholds for interference fit fasteners and cold worked holes - Stress Corrosion New Approaches ASTM - STP 610, 1976, pp. 252-266), à des fissures dues à la corrosion sous contraintes, induites par les contraintes résiduelles de rivetage.
  • Les produits selon l'invention possèdent une microstructure particulière comportant, soit outre la solution solide, des précipités nombreux et assez grossiers de phases intermétalliques riches en éléments Al, Cu, Li, Mg et éventuellement Zn, soit une solution solide obtenue par mise en solution à basse température.
  • Le procédé correspondant selon les revendications 1 à 3 de l'invention consiste essentiellement à une mise en solution à basse température, en général incomplète, de l'alliage considéré, les autres paramètres de la gamme de fabrication, en particulier de revenu, étant inchangés, par rapport à la pratique usuelle.
  • L'invention s'applique à tous les alliages à base aluminium contenant du lithium, réalisés par moulage, solidification rapide, métallurgie du lingot ou autre technique d'élaboration.
    Elle s'applique en particulier aux alliages à base d'Al dont les éléments principaux sont les suivants (en poids %) :
       Li : 1.0 à 4.2 %
       Cu : 0 à 5.5 %
       Mg : 0 à 7.0 %
       Zn : 0 à 15.0 %
       avec les éléments mineurs suivants :
       Zr : 0 à 0,2
       Mn : 0 à 1
       Cr : 0 à 0,3
       Nb : 0 à 0,2
       Ni : 0 à 0,5
       Fe : 0 à 0,5
       Si : 0 à 0,5
       Autres éléments : < 0,05 chacun
       Reste Al.
  • On doit avoir de préférence : % Zn/30 + % Mg/18 + % Li/4,2 + % Cu/7 <1.
  • Les produits selon l'invention contiennent préférentiellement (en poids %) de 1,7 à 2,5 Li - 0,8 à 3 % Mg - 1,0 à 3,5 % Cu - jusqu'à 2 % Zn, le reste étant constitué d'Al, d'éléments secondaires tels que Zr (0 à 0,20 %), Mn, Cr, Ti et d'impuretés dont la quantité totale est inférieure ou égale à 1 % et sont traités de façon spécifique. Ils présentent une microstructure particulièrement résistante à la corrosion sous tension et comportant, outre la solution solide, des précipités nombreux et assez grossiers de phases intermétalliques riches en éléments Al, Cu, Li, Mg et le cas échéant Zn si les teneurs en ces éléments d'addition obéissent à l'inégalité suivante déterminée après étude expérimentale en métallographie: A > O où A= % Cu + % Li + % Mg 2 + % Zn 3 - 2,7 - 3340 exp( -5960 273+T )
    Figure imgb0001
  • Dans cette formule %Cu, %Li, %Mg, %Zn sont les teneurs pondérales et T la température effective de mise en solution soit T MS, exprimée en °C. Dans ce cas ces phases sont de type R - Al₅ Cu (Li,Mg) et de type T₂ -Al₆ Cu (Li, Mg) dans les alliages 8090 et 2091 selon la désignation de l'Aluminum Association.
  • La composition chimique pondérale de l'alliage 2091 est la suivante :
    Si ≦ 0,20 %; Fe ≦ 0,30%; Li : 1,7 - 2,3%; Cu : 1,8 - 2,5 %;
    Mn ≦ 0,10; Mg : 1,1 - 1,9% ; Cr ≦ 0,10% ; Zn ≦ 0,25% ; Zr : 0,04 -0,16%
    Ti ≦ 0,10% ; autres : chacun ≦0,05%, total ≦ 0,15%, Al : reste.
  • Les caractéristiques métallographiques et structurales de ces phases et de leurs distances réticulaires caractéristiques en diffraction de rayons X sont analogues à celles données par l'article de H.K. HARDY et J.M. SILCOK dans le système Al-Li-Cu exempt de magnésium (Journal of the Institute of Metals, 1955-56, Vol 84, p. 423-425).
  • La fraction volumique de ces particules augmente avec la teneur globale en Li, Cu, Mg et Zn et est d'autant plus élevée que la température de mise en solution, selon l'invention, est faible. Par analyse métallographique et structurale, la demanderesse a constaté que la fraction volumique des particules, en % est fv = k·A si A > 0 avec 2,0 ≦ k ≦ 4,0. Cette fraction volumique doit en général être supérieure à 0,6 % et de préférence comprise entre 1 et 4 % notamment dans l'alliage 2091. En-dessous de 0,6% la tenue à la corrosion sous tension peut être insuffisante sur produits recristallisés; au-dessus de 4%, les caractéristiques mécaniques de résistance et de ductilité deviennent trop faibles.
  • La plus grande dimension des plus grosses particules dépasse 5 µm et de préférence 10 µm.
    Cette structure peut être contrôlée par une analyse thermique différentielle ou analyse enthalpique différentielle (DSC : Differential Scanning Calorimetry), le tracé (thermogramme) présentant alors les caractéristiques suivantes dans le domaine des températures de mise en solution et de fusion commençante au cours d'une montée en température d'échantillon programmée à une vitesse de 1 à 20°C/minute :
    • . un palier apparent ou pseudo-palier s'étendant entre la température de mise en solution réellement effectuée sur l'alliage et la température de fusion commençante de l'alliage.
  • Ce pseudo-palier pour lequel le thermogramme obtenu évolue sensiblement comme la ligne de base de l'appareil d'analyse enthalpique différentielle (déterminée avec 2 échantillons inertes identiques ou sans échantillon ni référence), est alors d'autant plus long que la température de mise en solution est plus basse. De plus, il est apparu lors des essais que la température du début de ce palier coïncide en pratique avec la température de mise en solution selon l'invention ou de recuit, si l'alliage n'est pas mis en solution, ceci dans le cas où l'Analyse Enthalpique Différentielle est pratiquée après ces opérations thermiques. Un revenu ne modifie pas sensiblement le thermogramme dans ce domaine de températures élevées. Cette méthode permet de retrouver avec certitude la température de mise en solution, voire de recuit, pratiquée. Elle donne ainsi, sur produit traité à l'état final (mis en solution, trempé éventuellement écroui et revenu), la signature physique du traitement selon l'invention.
  • Ce pseudo palier succède à un large picendothermique représentant la remise en solution des petits précipités de phase d'équilibre formés lors de la montée en température de l'échantillon dans le domaine précédant celui des températures de mise en solution pratiquées sur l'alliage.
    • . un picendothermique de fusion commençante de phase AlCuLiMg (R ou T₂ dans le domaine de composition préférentielle) dans la matrice Al vers 532 à 550°C (selon la composition de l'alliage) d'autant plus important en surface de pic (c'est-à-dire en chaleur, absorbée pour la fusion) que la fraction volumique de phase hors solution T₂ ou R est importante.
    La surface de ce pic est donc, de ce fait, d'autant plus grande que la température de mise en solution selon l'invention, préalable à l'analyse thermique est faible et est inférieure à la température de mise en solution habituellement pratiquée sur l'alliage. Un alliage exempt de phases hors solution T₂ ou R, c'est-à-dire un alliage de composition telle que A < O ayant subi au préalable une mise en solution complète des particules grossières de phases T₂ à R à haute température selon la procédure normalement connue de l'homme de l'art ne présente pas de tel pic vers 532-550°C.
  • La méthode selon la revendication 1 de l'invention consiste en une mise en solution effectuée dans un domaine de températures TMS inférieures à la température de mise en solution habituelle que l'homme de l'art tient la plus élevée possible pour obtenir la résistance mécanique maximale, par suite de la mise en solution accrue des éléments durcissants.
  • TMS doit être inférieure à TM (en °C) = 474 + 18.2 % Li - 2 % Cu (% Cu-1,7) + % Mg (-17,6+3,6 % Li+4,3 % Cu) - 3 % Zn
    où %Li, %Cu, %Mg, %Zn sont les % en poids des éléments d'alliage cités, mais doit rester supérieure ou égale à 460°C et de préférence à 480°C.
  • La durée de mise en solution peut être la même que celle usuellement pratiquée à haute température sur les alliages aluminium-lithium selon l'art antérieur, en général de 10 min à 7 heures selon les produits (tôle mince à forgés épais).
  • Si la mise en solution est effectuée à trop haute température, il en résulte une perte très sensible de la résistance à la corrosion sous tension; par contre, si elle est effectuée à trop basse température, les caractéristiques mécaniques de résistance sont insuffisantes.
  • La mise en solution est suivie d'une trempe pratiquée dans les conditions usuelles.
    Le traitement de revenu n'est pas modifié par rapport aux pratiques habituelles pour les alliages d'aluminium contenant du lithium.
  • La mise en solution est de préférence précédée au cours de la gamme de fabrication d'un maintien à chaud éventuel (avec ou sans déformation plastique).
    Ce maintien à chaud est de préférence pratiqué dans un domaine de température compris entre 490 et 250°C, plus particulièrement entre 450°C et 350°C, pendant un temps compris entre 1 h et 48 heures, de préférence entre 6 h et 24 heures.
    Cependant, la température maximale de ce maintien à chaud doit être inférieure ou égale à celle de la mise en solution ultérieure.
  • Ce maintien à chaud peut être éventuellement multi-palier, à condition que le dernier palier soit effectué selon l'invention.
    Il est appliqué de préférence après la phase de déformation à chaud pour les alliages de corroyage.
    Il peut être éventuellement suivi d'une déformation à froid.
  • Si l'alliage est déformé à froid et si cette déformation nécessite des recuits intermédiaires, le dernier d'entre eux sera effectué dans les conditions définies ci-dessus.
  • La vitesse de refroidissement après le maintien à chaud doit être supérieure à 10°C/heure et de préférence supérieure à 25°C/h. Cette vitesse est la vitesse moyenne entre la température de maintien à chaud et 100°C, la vitesse de refroidissement au-dessous de 100°C n'étant pas critique.
  • Le refroidissement peut être effectué en four, sous courant d'air, à l'air calme, à l'eau, ou par toute autre technique permettant d'obtenir les vitesses de refroidissement désirées.
  • Si le maintien à chaud est effectué à trop haute température, la résistance à la corrosion sous tension est fortement diminuée. Si le maintien à chaud est effectué à trop basse température, il en résulte des difficultés pour la déformation à froid ultérieure ou même une diminution de la résistance à la corrosion sous tension.
  • L'invention sera mieux comprise à l'aide des exemples suivants illustrés par les figures 1 à 7.
    • . La figure 1 représente la micrographie optique dans le plan long-travers court d'un alliage traité hors l'invention.
    • . La figure 2 représente la micrographie dans le plan long-travers court d'un alliage traité conformément à l'invention.
    • . La figure 3 représente la micrographie dans le plan long-travers long d'un alliage traité conformément à l'invention.
    • . La figure 4 représente divers thermogrammes d'un alliage 2091 mis en solution à diverses températures (exemple 2).
    • . La figure 5 représente les courbes d'évolution de la vitesse de propagation (da/dn) d'une fissure de fatigue en traction ondulée : σ = 90 ± 40 MPa en fonction du Δ K dans les sens LT et TL, pour les alliages selon l'invention (cas A), hors l'invention (cas B), correspondant à l'exemple 3 et pour l'alliage de référence (2024).
    • . La figure 6 représente une pièce matricée traitée selon l'invention et la position relative des éprouvettes de traction et de corrosion sous tension (exemple 5).
    • . La figure 7 représente la structure de l'alliage traité selon l'invention correspondant à l'exemple 6.
    EXEMPLE 1
  • Deux tôles de 1,6 mm d'épaisseur de composition suivante (en poids %):
        Li : 2,07 - Cu : 2,15 - Mg : 1,53 - Zr : 0,10 - Ti : 0,03
       Fe : 0,04 - Si 0,03 -
       reste Al
    ont été traitées de la façon suivante :
        recuit 1 h 450°C + 12 h 400°C suivi d'une mise en solution (selon l'invention) ou 530°C, trempées à l'eau froide, tractionnées de 2% et revenues 12 h à 135°C.
  • Les microstructures obtenues sont reportées sur la figure 1 en ce qui concerne la mise en solution à 530°C et sur les figures 2 et 3 en ce qui concerne la mise en solution à 500°C. Les particules grossières, de taille nettement supérieure à 5 µm, sont essentiellement constituées de phase R-Al₅Cu(Li,Mg)₃ hors solution (point vérifié par analyse quantitative à la microsonde électronique de Castaing et par diffraction des rayons X selon la méthode Seeman-Bohlin).
    Leur fraction surfaçique moyenne sur coupes polies (égale à la fraction volumique dans l'échantillon massif), mesurée par analyse d'images quantitatives sur appareil IBAS KONTRON est de 0,53% après mise en solution à 530°C (k ≃ 2,9) et de 2,3% après mise en solution à 500°C.
    (k ≃ 2,7) avec une précision d'environ + ou - 10% sur cette valeur moyenne.
  • EXEMPLE 2
  • Le même alliage que ci-dessus (alliage 2091) a été mis en solution à diverses températures comprises entre 490°C et 535°C après recuit 1h à 400°C et laminage à froid, trempe à l'eau et revenu 12 h à 135°C, avant de subir une analyse thermique différentielle sur un appareil DUPONT de NEMOURS DSC 910 piloté par un programmateur DSC 990 dans les conditions suivantes:
    • échantillons et référence (Aluminium raffiné) usinés sous forme de disques de diamètre 5 mm et d'épaisseur 1 mm
    • balayage d'azote sec dans la cellule
    • vitesse de montée en température de 5°C/min entre 400 et 590°C.
  • Les thermogrammes obtenus sont reportés sur la figure 4.
    Sur ces thermogrammes l'abscisse représente la température en °C et l'ordonnée la puissance (en mW) dégagée ou absorbée respectivement dans le sens exothermique (+) ou endothermique (-). La ligne de base de l'appareil (LB) est représentée en traits discontinus.
    • La courbe (1) correspond à mise en solution à 490°C.
    • La courbe (2) correspond à mise en solution à 510°C.
    • La courbe (3) correspond à mise en solution à 520°C.
    • La courbe (4) correspond à mise en solution à 530°C.
  • Sur chaque thermogramme on s'aperçoit que la température du début du pseudo-palier détectable (I) - partie sensiblement rectiligne très légèrement endothermique par rapport à la ligne de base de l'appareil déterminée au préalable - correspond, avec la précision de la mesure et de la détermination des températures de transformation de phases par intersection des tangentes au thermogramme, à la température effective de mise en solution selon l'invention, et ce à mieux que 3°C près.
    On remarque aussi l'étroit pic (II) de fusion commençante des constituants eutectiques, qui débute vers 535°C et se termine juste avant la fusion d'équilibre de l'alliage (solidus). Cette dernière est marquée par un picendothermique très profond et progressif (III).
    Le pic de fusion commençante (endothermique) apparaît, après analyse thermique, beaucoup plus profond dans les alliages traités selon l'invention, que dans l'alliage traité à 530°C selon la mise en solution classique.
  • La combinaison de cette méthode d'analyse thermique différentielle et de l'analyse métallographique de l'exemple 1 permettent donc de caractériser de manière fiable et nouvelle les produits fabriqués selon l'invention objet du brevet principal.
  • EXEMPLE 3
  • Un alliage 2091 de composition en poids : 1,95% Li - 2,10% Cu - 1,5% Mg- 0,08% Zr - 0,04% Fe - 0,04% Si - reste aluminium est coulé en plateaux de section 800×300 mm², homogénéisé 24 heures à 527°C, scalpé, puis laminé à chaud entre 470 et 380°C jusqu'à 3,6 mm d'épaisseur et enroulé en bobine. Il est alors maintenu à chaud selon l'invention 1h 450°C suivi de 12 heures à 400°C (avec refroidissement en four entre les deux paliers). Le refroidissement après le maintien à chaud est effectué à une vitesse voisine de 35°C/heure jusqu'à la température de 100°C.
    Après maintien à chaud, les tôles sont laminées à froid jusqu'à 1,6 mm.
    Une partie des tôles minces ainsi fabriquées est alors mise en solution selon l'invention (cas A) : 20 min à 500°C ± 2°C, trempée à l'eau froide, défripée et tractionnée de 2%, enfin revenue 12 h à 135°C.
    Une autre partie des tôles est mise en solution hors l'invention (cas B) 20 min à 528°C ± 2°C puis subit le même parachèvement que dans le cas A décrit ci-dessus. Dans ce cas d'alliage : TM= 505,5°C.
    La structure de l'alliage est recristallisée à grains fins et équiaxes (taille moyenne : 20 µm).
  • Les propriétés obtenues dans les deux cas dans les sens Long (L), Travers-Long (TL) et à 60° de la direction de laminage (60°/L) sont reportées dans le Tableau I.
    On notera que le traitement selon l'invention apporte une amélioration très forte de la résistance à la CST dans le plan de laminage tout en conservant par ailleurs de bons niveaux de propriétés mécaniques.
  • Les résultats de propagation de fissures fournis par la figure 5 confirment le bon niveau des propriétés de fatigue de l'alliage traité selon l'invention, qui sont supérieures à celles de l'alliage de référence : 2024.
  • EXEMPLE 4
  • Un alliage 2091 de composition : 2,2 % Li - 2,3 % Cu - 1,6 % Mg - Zr 0,10 % - Fe 0,04 % - Si 0,03 %, reste aluminium, est coulé en lingot de section 100 × 300 mm², homogénéisé 24h à 527°C, scalpé, laminé à chaud entre 470 et 380°C jusqu'à 3,6 mm. Une partie des tôles (repérées C) est alors maintenue à chaud selon l'invention: 24 h à 415°C, refroidissement par trempe à l'eau froide.
    Tôles D : elles sont maintenues à chaud hors l'invention : 24 h 415°C avec un refroidissement de 8°C/h entre 415 et 100°C.
  • Les deux types de tôles sont alors laminés à froid jusqu'à 1,6 mm. Les tôles sont mises en solution selon l'invention 20 min à 510°C, trempées à l'eau froide, défripées et tractionnées, puis revenues 12h à 135°C.
    Dans ce cas TM= 511,6°C.
  • Les propriétés de corrosion sous contrainte et de résistance mécanique mesurées sont reportées au Tableau II.
  • EXEMPLE 5
  • Un alliage 2091 de composition (en poids) 2,0% Li - 1,8% Cu - 1,4% Mg - 0,12% Zr - 0,06% Fe - 0,04% Si est coulé en billettes Ø50 mm (réchauffage par induction; filage à 430°C).
    Cette barre est usinée à longueurs de 500 mm; ces longueurs ont été réchauffées et matricées en plusieurs passes entre 490 et 400°C. Avant la dernière passe de matriçage, les pièces sont maintenues à chaud selon l'invention 6h à 450°C et déformées à cette température. Elles subissent ensuite un refroidissement dont la vitesse est supérieure à 100°C/h jusqu'à 100°C selon l'invention.
    Les pièces sont alors mises en solution à 503°C ± 2°C pendant 4 heures selon l'invention, trempées à l'eau froide et revenues 24h à 190°C (dans ce cas TM= 506,3°C). Ces pièces (voir fig. 6) sont caractérisées en traction et en corrosion sous tension.
    Les éprouvettes de traction (sites A,B et C) sont prélevées en dehors des intersections de nervures. Par contre, les éprouvettes de corrosion sous contraintes recoupent les montées de nervures (site D).
    Les résultats sont reportés au Tableau III.
  • EXEMPLE 6
  • Un alliage de composition (en poids): 2,5% Li - 1,2% Cu - 1,0% Mg 0,06% Zr - 1,5% Zn - 0,06% Fe - 0,04% Si est coulé en plateau de section 300 × 100 mm², homogénéisé 24 heures à 535°C (avec montée en température d'homogénéisation à 25°C/h à partir de 500°C). Il est ensuite scalpé, réchauffé à 490°C, laminé à chaud entre 480 et 300°C jusqu'à 3,6 mm. Le produit brut de laminage à chaud ainsi obtenu est alors maintenu à chaud 1 heure à 450°C, refroidi par trempe à l'eau froide et laminé de 3,6 à 1,2 mm à froid.
    Les tôles ainsi obtenues sont mises en solution en four à bain de sel 20 min à 485°C, trempées à l'eau froide, tractionnées de 1,5 % et revenues 12h à 190°C (dans ce cas TM= 512,7°C).
    La structure obtenue est recristallisée (voir fig. 7).
    Les propriétés obtenues sont reportées au tableau IV.
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005

Claims (15)

1. Procédé de fabrication d'alliages d'aluminium contenant de 1 à 4,2% (en poids) Li, jusqu'à 5,5% Cu, jusqu'à 7% Mg, jusqu'à 15% Zn, jusqu'à 0,2% Zr, jusqu'à 1% Mn, jusqu'à 0,3%Cr, jusqu'à 0,2% Nb, jusqu'à 0,5% Ni, jusqu'à 0,5% Fe, jusqu'à 0,5% Si, autres éléments : jusqu'à 0,05% chacun, reste Al permettant de les désensibiliser à la corrosion sous tension comprenant au moins la mise en forme à chaud d'un produit moulé ou corroyé, un écrouissage à froid éventuel, une mise en solution, une trempe, un écrouissage contrôlé éventuel et un revenu, caractérisé en ce que la mise en solution est pratiquée dans un domaine de température compris entre 460°C et TM (°C) = 474 + 18,2 (%Li) - 2(%Cu)(%Cu-1,7) + (%Mg)(-17,6+3,6(%Li) +4,3(%Cu)) -3(%Zn).
2. Procédé selon la revendication 1, caractérisé en ce que la mise en solution est précédée, dans une étape antérieure de la fabrication, d'un maintien à chaud pratiqué entre 250 et 490°C (avec ou sans déformation plastique simultanée) avec une vitesse de refroidissement moyenne après maintien à chaud et jusqu'à 100°C supérieure à 10°C/h, et de préférence 25°C/h.
3. Procédé selon la revendication 2 , caractérisé en ce que le maintien a chaud est pratiqué entre 450 et 350°C.
4. Procédé selon l'une des revendications 2 ou 3, caractérisé en ce que la durée du maintien à chaud est comprise entre 1 et 48 heures et de préférence entre 6 et 24h.
5. Procédé selon l'une des revendications 2 à 4, caractérisé en ce que la température du maintien à chaud est inférieure ou égale à celle de la mise en solution.
6. Produit obtenu selon l'une des revendications 1 à 5, caractérisé en ce que les thermogrammes obtenus par analyse enthalpique différentielle présentent un pseudo-palier qui débute la mise en solution effective du produit, laquelle est inférieure ou égale à :
TM(°C) = 474 +18,2%Li - 2%Cu(%Cu-1,7)+%Mg(3,6%Li+4,3%Cu-17,6)-3%Zn et se termine à la température de fusion commençante de l'alliage.
7. Produit selon revendication 6 caractérisé en ce que le pseudo-palier visible sur les thermogrammes est suivi d'un pic étroit de fusion commençante entre 532 et 550°C.
8. Produit selon l'une des revendications 6 ou 7 caractérisé en ce que la composition répond à l'inégalité %Zn 30 + %Mg 18 + %Li 4,2 + %Cu 7 < 1
Figure imgb0006
9. Produit obtenu selon l'une des revendications 1 à 5 contenant (en poids %) : 1,7 à 2,5% Li - de 0,8 à 3,0 %Mg - de 1,0 à 3,5% Cu-jusqu'à 2% Zn-de 0 à 0,2%Zr et au total 1% d'autres éléments, reste Al et en ce qu'il contient des phases intermétalliques hors solution riches en éléments Al, Li, Cu, Mg et le cas échéant Zn sous forme de particules grossières dont la fraction volumique fv en (%) est sensiblement égale à :
Figure imgb0007
et 2,0 ≦ K≦ 4,0.
10. Produit selon la revendication 9 caractérisé en ce que la taille des plus grosses particules dépasse 5 µm.
11. Produit selon l'une des revendications 9 ou 10 caractérisé en ce que la taille des plus grosses particules dépasse 10µm.
12. Produit selon l'une des revendications 9 à 11 caractérisé en ce que les particules hors solution sont constituées de phase R ou de phase T2 riches en éléments Al, Cu, Li, Mg et que leur fraction volumique est supérieure à 0,6%.
13. Produit selon l'une des revendications 9 à 12 caractérisé en ce que la fraction volumique des phases hors solution est comprise entre 1 et 4%.
14. Produit selon l'une des revendications 9 à 13 caractérisé en ce que sa structure est recristallisée.
15. Produit selon l'une des revendications 9 à 14 caractérisé en ce que sa composition est celle de l'alliage 2091 telle qu'elle est définie par l'Aluminum Association.
EP88420046A 1987-02-18 1988-02-16 Produit en alliage d'Al comprenant du Li, résistant à la corrosion sous tension et procédé d'obtention Expired - Lifetime EP0282421B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8702719A FR2610949B1 (fr) 1987-02-18 1987-02-18 Procede de desensibilisation a la corrosion sous tension des alliages d'al contenant du li
FR8702719 1987-02-18
FR8801005 1988-01-20
FR888801005A FR2626009B2 (fr) 1987-02-18 1988-01-20 Produit en alliage d'al contenant du li resistant a la corrosion sous tension

Publications (3)

Publication Number Publication Date
EP0282421A2 EP0282421A2 (fr) 1988-09-14
EP0282421A3 EP0282421A3 (en) 1989-01-18
EP0282421B1 true EP0282421B1 (fr) 1992-05-06

Family

ID=26225813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420046A Expired - Lifetime EP0282421B1 (fr) 1987-02-18 1988-02-16 Produit en alliage d'Al comprenant du Li, résistant à la corrosion sous tension et procédé d'obtention

Country Status (7)

Country Link
US (1) US4955413A (fr)
EP (1) EP0282421B1 (fr)
JP (1) JPS63266037A (fr)
CA (1) CA1333232C (fr)
DE (1) DE3870678D1 (fr)
ES (1) ES2032591T3 (fr)
FR (1) FR2626009B2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8926861D0 (en) * 1989-11-28 1990-01-17 Alcan Int Ltd Improvements in or relating to aluminium alloys
USD419765S (en) * 1998-10-15 2000-02-01 Tim Rodgers Arrow fletching protective cover
US7472797B2 (en) 2004-07-28 2009-01-06 Capitol Vial Inc. Container for collecting and storing breast milk
CN101889099A (zh) * 2007-12-04 2010-11-17 美铝公司 改进的铝-铜-锂合金
CN103173700B (zh) * 2013-03-15 2016-01-06 中国航空工业集团公司北京航空材料研究院 Al-Cu-Li-X铝锂合金表面脱锂层的制备方法
CN107012374A (zh) * 2017-04-07 2017-08-04 安徽省宁国市万得福汽车零部件有限公司 一种耐磨铝合金衬套材料及其制备方法
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
CN111690886B (zh) * 2020-05-15 2021-06-29 江苏理工学院 一种提高高锌含量的Al-Zn合金综合力学性能的处理方法
CN112908953B (zh) * 2021-02-03 2022-11-01 百色市彩虹铝业有限公司 一种5g基站芯片散热板及制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158769A1 (fr) * 1984-02-29 1985-10-23 Allied Corporation Alliage d'aluminium à faible densité

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3365549D1 (en) * 1982-03-31 1986-10-02 Alcan Int Ltd Heat treatment of aluminium alloys
DE3411760A1 (de) * 1983-03-31 1984-10-04 Alcan International Ltd., Montreal, Quebec Verfahren zur herstellung von blech oder band aus einem walzbarren einer aluminiumlegierung
DE3479525D1 (en) * 1983-07-26 1989-09-28 Giorgio Targa Rope-making machine
FR2561260B1 (fr) * 1984-03-15 1992-07-17 Cegedur Alliages al-cu-li-mg a tres haute resistance mecanique specifique
FR2561264B1 (fr) * 1984-03-15 1986-06-27 Cegedur Procede d'obtention de produits en alliages al-li-mg-cu a ductilite et isotropie elevees
US4648913A (en) * 1984-03-29 1987-03-10 Aluminum Company Of America Aluminum-lithium alloys and method
US4797165A (en) * 1984-03-29 1989-01-10 Aluminum Company Of America Aluminum-lithium alloys having improved corrosion resistance and method
JPS61133358A (ja) * 1984-11-30 1986-06-20 Inoue Japax Res Inc 高強度、高張力アルミニウム合金
JPS61166938A (ja) * 1985-01-16 1986-07-28 Kobe Steel Ltd 展伸用Al−Li系合金およびその製造方法
FR2584095A1 (fr) * 1985-06-28 1987-01-02 Cegedur Alliages d'al a hautes teneurs en li et si et un procede de fabrication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158769A1 (fr) * 1984-02-29 1985-10-23 Allied Corporation Alliage d'aluminium à faible densité

Also Published As

Publication number Publication date
US4955413A (en) 1990-09-11
CA1333232C (fr) 1994-11-29
EP0282421A3 (en) 1989-01-18
DE3870678D1 (de) 1992-06-11
ES2032591T3 (es) 1993-02-16
EP0282421A2 (fr) 1988-09-14
FR2626009A2 (fr) 1989-07-21
JPS63266037A (ja) 1988-11-02
FR2626009B2 (fr) 1992-05-29

Similar Documents

Publication Publication Date Title
EP1114877B1 (fr) Element de structure d&#39;avion en alliage Al-Cu-Mg
EP0787217B1 (fr) Procede de fabrication de produits en alliage alsimgcu a resistance amelioree a la corrosion intercristalline
EP1382698B1 (fr) Produit corroyé en alliage Al-Cu-Mg pour élément de structure d&#39;avion
KR20150023006A (ko) 개선된 알루미늄 합금 및 이를 제조하는 방법
FR2543579A1 (fr) Traitement thermique d&#39;un alliage d&#39;aluminium
EP1464719A1 (fr) Alliage 7000à haute résistance méchanique et procédé d&#39;obtention
WO1985002416A1 (fr) Alliages a base d&#39;aluminium contenant du lithium, du magnésium et du cuivre
FR2843754A1 (fr) Alliage ai-cu-mg-si equilibre
EP0282421B1 (fr) Produit en alliage d&#39;Al comprenant du Li, résistant à la corrosion sous tension et procédé d&#39;obtention
EP0008996B1 (fr) Procédé de traitement thermique des alliages aluminium-cuivre-magnésium-silicium
WO1997027343A1 (fr) PRODUITS EPAIS EN ALLIAGE A1ZnMgCu A PROPRIETES AMELIOREES
EP0227563B1 (fr) Procédé de désensibilisation à la corrosion exfoliante avec obtention simultanée d&#39;une haute résistance mécanique et bonne tenue aux dommages des alliages d&#39;aluminium contenant du lithium
EP0157711B1 (fr) Procédé d&#39;obtention de produits en alliages al-li-mg-cu à ductilité et isotropie élevées
EP1544315A1 (fr) Produit corroyé et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg
CA1098807A (fr) Procede de traitement thermique de produits epais en alliages d&#39;aluminium de la serie 7000 contenant du cuivre
JP3498942B2 (ja) 耐リジングマーク性に優れたアルミニウム合金板及びリジングマーク発生の有無の評価方法
FR2583776A1 (fr) Produits a base d&#39;al contenant du lithium utilisables a l&#39;etat recristallise et un procede d&#39;obtention
Thanaboonsombut et al. The effect of cooling rate from the melt on the recrystallization behavior of aluminum alloy 6013
FR2646172A1 (fr) Alliage al-li-cu-mg a bonne deformabilite a froid et bonne resistance aux dommages
FR2610949A1 (fr) Procede de desensibilisation a la corrosion sous tension des alliages d&#39;al contenant du li
Chesterman Jr et al. Precipitation, recovery and recrystallization under static and dynamic conditions for high magnesium aluminum-magnesium alloys
Kang et al. Effect of reheating and warm rolling on microstructure and mechanical properties of twin roll strip cast Mg-4.5 Al-1.0 Zn-0.4 Mn-0.3 Ca alloy sheet
EP4263892A1 (fr) Produits corroyes en alliage 2xxx presentant une resistance a la corrosion optimisee et procede d&#39;obtention
Kim et al. Effect of Mn content on microstructure of twin roll cast Al-Mg-Mn alloys
Javaid et al. Effect of Zinc on Solidification and Aging Behaviour of Magnesium Alloys Containing Rare Earths

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES GB NL

17P Request for examination filed

Effective date: 19890214

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CEGEDUR PECHINEY RHENALU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PECHINEY RHENALU

17Q First examination report despatched

Effective date: 19900913

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB NL

REF Corresponds to:

Ref document number: 3870678

Country of ref document: DE

Date of ref document: 19920611

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2032591

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: PECHINEY RHENALU

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970118

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405