EP0277521B1 - Source de radiation synchrotron avec fixation de ses bobines courbées - Google Patents

Source de radiation synchrotron avec fixation de ses bobines courbées Download PDF

Info

Publication number
EP0277521B1
EP0277521B1 EP88100522A EP88100522A EP0277521B1 EP 0277521 B1 EP0277521 B1 EP 0277521B1 EP 88100522 A EP88100522 A EP 88100522A EP 88100522 A EP88100522 A EP 88100522A EP 0277521 B1 EP0277521 B1 EP 0277521B1
Authority
EP
European Patent Office
Prior art keywords
synchrotron radiation
radiation source
source according
synchrotron
coil windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88100522A
Other languages
German (de)
English (en)
Other versions
EP0277521A2 (fr
EP0277521A3 (en
Inventor
Helmut Marsing
Andreas Dr. Jahnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0277521A2 publication Critical patent/EP0277521A2/fr
Publication of EP0277521A3 publication Critical patent/EP0277521A3/de
Application granted granted Critical
Publication of EP0277521B1 publication Critical patent/EP0277521B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • Such a synchrotron radiation source is known from DE-OS 35 30 446.
  • synchrotron In a synchrotron, as is known, electrically charged particles such as electrons or protons can be accelerated to high energy by circulating them on a curved path and repeatedly passing them through a high-frequency acceleration cavity of an acceleration path.
  • the electrons In the case of an electron synchrotron, the electrons are introduced into the acceleration path at almost the speed of light; it only changes their energy at a fixed frequency.
  • Synchrotron radiation ie the relative radiation emission of the electrons, which circulate almost at the speed of light and are held on a circular path by deflection in a magnetic field of a magnetic device, provides X-rays with parallel radiation characteristics and great intensity.
  • This synchrotron radiation can advantageously be used for an X-ray lithography, which is suitable in the manufacture of integrated circuits for producing structures that are smaller than 0.5 ⁇ m.
  • an embodiment of an electron synchrotron of the so-called racetrack type which has a particle track with alternating straight and curved track sections.
  • the radius of curvature is determined by the equilibrium between centrifugal force and Lorentz force in the magnetic field of dipole magnetic devices, which each contain curved superconducting coil windings on both sides of the particle path.
  • the individual dipole coil windings are arranged together with a gradient coil in a cryostat, which also keeps the evacuated beam guiding chamber, in which the electrons circulate, at low temperature in the curved path section.
  • the straight sections of the acceleration path are assigned an electron injector, with which the electrons are introduced into the acceleration path, and devices for electron acceleration.
  • the beam guiding chamber is curved in each Each section of the particle track is provided with a slit-shaped exit opening for the synchrotron radiation.
  • the Lorentz forces of the opposing superconducting coil windings which try to compress the slot-shaped outlet opening, must therefore be absorbed by the legs of a mechanical, C-shaped or U-shaped support structure. Since a change in the position of these superconducting coil windings under the action of the Lorentz forces with a corresponding field distortion must be practically ruled out, a correspondingly complex mechanical fixation of these windings is essential. However, this is extremely difficult in the slot area. For example, according to DE-PS 35 11 282, the forces compressing the slot are compensated for by particularly prestressed clamp and tensioning elements.
  • the invention is therefore based on the object of improving the synchrotron radiation source of the type mentioned in such a way that a relatively simple fixation of the superconducting dipole coil windings of their magnetic devices is to be ensured in the exit region of the synchrotron radiation.
  • the figure shows a cross section through the synchrotron radiation source according to the invention in the region of its particle path 2 curved by 180 ° with a corresponding magnet device 3.
  • the radius of curvature is designated R.
  • This magnetic device contains on both sides of the equatorial plane spanned by the particle path 2 and lying in the xy direction of a right-angled xyz coordinate system, a curved superconducting dipole coil winding 4 or 5 and possibly additional superconducting coil windings such as correction coil windings 4a and 5a.
  • the superconducting windings are advantageously held in structurally identical upper and lower frame structures 7 and 8, which are joined together in the equatorial plane and thereby accommodate a beam guiding chamber 10 surrounding the particle path 2.
  • the particle web 2 extends through an approximately rectangular aperture area 11, in which a dipole field B of sufficient quality is formed.
  • the chamber 10 merges radially or tangentially outward into an equatorial outlet chamber 12 which is open on one side and has an outlet opening or opening 13 for the synchrotron radiation indicated by an arrow 14.
  • the exit chamber with a vertical, i.e. Extension a pointing in the z direction can in particular be slit-shaped, the corresponding slit being able to make up the entire 180 ° arc of the curved particle path section. According to the illustrated embodiment, such an exit chamber is assumed.
  • the individual superconducting dipole coil windings 4 and 5 are located in azimuth-rotating coil bodies 16, which are fitted into an upper or lower frame piece 17 or 18 of the respective frame structure 7 or 8 and in the z direction perpendicular to the equatorial xy plane with screws 19 being held.
  • the winding structure can advantageously take place from the respective slot base of the coil body in the direction of the equatorial plane as well as in the opposite direction.
  • a graduated bracket part 21 or 22 secures the exact distances between the respective winding edges to the equatorial plane on the one hand and on the other hand increases the rigidity of the entire construction with regard to the radially directed Lorentz forces by means of a positive connection with the coil formers 16 and the frame pieces 17 and 18.
  • the clamp parts 21 and 22 can also compress the individual windings with the aid of screws 23 and 24 and thus conductor movements during the operation of the magnet device 3, which lead to a premature, undesirable transition of the superconducting material into the normal conducting state, ie to a so-called quenching of the windings can prevent.
  • pressure strips 37 on the respective slot base also serve, which are to be pressed against the respective winding parts by means of screws 38.
  • the frame pieces 17 and 18 of the frame structures 7 and 8 are fixed with the aid of dowel pins 25 and screws 26 on a respective upper or lower plate element 28 or 29 in grooves milled there. This ensures a very precise positioning of the individual superconducting coil windings 4, 5 and optionally 4a, 5a relative to the particle path 2.
  • the non-positive assembly of the upper and lower frame structures 7 and 8 takes place in the area of direct mutual vertical force support with the aid of screws 31 and threaded rods 32.
  • the upper and lower plate elements 28 and 29 of the frame structures 7 and 8 are clamped against ring-like, force-transmitting distributor pieces 34 and 35 with screws 36.
  • the slot-like outlet chamber 12 extends with its outlet opening 13 to the outside between the mutually facing parts of these distributor pieces 34 and 35.
  • the mutual distance and a force support between the distributor pieces 34 and 35 and thus also between the coil windings is ensured via at least one, in particular columnar, support element 40.
  • this support element is to be located radially further outside in the insulating vacuum of a cryostat, not shown in the figure, than the mouth of the outlet opening 13. Since the distributor pieces 34 and 35 in the cryostat represent parts of a cold helium housing 42 for receiving liquid helium cooling the superconducting coil windings, the support element 40 running between them is also at this temperature.
  • the force-transmitting distributor pieces 34 and 35 and the at least one Support element 40 designed mechanical fixing device is consequently to ensure a relatively simple and secure support and support of the superconducting coil windings lying on both sides of the equatorial plane.
  • Vertical Lorentz forces of the windings can be introduced into the respective upper and lower plate elements 28 and 29 of the corresponding frame structures 7 and 8 via threaded rods 44. That is to say, in the configuration of the mechanical fixing device according to the invention, the vertical forces are absorbed in short ways via the at least one cold support element 40 located on the outside.
  • a noticeable hindrance of the synchrotron radiation 14 emerging from the outlet opening 13 does not have to be accepted, since there is only a relatively small space requirement for sufficient support via the one support element 40 or a small number of such support elements.
  • the power part of the synchrotron radiation to be dissipated in this way is therefore only a fraction of the total radiation.
  • the portion of the synchrotron radiation 14 striking the at least one support element 40 is advantageously intercepted by a radiation absorber 46, which is expediently cooled.
  • the preferred cryogenic refrigerant is liquid nitrogen, which is passed through a corresponding cooling channel 47 of the absorber.
  • the absorber can surround the support element 40 in a ring shape.
  • a radiation-absorbing shield wall 48 On its side facing the synchrotron radiation, it has a radiation-absorbing shield wall 48, which advantageously consists of a good heat-conducting material such as e.g. Copper is executed.
  • the configuration of the mechanical fixing device according to the invention ensures a relatively small radial span w on the two plate elements 28 and 29 of the frame structures 7 and 8. This has the consequence that only correspondingly small plate thicknesses of these parts are required and thus the overall height of the magnet device 3 is limited.
  • the mass of the magnetic device to be cooled is advantageously also to be kept correspondingly small.
  • Another advantage of this construction is the possibility of attaching the suspension and positioning elements of the magnetic device (not shown in the figure) directly to the distribution pieces 34 and 35 within a vacuum housing (also not shown) and thus in close proximity to the superconducting coil windings. This brings a correspondingly high positioning accuracy of the windings to the particle path and allows the use of thin housing walls in the top and bottom area of the helium housing 42.

Claims (10)

  1. Source de rayonnement synchrotron avec au moins une section courbe de sa trajectoire des particules, dans laquelle sont prévus
    - un dispositif magnétique à enroulements des bobines supraconducteurs qui se situent de part et d'autre de la trajectoire des particules qui est entourée par une chambre de guidage des rayons et qui sont disposés dans au moins un cryostat à carter sous vide,
    - au moins une ouverture dirigée radialement ou tangentiellement vers l'extérieur et ménagée dans la chambre de guidage des rayons pour le rayonnement synchrotron,
    et
    - un dispositif pour fixer mécaniquement les enroulements des bobines supraconducteurs,
    caractérisée par le fait qu'au bord périphérique extérieur du dispositif magnétique (3), le dispositif de fixation comporte au moins un élément d'appui (40) qui est situé radialement plus à l'extérieur que l'ouverture de sortie (13) pour le rayonnement synchrotron, qui agit essentiellement suivant une direction perpendiculaire à la direction du rayonnement (14), et qui est recouvert, pour ce qui concerne le rayonnement synchrotron (14), par un absorbeur de rayonnement (46).
  2. Source de rayonnement synchrotron selon la revendication 1, caractérisée par le fait que ledit au moins un élément d'appui (40) est disposé à l'intérieur du carter sous vide du cryostat.
  3. Source de rayonnement synchrotron selon la revendication 1 ou 2, caractérisée par le fait que ledit au moins un élément d'appui (40) est couplé à un carter (42) servant à recevoir le milieu cryogène qui refroidit les enroulements des bobines supraconducteurs (4, 5, 4a, 5a).
  4. Source de rayonnement synchrotron selon l'une des revendications 1 à 3, caractérisée par le fait que ledit au moins un élément d'appui (40) est réalisé sous la forme d'une colonne.
  5. Source de rayonnement synchrotron selon l'une des revendications 1 à 4, caractérisée par le fait que le dispositif mécanique de fixation comporte au moins deux structures en forme de cadres (7, 8), de construction au moins très largement identiques, et assemblées selon un plan de rayonnement, c'est-à-dire selon un plan équatorial, déterminé par le rayonnement synchrotron (14).
  6. Source de rayonnement synchrotron selon la revendication 5, caractérisé par le fait que les structures en forme de cadres (7, 8) contiennent des pièces de cadres (17, 18) qui comportent des corps de bobines (16) qui reçoivent les enroulements des bobines supraconducteurs (4, 5) ainsi que des éléments de brides (21, 22) qui y fixent mécaniquement les enroulements des bobines.
  7. Source de rayonnement synchrotron, selon l'une des revendications 1 à 6, caractérisée par le fait que les structures en forme de cadres (7, 8) sont chacune reliées à un élément de plaque (28, 29), ces éléments de plaque (28, 29) prenant appui, du point de vue des forces et au niveau de leur bord périphérique extérieur, par l'intermédiaire dudit au moins un élément d'appui (40).
  8. Source de rayonnement synchrotron selon l'une des revendications 1 à 7, caractérisée par le fait que l'absorbeur de rayonnement (46) est constitué, au moins dans la zone d'incidence du rayonnement synchrotron (14), avec un matériau, thermiquement bon conducteur, d'une paroi-écran (48).
  9. Source de rayonnement synchrotron selon la revendication 8, caractérisée par le fait que l'absorbeur de rayonnement (46) est, de plus, refroidi.
  10. Source de rayonnement synchrotron selon la revendication 9, caractérisé par le fait que l'absorbeur de rayonnement (46) est réalisé sous la forme d'un canal de refroidissement (47), de forme tubulaire, pour un milieu cryogène tel que l'azote liquide.
EP88100522A 1987-01-28 1988-01-15 Source de radiation synchrotron avec fixation de ses bobines courbées Expired - Lifetime EP0277521B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3702388 1987-01-28
DE3702388 1987-01-28

Publications (3)

Publication Number Publication Date
EP0277521A2 EP0277521A2 (fr) 1988-08-10
EP0277521A3 EP0277521A3 (en) 1989-04-26
EP0277521B1 true EP0277521B1 (fr) 1991-11-06

Family

ID=6319640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88100522A Expired - Lifetime EP0277521B1 (fr) 1987-01-28 1988-01-15 Source de radiation synchrotron avec fixation de ses bobines courbées

Country Status (4)

Country Link
US (1) US4843333A (fr)
EP (1) EP0277521B1 (fr)
JP (1) JPH0711998B2 (fr)
DE (1) DE3865977D1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138900U (fr) * 1989-04-25 1990-11-20
JPH06501334A (ja) * 1990-08-06 1994-02-10 シーメンス アクチエンゲゼルシヤフト シンクロトロン放射源
JP4732613B2 (ja) * 2000-10-31 2011-07-27 スルーンインターナショナルサービス株式会社 卓上発煙器
EP1764132A1 (fr) * 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Procédé et dispositif pour la configuration d'une trajectoire de faisceau d'un système de thérapie par faisceau de particules
DE602007005100D1 (de) * 2006-01-19 2010-04-15 Massachusetts Inst Technology Magnetstruktur für partikelbeschleunigung
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
FR2962844B1 (fr) * 2010-07-16 2013-08-30 Commissariat Energie Atomique Dispositif d'aimant supraconducteur compact
US8582712B2 (en) * 2010-12-06 2013-11-12 Lawrence Livermore National Security, Llc. Methods of detection and identification of carbon- and nitrogen-containing materials
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
EP2839780A4 (fr) * 2012-04-20 2015-04-29 Mitsubishi Electric Corp Aimant supraconducteur et procédé de réglage de celui-ci
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
WO2014052721A1 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Système de commande pour un accélérateur de particules
EP2901823B1 (fr) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Contrôle de l'intensité d'un faisceau de particules
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015048468A1 (fr) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Balayage par un faisceau de particules
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
WO2018009779A1 (fr) 2016-07-08 2018-01-11 Mevion Medical Systems, Inc. Planification de traitement
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
JP2022524103A (ja) 2019-03-08 2022-04-27 メビオン・メディカル・システムズ・インコーポレーテッド カラム別の放射線の照射およびそのための治療計画の生成
CN115397087B (zh) * 2022-10-27 2023-03-14 合肥中科离子医学技术装备有限公司 线圈调节装置及回旋加速器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA966893A (en) * 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
DE3148100A1 (de) * 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks "synchrotron-roentgenstrahlungsquelle"
US4641104A (en) * 1984-04-26 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting medical cyclotron
GB2165988B (en) * 1984-08-29 1988-08-24 Oxford Instr Ltd Improvements in devices for accelerating electrons
DE3511282C1 (de) * 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
DE3661672D1 (en) * 1985-06-24 1989-02-09 Siemens Ag Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
DE3704442A1 (de) * 1986-02-12 1987-08-13 Mitsubishi Electric Corp Ladungstraegerstrahlvorrichtung
DE3703938A1 (de) * 1986-02-12 1987-09-10 Mitsubishi Electric Corp Teilchenbeschleuniger
US4808941A (en) * 1986-10-29 1989-02-28 Siemens Aktiengesellschaft Synchrotron with radiation absorber

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8344340B2 (en) 2005-11-18 2013-01-01 Mevion Medical Systems, Inc. Inner gantry
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system

Also Published As

Publication number Publication date
JPH0711998B2 (ja) 1995-02-08
DE3865977D1 (de) 1991-12-12
JPS63200500A (ja) 1988-08-18
EP0277521A2 (fr) 1988-08-10
EP0277521A3 (en) 1989-04-26
US4843333A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
EP0277521B1 (fr) Source de radiation synchrotron avec fixation de ses bobines courbées
EP0276360B1 (fr) Dispositif magnétique à bobines courbées
EP0265797B1 (fr) Synchrotron
EP0208163B1 (fr) Dispositif à champ magnétique pour un appareil d'accélération et/ou de stockage de particules chargées
DE3245945C2 (fr)
DE4109931C2 (de) Ablenkmagnet zum Ablenken eines Strahls von geladenen Teilchen auf einer halbkreisförmigen Bahn
EP0492295B1 (fr) Filtre en énergie pour électrons, de préférence du type en alpha ou en oméga
DE2559678C3 (de) Atomstrahlröhre
DE4010032C2 (de) Magnetsystem
DE102017205485A1 (de) Permanentmagnetanordnung für MR-Apparaturen mit axial und lateral verschiebbaren, drehbar gelagerten Ringbaugruppen
EP0774670A1 (fr) Dispositif d'aimants pour un appareil de diagnostique par résonance magnétique
EP0102486B1 (fr) Dispositif pour l'ajustage et le support des bobines magnétiques d'un système magnétique pour la tomographie à spin nucléaire
DE102019209160B3 (de) Kryostatanordnung mit federndem, wärmeleitendem Verbindungselement
DE602004010934T2 (de) Röntgenquelle
DE2307822B2 (de) Supraleitendes Linsensystem für Korpuskularstrahlung
DE102007008513A1 (de) Anordnung mit einem Grundfeldmagneten und mit einer Gradientenspule eines Magnetresonanzgeräts
WO1985005448A1 (fr) Tomographe a resonance de spin
DE2731458C3 (de) Magnetische Objektivlinseneinrichtung für unter Vakuum arbeitende Korpuskularstrahlgeräte, insbesondere Objektivlinseneinrichtung für Höchstspannungs-Elektronenmikroskope und Verwendung
DE102008064696B4 (de) Teilchenoptische Vorrichtung mit Magnetanordnung und ihre Verwendung zum Abbilden oder Beleuchten
DE10354228B3 (de) Gradientenspulen-Hochfrequenzantenneneinheit und Magnetresonanzgerät mit einer Gradientenspulen-Hochfrequenzantenneneinheit
EP0177869A2 (fr) Aménagement d'un aimant avec un dispositif d'écran pour une installation de tomographie de spin nucléaire
DE4344287C1 (de) Supraleitender Magnet mit aktiver Schirmung für Kernspintomographieanlagen
DE2726195C3 (de) Magnetische Objektivlinse für unter Vakuum arbeitende Korpuskularstrahlgeräte, insbesondere Objektivlinse für Elektronenmikroskope
DE102020214443A1 (de) Magnetresonanzbildgebungseinrichtung
DE3242853A1 (de) Transportanordnung fuer einen strahl geladener teilchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19890529

17Q First examination report despatched

Effective date: 19910403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3865977

Country of ref document: DE

Date of ref document: 19911212

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920127

Year of fee payment: 5

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920422

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930131

Ref country code: CH

Effective date: 19930131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941216

Year of fee payment: 8

EUG Se: european patent has lapsed

Ref document number: 88100522.7

Effective date: 19930810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960115

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050115