EP0268598B1 - Zündkerze mit gleitfunkenstrecke - Google Patents

Zündkerze mit gleitfunkenstrecke Download PDF

Info

Publication number
EP0268598B1
EP0268598B1 EP87902423A EP87902423A EP0268598B1 EP 0268598 B1 EP0268598 B1 EP 0268598B1 EP 87902423 A EP87902423 A EP 87902423A EP 87902423 A EP87902423 A EP 87902423A EP 0268598 B1 EP0268598 B1 EP 0268598B1
Authority
EP
European Patent Office
Prior art keywords
spark plug
insulating body
combustion chamber
plug according
dielectric coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87902423A
Other languages
English (en)
French (fr)
Other versions
EP0268598A1 (de
Inventor
Walter Benedikt
Werner Herden
Jürgen SCHMATZ
Siegbert Schwab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0268598A1 publication Critical patent/EP0268598A1/de
Application granted granted Critical
Publication of EP0268598B1 publication Critical patent/EP0268598B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/52Sparking plugs characterised by a discharge along a surface

Definitions

  • the invention relates to a spark plug with a sliding spark gap for internal combustion engines according to the preamble of claim 1.
  • Such spark plugs with sliding spark gaps which form on the combustion chamber-side surface of the insulating body between the center and ground electrodes, are distinguished by an ignition voltage that is substantially lower than that of a spark plug with air spark gap. It has been shown that the higher the dielectric constant of the insulating body material, the lower the ignition voltage.
  • such an insulating body made of high-dielectric material leads to a relatively high capacity in a spark plug, which causes a breakdown discharge at the sliding spark gap.
  • the surfaces of the electrodes and especially the slideway of the spark gap are severely eroded, which in turn significantly impairs the proper functioning of the spark plug and its service life.
  • EP-A-0.236.376 forms a state of the art according to Article 54 (3) EPC. Overall, however, the total capacity of the spark plug cannot be kept small enough, so that the energy still causes significant erosion in the insulating body surface in breakdown phases that sometimes occur.
  • the spark plug according to the invention with the characterizing features of claim 1 has the advantage that the coaxial layer structure of the insulating body or candle block results in a coaxial capacitor with a layered dielectric, the total capacity of which is due to the smaller capacitance of the low-dielectric layer, i.e. the layer with the much smaller one Dielectric constant is determined. Without increasing the candle capacity, ceramics with a relative dielectric constant of up to 10,000 can therefore be used in the high-dielectric layer if only the low-dielectric layer has a relatively small dielectric constant of approximately 10 to 50.
  • the spark plug according to the invention if an advantageously high-dielectric slideway is provided, has only a small plug capacity and, as a result, shows only slight erosions on the slideway. Due to the high dielectric constant of the insulating body surface on which the slideway is formed, the ignition voltage requirement of the spark plug is low, so that a considerable part of the energy made available by the ignition system is transferred to the fuel mixture. This creates good ignition conditions even for lean fuel mixtures. Due to the low ignition voltage requirement, all advantages of a low-voltage ignition, such as a smaller ignition coil, good interference suppression, and low expenditure on high-voltage insulation result.
  • Fig. 1 to 6 each have a spark plug half in side view and half cut longitudinally according to six different embodiments.
  • the spark plugs for internal combustion engines shown in the drawing all have an insulating body 10, which is enclosed on a longitudinal section by a metallic plug housing 11.
  • the plug housing 11 carries an external thread 13 on an end section 12 with a reduced diameter by means of which the spark plug is inserted into a cylinder head of the internal combustion engine, not shown, is screwed in.
  • a hexagon key 14 is used for screwing in.
  • the end section 12 carries an annular ground electrode 15 on its end face projecting into the combustion chamber of the internal combustion engine.
  • the rotationally symmetrical insulating body 10 which has a central axial through bore 16, projects out of the candle housing 11 on both sides thereof.
  • a metallic connecting bolt 17 is arranged within the through bore 16 and carries a connecting piece 18 for the electrical connection of the spark plug to the ignition system at its end section remote from the combustion chamber.
  • the connecting bolt 17 and the center electrode 19 are conductively connected to one another by a glass melt flow mass 20.
  • the insulating body 10 has, at least in the end section on the combustion chamber side, two coaxial material layers with completely different dielectric constants which lie completely or partially against one another in the radial direction.
  • the relative dielectric constant of the materials used is between 10 and 10,000, preferably between 50 and 5000.
  • the materials used in the two material layers are paired in such a way that the difference between their dielectric constants is as large as possible.
  • the insulating body 10 consists essentially of a completely continuous base body 21 made of aluminum oxide ceramic with a relatively low dielectric constant (less than 15), and a sleeve 22 made of high-dielectric material pushed open from the end of the base body 21 on the combustion chamber side. e.g. B. barium titanium oxide (Ba2 Ti03), with a relative dielectric constant of approx. 5000.
  • the base body 21 is reduced in diameter via an end section on the combustion chamber side.
  • the sleeve 22 extends from the front end of the base body 21 over almost the entire overlap area of the candle housing 11, while in FIG.
  • the sleeve 22 covers the base body 21 only in the combustion chamber end of the insulating body 10 and approximately in the middle of the end section 12 of the candle housing 11 ends.
  • the annular end face of the sleeve 22 remote from the combustion chamber is covered by a radially projecting shoulder of the base body 21.
  • a high-voltage-resistant annular insulating disk 23 made of silicone or epoxy resin is inserted.
  • the end faces of the base body 21 and the sleeve 22 on the combustion chamber side are covered by an end face 24, which is made of the same material as the central electrode 19 and is conductively connected to it.
  • the sleeve 22 can be omitted and the high-dielectric layer directly on the insulating body 10 made of aluminum oxide ceramic, for. B. be applied by plasma spraying.
  • the high-dielectric layer or layers on the insulating body 10 exclusively in the slideway area between the end face 24 of the center electrode 19 and the ground electrode 15.
  • the base body 21 and the sleeve 22 do not run coaxially to one another as far as the front end of the insulating body 10 on the combustion chamber side, but only overlap in the axial direction, the base body 21 being at a distance from the end of the insulating body 10 on the combustion chamber side ends within the encompassing area of the candle housing 11, while the sleeve 22 extends to the free end.
  • the central electrode 19 is widened down to the sleeve 22, so that the sleeve 22 directly surrounds the base body 21 on a longitudinal section and directly surrounds the central electrode 19 on a further longitudinal section adjoining the combustion chamber.
  • the insulating body 10 in turn has a base body 25 made of aluminum oxide ceramic, which contains the through-bore 16 and ends within the metallic plug housing 11. At a distance from the end of the base body 25 on the combustion chamber side, the diameter of the through hole is enlarged.
  • a hollow pin 26 made of highly dielectric material is inserted into this cylinder ring, which remains between the center electrode 19 and the base body 25, so that it surrounds the end region of the center electrode 19 on the one hand and is enclosed by the base body 25 over a longitudinal section.
  • the central electrode 19 and the connecting pin 17 are not connected to one another via a glass melt flow mass, but are separated from one another by a highly insulating separating layer 27, which is pierced by a contact pin 28 for the electrically conductive connection of connecting pin 17 and central electrode 19.
  • Electrode in the end area on the combustion chamber is similar to that of the spark plug in FIG. 3.
  • the diameter of the center electrode 19 in turn increases in the end section on the combustion chamber side.
  • the hollow pin 26 is here funnel-shaped and in turn surrounds the center electrode 19 up to its end on the combustion chamber side. Its outer circumference is aligned with the outer circumference of the base body 25.

Landscapes

  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

  • Die Erfindung geht aus von einer Zündkerze mit Gleitfunkenstrecke für Brennkraftmaschinen nach der Gattung des Anspruchs 1.
  • Solche Zündkerzen mit Gleitfunkenstrecke, die sich an der brennraumseitigen Oberfläche des lsolierkörpers zwischen der Mittel- und Masseelektrode ausbildet, zeichnen sich durch eine gegenüber einer Zündkerze mit Luftfunkenstrecke wesentlich niedrigere Zündspannung aus. Es hat sich dabei gezeigt, dass die Zündspannung umso niedriger ist, je grösser die Dielektrizitätskonstante des Isolierkörperwerkstoffes ist. Ein solcher lsolierkörper aus hochdielektrischem Material führt jedoch in einer Zündkerze zu einer relativ hohen Kapazität, die an der Gleitfunkenstrecke eine Durchbruchentladung bewirkt. Infolge des bei der Durchbruchentladung entstehenden sehr heissen Funkens von einigen zehntausend Grad erodieren die Oberflächen der Elektroden und besonders die Gleitbahn der Gleitfunkenstrecke stark, wodurch wiederum die ordnungsgemässe Funktion der Zündkerze und deren Lebensdauer wesentlich beeinträchtigt werden.
  • Bei einer bekannten Zündkerze der eingangs genannten Art wie beschrieben in EP-A-0.236.376 (= WO 87/01876 = DE-A-35 33 123.2) hat man zur Vermeidung der Durchbruchphase mit hoher Energie den Isolierkörper im brennraumseitigen Endbereich quergeteilt und das volumengrössere anschlussseitige Oberteil aus einem Werkstoff mit niedriger Dielektrizitätskonstanten und das volumenkleinere brennraumseitige Unterteil aus einem Werkstoff mit einer sehr viel höheren Dielektrizitätskonstanten gemacht. Die Druckschrift EP-A-0.236.376 bildet einen Stand der Technik nach Artikel 54(3) EPÜ. Insgesamt lässt sich die Gesamtkapazität der Zündkerze jedoch nicht klein genug halten, so dass die Energie in mitunter auftretenden Durchbruchphasen doch noch nennenswerte Erosion in der Isolierkörperoberfläche bewirkt.
  • Die erfindungsgemässe Zündkerze mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass durch den koaxialen Schichtaufbau des Isolierkörpers oder Kerzensteins sich ein koaxialer Kondensator mit geschichtetem Dielektrikum ergibt, dessen Gesamtkapazität durch die kleinere Kapazität der niederdielektrischen Schicht, also der Schicht mit der sehr viel kleineren Dielektrizitätskonstanten, bestimmt wird. Ohne Erhöhung der Kerzenkapazität können daher Keramiken mit einer relativen Dielektrizitätskonstanten bis zu 10000 in der hochdielektrischen Schicht verwendet werden, wenn nur die niederdielektrische Schicht eine relativ kleine Dielektrizitätszahl von ungefähr 10 bis 50 aufweist.
  • Die erfindungsgemässe Zündkerze hat bei Vorsehen einer vorteilhaft hochdielektrischen Gleitbahn eine nur kleine Kerzenkapazität und zeigt dadurch bedingt nur geringe Erosionen an der Gleitbahn. Durch die hohe Dielektrizitätskonstante der Isolierkörperoberfläche, auf welcher sich die Gleitbahn ausbildet, ist der Zündspannungsbedarf der Zündkerze niedrig, so dass ein erheblicher Teil der von der Zündanlage zur Verfügung gestellten Energie an das Kraftstoffgemisch übertragen wird. Dadurch sind gute Entflammungsbedingungen auch für magere Kraftstoffgemische geschaffen. Durch den niedrigen Zündspannungsbedarf ergeben sich sämtliche Vorteile einer Niederspannungszündung, wie kleinere Zündspule, gute Entstörwirkung, geringer Aufwand an Hochspannungsisolation.
  • Durch die in den weiteren Ansprüchen aufgeführten Massnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Zündkerze möglich.
  • Eine vorteilhafte Ausführungsform ergibt sich dabei aus Anspruch 2. Bei Verwendung von Materialien mit sehr hoher relativer Dielektrizitätskonstante, z. B. zwischen 500 bis 10000, wird eine niedrige Zündspannung schon bei relativ dünnen Schichten erzielt, deren Schichtdicke zwischen 0,1 bis 1 mm liegt. Solche Schichten können gemäss der Ausführungsform der Erfindung nach Anspruch 7 durch Plasmaspritzen auf einen Kerzenstein aus z. B. Aluminiumoxid aufgebracht werden. Mit dieser Technik können gemäss der Ausführungsform der Erfindung nach Anspruch 8 mehrere Schichten aus Werkstoff mit hoher Dielektrizitätskonstanten übereinander aufgebracht werden, wobei die Dielektrizitätskonstante der einzelnen Schichten stufig oder kontinuierlich anwachsen kann. Gemäss der Ausführungsform der Erfindung nach Anspruch 9 genügt es dabei, die hochdielektrische Schicht oder Schichten nur im Gleitbahnbereich aufzubringen und im übrigen den Kerzenstein oder Isolierkörper ohne Trennstellen ganz aus Aluminiumoxid-Keramik herzustellen.
  • Eine vorteilhafte Ausführungsform der Erfindung ergibt sich auch aus Anspruch 11. Durch diese Überlappung der Schichten in axialer Richtung wird eine Hochspannungsfestigkeit zwischen den Schichten in axialer Richtung erreicht, wobei durch eine Überlappung bis in den Gleitbahnbereich die Hochspannungsbeanspruchung der hochdielektrischen Schicht klein gehalten wird.
  • Eine vorteilhafte Ausführungsform der Erfindung ergibt sich auch aus Anspruch 16. Durch die ringförmigen Isolierscheiben werden die radialen kreisringförmigen Trennstellen zwischen den Schichten hochspannungsfest abgedichtet.
  • Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Dabei zeigen
  • Fig. 1 bis 6 jeweils eine Zündkerze zur Hälfte in Seitenansicht und zur Hälfte längsgeschnitten gemäss sechs verschiedenen Ausführungsbeispielen.
  • Die in der Zeichnung dargestellten Zündkerzen für Brennkraftmaschine weisen alle einen Isolierkörper 10 auf, der auf einem Längsabschnitt von einem metallischen Kerzengehäuse 11 umfasst ist. Das Kerzengehäuse 11 trägt auf einem im Durchmesser reduzierten Endabschnitt 12 ein Aussengewinde 13 mittels dessen die Zündkerze in einen nicht dargestellten Zylinderkopf der Brennkraftmaschine eingeschraubt wird. Zum Einschrauben dient in bekannter Weise ein Schlüsselsechskant 14. Der Endabschnitt 12 trägt auf seiner in den Brennraum der Brennkraftmaschine hineinragenden Stirnseite eine ringförmige Masseelektrode 15.
  • Der eine zentrale axiale Durchgangsbohrung 16 aufweisende rotationssymmetrische Isolierkörper 10 ragt auf beiden Seiten des Kerzengehäuses 11 aus diesem heraus. Innerhalb der Durchgangsbohrung 16 ist ein metallischer Anschlussbolzen 17 angeordnet, der an seinem brennraumfernen Endabschnitt ein Anschlussstück 18 zum elektrischen Anschluss der Zündkerze an die Zündanlage trägt. Im unteren Bereich der Durchgangsbohrung befindet sich eine Mittelelektrode 19, die an der brennraumseitigen Stirnfläche des Isolierkörpers 10 freiliegt. Der Anschlussbolzen 17 und die Mittelelektrode 19 sind durch eine Glasschmelzflussmasse 20 leitend miteinander verbunden.
  • Bei allen Zündkerzen gemäss Fig. 1 bis 6 weist der Isolierkörper 10 zumindest im brennraumseitigen Endabschnitt zwei in Radialrichtung ganz oder teilweise aneinanderliegende koaxiale Materialschichten mit stark unterschiedlichen Dielektrizitätskonstanten auf. Die relative Dielektrizitätskonstante der dabei verwendeten Materialien liegt zwischen 10 und 10000, vorzugsweise zwischen 50 und 5000. Die in den beiden Materialschichten verwendeten Materialien werden dabei so gepaart, dass die Differenz zwischen ihren Dielektrizitätskonstanten möglichst gross ist.
  • Bei den Zündkerzen in Fig. 1 und 2 besteht der Isolierkörper 10 im wesentlichen aus einem ganz durchgehenden Grundkörper 21 aus Aluminiumoxid-Keramik mit relativ kleiner Dielektrizitätskonstanten (kleiner 15), und einer vom brennraumseitigen Ende des Grundkörpers 21 her aufgeschobene Hülse 22 aus hochdielektrischem Werkstoff, z. B. Bariumtitanoxid (Ba2 Ti03), mit einer relativen Dielektrizitätskonstanten von ca. 5000. Zur Aufnahme der Hülse 22 ist der Grundkörper 21 über einen brennraumseitigen Endabschnitt im Durchmesser reduziert. Bei der Zündkerze in Fig. 1 erstreckt sich die Hülse 22 vom stirnseitigen Ende des Grundkörpers 21 über nahezu den gesamten Übergreifungsbereich des Kerzengehäuses 11, während in Fig. 2 die Hülse 22 den Grundkörper 21 nur in dem brennraumseitigen Ende des Isolierkörpers 10 abdeckt und etwa in der Mitte des Endabschnitts 12 des Kerzengehäuses 11 endet. Die brennraumferne ringförmige Stirnfläche der Hülse 22 ist von einer radial vorstehenden Schulter des Grundkörpers 21 überdeckt. In dieser radialen Trennstelle zwischen Grundkörper 21 und Hülse 22 ist eine hochspannungsfeste ringförmige lsolierscheibe 23 aus Silikon oder Epoxidharz eingelegt. Die brennraumseitigen Stirnflächen von Grundkörper 21 und Hülse 22 sind von einem Stirnkopf 24 abgedeckt, der aus dem gleichen Material gefertigt ist wie die Mittelelektrode 19 und mit dieser leitend verbunden ist.
  • Bei Verwendung von Materialien mit einer sehr hohen relativen Dielektrizitätskonstanten wird eine niedrige Zündspannung schon bei relativ dünnen Schichten von 0,1 bis 1 mm erreicht. In diesem Fall kann die Hülse 22 entfallen und die hochdielektrische Schicht unmittelbar auf den aus Aluminiumoxid-Keramik bestehenden Isolierkörper 10, z. B. durch Plasmaspritzen, aufgebracht werden. Mit dieser Technik ist es auch möglich, mehrere Schichten mit kontinuierlichem bzw. stufigem Übergang der Dielektrizitätskonstanten zwischen der Keramik und der letzten hochdielektrischen Schicht (z. B. Bariumtitanoxid) übereinander aufzubringen. Dabei ist es auch möglich, die hochdielektrische Schicht bzw. Schichten ausschliesslich im Gleitbahnbereich zwischen Stirnkopf 24 der Mittelelektrode 19 und der Masseelektrode 15 am Isolierkörper 10 vorzusehen.
  • Bei den in Fig. 3 und 4 dargestellten Zündkerzen verlaufen der Grundkörper 21 und die Hülse 22 nicht koaxial zueinander bis an das brennraumseitige Stirnende des Isolierkörpers 10, sondern überlappen sich nur in Axialrichtung, wobei der Grundkörper 21 in Abstand vor dem brennraumseitigen Ende des Isolierkörpers 10 innerhalb des Umgreifungsbereiches des Kerzengehäuses 11 endet, während die Hülse 22 bis hin zum freien Stirnende reicht. An der Austrittsstelle aus der im Grundkörper 21 verlaufenden Durchgangsbohrung 16 ist die Mittelelektrode 19 bis auf die Hülse 22 verbreitert, so dass die Hülse 22 auf einem Längsabschnitt den Grundkörper 21 und auf einem sich zum Brennraum hin anschliessenden weiteren Längsabschnitt unmittelbar die Mittelelektrode 19 umgibt. Während bei der Zündkerze in Fig. 3 die Hülse 22 sich weit in das Kerzengehäuse 11 hinein erstreckt und erst nahe dem Schlüsselsechskant 14 endet, endet die Hülse 22 bei der Zündkerze in Fig. 4 bereits im Endabschnitt 12 des Kerzengehäuses 11. Die ringförmige Stirnfläche der Hülse 22 liegt in Fig. 4 frei, während sie in Fig. 3 wiederum von dem mit der Mittelelektrode 19 verbundenen Stirnkopf 24 abgedeckt wird.
  • Bei den Zündkerzen in Fig. 5 und 6 weist der Isolierkörper 10 wiederum einen Grundkörper 25 aus Aluminiumoxid-Keramik auf, der die Durchgangsbohrung 16 enthält und innerhalb des metallischen Kerzengehäuses 11 endet. Mit Abstand vor dem brennraumseitigen Ende des Grundkörpers 25 ist die Durchgangsbohrung im Durchmesser erweitert. In diesen dadurch zwischen der Mittelelektrode 19 und dem Grundkörper 25 verbleibenden Zylinderring ist ein Hohlzapfen 26 aus hochdielektrischem Material eingeschoben, so dass er einerseits den Endbereich der Mittelelektrode 19 umgibt und andererseits über einen Längsabschnitt von dem Grundkörper 25 umschlossen ist.
  • Bei der Zündkerze in Fig. 5 ist die Mittelelektrode 19 und der Anschlussbolzen 17 nicht über eine Glasschmelzflussmasse miteinander verbunden, sondern durch eine hochisolierende Trennschicht 27 voneinander getrennt, die zur elektrisch leitenden Verbindung von Anschlussbolzen 17 und Mittelelektrode 19 von einem Kontaktstift 28 durchstossen ist.
  • Im Unterschied zu Fig. 5 ist in Fig. 6 die Mittelelektrode im brennraumseitigen Endbereich ähnlich wie bei der Zündkerze in Fig. 3 ausgebildet. Der Durchmesser der Mittelelektrode 19 vergrössert sich wiederum im brennraumseitigen Endabschnitt. Der Hohlzapfen 26 ist hier trichterartig ausgebildet und umgibt wiederum die Mittelelektrode 19 bis hin zu deren brennraumseitigem Ende. Sein Aussenumfang fluchtet mit dem Aussenumfang des Grundkörpers 25. Am brennraumseitigen Stirnende wird der Hohlzapfen 26 wiederum von dem mit der Mittelelektrode 19 verbundenen Stirnkopf 24 abgedeckt.

Claims (16)

1. Zündkerze mit Gleitfunkenstrecke für Brennkraftmaschinen mit einem Kerzengehäuse, das mit einem Gehäuseabschnitt in den Brennraum der Brennkraftmaschine hineinragt und an seinem brennraumseitigen Ende eine ringförmige Masseelektrode hat, mit einem von dem Kerzengehäuse auf einem Längsabschnitt umschlossenen Isolierkörper, der brennraumseitig überdas Kerzengehäuse vorsteht, und mit einer Mittelelektrode, die in einer Durchgangsbohrung im Isolierkörper einliegt und brennraumendseitig freiliegt, wobei die Gleitfunkenstrecke sich zwischen Mittel- und Masseelektrode längs einer Gleitbahn auf der Oberfläche des Isolierkörpers ausbildet und der Isolierkörper (10) zumindest im brennraumseitigen Endabschnitt mindestens zwei in Radialrichtung ganz oder teilweise aneinanderliegende koaxiale Materialschichten (21, 22; 25, 26) mit stark unterschiedlichen Dielektrizitätskonstanten aufweist.
2. Zündkerze nach Anspruch 1, dadurch gekennzeichnet, dass die relative Dielektrizitätskonstante der verwendeten Materialien zwischen 10 und 10000, vorzugsweise zwischen 50 und 5000 liegt, und dass in ihrer Dielektrizitätskonstanten möglichst weit auseinanderliegende Materialien gepaart sind.
3. Zündkerze nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schichten (21, 22) koaxial zueinander bis an das brennraumseitige Stirnende des Isolierkörpers (10) verlaufen.
4. Zündkerze nach Anspruch 3, dadurch gekennzeichnet, dass die niederdielektrische Schicht (21) die Mittelelektrode (19) umgibt und über einen bis zum Stirnende des Isolierkörpers (10) reichenden Längsabschnitt von der hochdielektrischen Schicht (22) umschlossen ist.
5. Zündkerze nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die niederdielektrische Schicht (21) mit dem aus dem gleichen Material bestehenden Isolierkörper (10) einstückig ist und dass die hochdielektrische Schicht (22) auf dem Isolierkörper (10) aufgebracht ist.
6. Zündkerze nach Anspruch 5, dadurch gekennzeichnet, dass die Schichtdicke der hochdielektrischen Schicht bei sehr hoher Dielektrizitätskonstanten zwischen 0,1 und 1 mm gewählt ist.
7. Zündkerze nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die hochdielektrische Schicht auf den Isolierkörper (10) mittels Plasmaspritzen aufgebracht ist.
8. Zündkerze nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass mehrere hochdielektrische Schichten mit kontinuierlich oder stufig anwachsenden Dielektrizitätskonstanten in Radialrichtung übereinander liegen.
9. Zündkerze nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die hochdielektrische Schicht bzw. Schichten ausschliesslich im Gleitbahnbereich der Gleitfunkenstrecke vorgesehen sind.
10. Zündkerze nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die Mittelelektrode (19) mit einem vorzugsweise einstückigen Stirnkopf (24) über das brennraumseitige Ende des Isolierkörpers (10) vorsteht und dass der Stirnkopf (24) die ringförmige Stirnfläche der Materialschichten (21, 22) überdeckt.
11. Zündkerze nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Materialschichten (21, 22; 25, 26) sich in Axialrichtung überlappen und nur die hochdielektrische Schicht (22; 26) am brennraumseitigen Ende aus dem Kerzengehäuse (11) vorsteht.
12. Zündkerze nach Anspruch 11, dadurch gekennzeichnet, dass die hochdielektrische Schicht (22) im Überlappungsbereich die niederdielektrische Schicht (21 ) umschliesst und zumindest in dem aus dem Kerzengehäuse (11) vorstehenden Endabschnitt die Mittelelektrode (19) umgibt.
13. Zündkerze nach Anspruch 11, dadurch gekennzeichnet, dass die hochdielektrische Schicht (26) die Mittelelektrode (19) zumindest im brennraumseitigen Endabschnitt umgibt und im Überlappungsbereich von der niederdielektrischen Schicht (25) umschlossen ist.
14. Zündkerze nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass der Überlappungsbereich der Schichten (21, 22; 25, 26) innerhalb des Kerzengehäuses (11) gelegt ist.
15. Zündkerze nach einem der Ansprüche 3 bis 14, dadurch gekennzeichnet, dass die vom brennraumseitigen Ende des Isolierkörpers (10) abgekehrte Stirnfläche der hochdielektrischen Schicht (22) von der niederdielektrischen Schicht (21) überdeckt ist.
16. Zündkerze nach Anspruch 15, dadurch gekennzeichnet, dass zwischen dem Isolierkörper (10) und der vom brennraumseitigen Ende abgekehrten ringförmigen Stirnfläche der hochdielektrischen Schicht (22) eine hochspannungsfeste Isolierscheibe (23), z. B. aus Silikon oder Epoxidharz, eingelegt ist.
EP87902423A 1986-05-16 1987-05-06 Zündkerze mit gleitfunkenstrecke Expired EP0268598B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3616668 1986-05-16
DE19863616668 DE3616668A1 (de) 1986-05-16 1986-05-16 Zuendkerze mit gleitfunkenstrecke

Publications (2)

Publication Number Publication Date
EP0268598A1 EP0268598A1 (de) 1988-06-01
EP0268598B1 true EP0268598B1 (de) 1989-12-20

Family

ID=6301045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87902423A Expired EP0268598B1 (de) 1986-05-16 1987-05-06 Zündkerze mit gleitfunkenstrecke

Country Status (8)

Country Link
US (1) US4870319A (de)
EP (1) EP0268598B1 (de)
JP (1) JPS63503418A (de)
KR (1) KR880701479A (de)
BR (1) BR8707310A (de)
DE (2) DE3616668A1 (de)
ES (1) ES2005229A6 (de)
WO (1) WO1987007094A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219041A (en) * 1988-05-28 1989-11-29 Ford Motor Co Spark plug
CA1318491C (en) * 1988-08-25 1993-06-01 Takafumi Oshima Method of moulding ceramic insulator in use for spark plug structure
JP2625307B2 (ja) * 1992-01-28 1997-07-02 日本特殊陶業株式会社 スパークプラグ
DE4331269C2 (de) * 1993-09-15 1995-07-13 Bosch Gmbh Robert Verfahren zur Herstellung einer Zündkerze mit Gleitfunkenstrecke und nach den Verfahren hergestellte Zündkerzen
US6204594B1 (en) 1998-06-12 2001-03-20 Cooper Automotive Products, Inc. Spark plug with pressure sensor
US6094990A (en) * 1998-06-30 2000-08-01 Cooper Automotive Products, Inc. Spark plug with concentric pressure sensor
FR2792374B1 (fr) * 1999-04-15 2002-05-03 Renault Dispositif d'allumage pour moteur a combustion interne et bougie d'allumage pour sa mise en oeuvre
JP2001135457A (ja) * 1999-11-05 2001-05-18 Denso Corp スパークプラグ
GB2361264A (en) * 2000-04-10 2001-10-17 Fed Mogul Ignition Surface discharge spark plug for i.c. engines
DE10047498A1 (de) * 2000-09-26 2002-04-18 Bosch Gmbh Robert Zündkerze kompakter Bauart und Herstellungsverfahren
US20090241520A1 (en) * 2008-03-31 2009-10-01 Woodward Governor Company Diesel Exhaust Soot Sensor System and Method
CN102057547B (zh) * 2008-04-10 2013-06-12 费德罗-莫格尔点火公司 陶瓷火花塞绝缘体及其制造方法
US8242672B2 (en) * 2008-04-28 2012-08-14 Ngk Spark Plug Co., Ltd. Spark plug having a fixation assisting member for the insulator
JP5363475B2 (ja) * 2008-12-25 2013-12-11 日本特殊陶業株式会社 スパークプラグ
JP4948515B2 (ja) * 2008-12-26 2012-06-06 日本特殊陶業株式会社 プラズマジェット点火プラグ
US20110000193A1 (en) * 2009-07-02 2011-01-06 Woodward Governor Company System and method for detecting diesel particulate filter conditions based on thermal response thereof
US8310249B2 (en) * 2009-09-17 2012-11-13 Woodward, Inc. Surface gap soot sensor for exhaust
US8671901B2 (en) * 2009-11-30 2014-03-18 GM Global Technology Operations LLC Excess demand voltage relief spark plug for vehicle ignition system
WO2011135903A1 (ja) * 2010-04-26 2011-11-03 日本碍子株式会社 内燃機関の点火装置及び当該点火装置の電極構造
EP2581998B1 (de) * 2011-10-14 2019-12-18 Delphi Automotive Systems Luxembourg SA Zündkerze für Hochfrequenz-Zündsystem
JP6419109B2 (ja) * 2016-06-08 2018-11-07 日本特殊陶業株式会社 プラズマジェットプラグ
JP6709151B2 (ja) * 2016-12-15 2020-06-10 株式会社デンソー 点火制御システム及び点火制御装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236376A1 (de) * 1985-09-17 1987-09-16 Robert Bosch Gmbh Zündkerze mit gleitfunkenstrecke

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2592754A (en) * 1945-12-14 1952-04-15 Smitsvonk Nv Surface discharge spark plug
US3295005A (en) * 1963-10-28 1966-12-27 Champion Spark Plug Co Ceramic sealing structure
GB1438503A (en) * 1972-06-08 1976-06-09 Lucas Industries Ltd Spark discharge plugs
US4419601A (en) * 1979-11-05 1983-12-06 Nissan Motor Company, Limited Spark plug for internal combustion engine
US4439707A (en) * 1980-07-23 1984-03-27 Nippon Soken, Inc. Spark plug with a wide discharge gap
JPS5765683A (en) * 1980-10-10 1982-04-21 Nippon Soken Ignition plug
US4631451A (en) * 1983-11-18 1986-12-23 Ford Motor Company Blast gap ignition system
US4695758A (en) * 1984-07-25 1987-09-22 Nippondenso Co., Ltd. Small-sized spark plug having a spark gap parallel to an axis running through the center electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236376A1 (de) * 1985-09-17 1987-09-16 Robert Bosch Gmbh Zündkerze mit gleitfunkenstrecke

Also Published As

Publication number Publication date
DE3616668A1 (de) 1987-11-19
EP0268598A1 (de) 1988-06-01
ES2005229A6 (es) 1989-03-01
WO1987007094A1 (en) 1987-11-19
BR8707310A (pt) 1988-09-13
DE3761239D1 (de) 1990-01-25
US4870319A (en) 1989-09-26
KR880701479A (ko) 1988-07-27
JPS63503418A (ja) 1988-12-08

Similar Documents

Publication Publication Date Title
EP0268598B1 (de) Zündkerze mit gleitfunkenstrecke
EP0118789B1 (de) Zündkerze für Brennkraftmaschinen
DE3878336T2 (de) Zuendkerze.
EP0238520B1 (de) Zündkerze mit gleitfunkenstrecke
DE3404081C2 (de)
EP0049372B1 (de) Zündkerze für Brennkraftmaschinen
EP0087626A2 (de) Gassensor, insbesondere für Abgase von Brennkraftmaschinen
EP0311608B1 (de) Zündkerze mit gleitfunkenstrecke
DE69503763T2 (de) Zündkerze
EP0226595A1 (de) Zündkerze für brennkraftmaschinen.
DE2928018C2 (de) Vorrichtung zum Zünden eines mageren Brennstoff-Luft-Gemischs
DE3407011A1 (de) Zuendkerze fuer brennkraftmaschinen
EP0858139B1 (de) Zündkerze
DE2549101A1 (de) Gleitfunkenzuendkerze
DE4234077A1 (de) Verbindungsteil einer Zündanlage
DE102006037039A1 (de) Hochfrequenz-Zündvorrichtung
DE3616667C2 (de) Zündkerze mit quergeteiltem Isolator
DE3533123A1 (de) Zuendkerze mit gleitfunkenstrecke
DE102004032723B4 (de) Zündkerze
DD290304A5 (de) Zuendkerze fuer verbrennungsmotore
DE3024667A1 (de) Zuendkerzenstecker
DE19629344C2 (de) Gleitfunkenzündkerze zum Zünden eines Brennstoff-Luft-Gemisches
DE3616640A1 (de) Zuendkerze mit gleitfunkenstrecke
WO1986007206A1 (en) Spark plug connector
DE940948C (de) Niederspannungsgleitfunkenzuendkerze fuer Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19890606

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3761239

Country of ref document: DE

Date of ref document: 19900125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900530

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900726

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910506

ITTA It: last paid annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050506