EP0264811A1 - Procédé d'obtention de revêtements de phosphate - Google Patents
Procédé d'obtention de revêtements de phosphate Download PDFInfo
- Publication number
- EP0264811A1 EP0264811A1 EP87115011A EP87115011A EP0264811A1 EP 0264811 A1 EP0264811 A1 EP 0264811A1 EP 87115011 A EP87115011 A EP 87115011A EP 87115011 A EP87115011 A EP 87115011A EP 0264811 A1 EP0264811 A1 EP 0264811A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphate
- calculated
- phosphating solution
- content
- paint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910019142 PO4 Inorganic materials 0.000 title claims abstract description 46
- 238000000576 coating method Methods 0.000 title claims abstract description 45
- 239000010452 phosphate Substances 0.000 title claims abstract description 43
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims description 16
- 230000008569 process Effects 0.000 title claims description 9
- 239000011701 zinc Substances 0.000 claims abstract description 28
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002253 acid Substances 0.000 claims abstract description 10
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 5
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 8
- 239000008397 galvanized steel Substances 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 230000009189 diving Effects 0.000 claims description 2
- 229910052827 phosphophyllite Inorganic materials 0.000 abstract description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 7
- 229910000831 Steel Inorganic materials 0.000 abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 7
- 239000010959 steel Substances 0.000 abstract description 7
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 abstract description 5
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 25
- 239000003973 paint Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004922 lacquer Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000004673 fluoride salts Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- -1 fluorosilicate Chemical class 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- 229940077935 zinc phosphate Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/362—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/364—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
Definitions
- the invention relates to a method for producing phosphate coatings on surfaces of cold-rolled steel, one- or two-sided galvanized steel in dipping with a phosphating solution containing zinc, phosphate, nitrate and fluoride.
- Zinc-phosphate coatings play a special role here. Such coatings can be produced from phosphating solutions with a comparatively high zinc content (normal zinc technology). In recent years, however, phosphating processes that use solutions with relatively low zinc contents have become increasingly important (low-zinc technology).
- the zinc concentrations are generally in the range from 0.9 to 1.5 g / l. With a decreasing zinc content, the ratio of phosphophyllite (P) (Zn2Fe (PO4) 2. 4H2O) to Hopeit (H) (Zn3 (PO4) 2. 4H2O) or P / P + H is higher, which indicates a very high quality of the coating film affects.
- the treatment temperature is an important factor in the production of the phosphate coating. In general, depending on the surface to be treated and the requirements for the quality of the paint film, temperatures above 40 ° C are used. The use of lower temperatures can create difficulties in the production of phosphate coatings that the posed Should meet requirements. For example, coatings can be formed which have a too low layer weight, are not opaque, have coarse crystals and / or tend to rust.
- the object of the invention is to provide a process for the production of phosphate coatings on surfaces of cold-rolled steel, one- or two-sided galvanized steel, which allows the use of working temperatures as low as possible and yet to phosphate coatings of high quality, in particular with regard to the appearance of the phosphate coating, layer weight, crystal size and phosphophyllite content and - after painting - impart high corrosion resistance and high paint adhesion.
- the phosphate coatings should therefore have essentially the same quality as that which is produced at higher temperatures.
- Zn - 0.4 and the upper limit curve FS 0.4.
- Zn - 0.5 set value is set.
- metal surfaces Before the metal surfaces are subjected to the phosphating process according to the invention, they are cleaned and activated as usual. Aqueous phosphate solutions containing a colloidal titanium compound are used for activation.
- the phosphate concentration falls below 10 g / l, the phosphate coatings become thin and uneven. At concentrations above 20 g / l, the coating quality is no longer improved, instead the chemical consumption is increased.
- Zinc concentrations below 1.5 g / l do not lead to phosphate coatings with the desired layer weight, those above 2.5 g / l lead to layers that are too heavy. In addition, the desired high phosphophyllite content is not obtained. The result is that paint adhesion and corrosion resistance deteriorate.
- Nitrate serves as an oxidizing agent.
- a content below 5 g / l is associated with a loss of the oxidation potential; such a content above 15 g / l does not improve the effect. It would only affect the economics of the process.
- Fluoride is responsible both for the uniform etching of the steel surface and for the formation of a dense phosphate coating.
- the layer formation on certain qualities of galvanized steel, in particular hot-dip galvanized steel with aluminum contents, is improved in the zinc layer.
- Complex fluorides such as fluorosilicate, fluoroborate and fluorozirconate, but also simple fluorides or a mixture of complex and simple fluorides can be used as the source of fluoride.
- F concentration below 0.5 g / l (calculated as F)
- the etching effect is uneven and the phosphate coating is not sufficiently dense.
- concentrations above 1.5 g / l the phosphate coating becomes too thin and the desired properties are not achieved.
- the nickel content also has an effect on the formation of a dense phosphate coating; moreover, it improves the corrosion resistance and the adhesion of the varnish applied subsequently.
- Nickel concentrations below 0.5 g / l do not result in the desired compression of the phosphate crystals, and there is no possible improvement in the corrosion resistance of the paint adhesion. Concentrations higher than 1.5 g / l do not improve the effect.
- the iron III content maintains a certain supersaturation in the phosphating solution, i.e. allows an increase in the pH at which the deposition of phosphate takes place. This facilitates the formation of the phosphate coating. If the iron III concentration is below 2 mg / l, the effect is not yet sufficiently pronounced. At concentrations above 20 mg / l, the phosphating solutions tend to form sludge and are therefore impaired with regard to their ability to form phosphate coatings.
- the nitrite content of 160 to 300 mg / l which is significantly higher than that of phosphating baths that are used at higher temperatures, is largely responsible for the iron dissolution from the steel surface and the deposition of phosphophyllite. Only if the specified range is observed is there a guarantee for the desired high phosphophyllite content in the coating and for the high quality of the coating. In addition, the rate of formation of the phosphate coating decreases with a lower nitrite content. At higher Nitrite content tends to form iron-phosphate coatings.
- the content of nitrite points is usually determined using the saccharometer method. For this, 50 ml of bath solution are mixed with 2 to 5 g of sulfamic acid. The amount of gas generated in ml is equal to the number of points. A gas point corresponds to a content of 46 mg / l NO2 in the phosphating solution.
- the free acid content of the phosphating solution essentially depends on the zinc concentration. The higher the zinc content, the higher the free acid content.
- the exact free acid to be set when using the method according to the invention is shown in the figure. If their content is below the lower limit line, the phosphating solution becomes unstable and deposits begin to form. If the free acid content is above the upper limit, the phosphate coating formation is delayed and it is difficult to obtain dense phosphate coatings.
- the hatched field illustrates the permissible free acid content, based on the respective zinc concentration.
- a 10 ml bath sample is titrated against bromophenol blue as an indicator. If the solution is yellow to yellow-green when the indicator is added, titrate with 0.1 N sodium hydroxide solution until it changes to blue. If the bath sample is blue-violet after adding the indicator, titrate with 0.1 N sulfuric acid until it changes to blue. In this case the free acid value obtained is negative. The score of free acid is equal to the respective consumption of titration solution in ml.
- the metal surfaces are immersed in a phosphating solution which additionally contains 0.2 to 1 g / l of manganese (calculated as Mn).
- a manganese content has a particularly positive effect on the paint adhesion when exposed to high levels of moisture, so that objects which are claimed in this respect should be treated in accordance with this preferred embodiment.
- concentrations lower than 0.2 g / l the effect mentioned is not yet sufficiently pronounced. Concentrations above 1 g / l lead in particular to a reduction in the rate of formation of the phosphate coating.
- Another advantageous embodiment of the invention consists in immersing the surfaces in a phosphating solution at a temperature in the range from 20 to 30 ° C.
- the duration of exposure of the phosphating solution should generally be 90 to 180 seconds for the treatment of cold-rolled steel and 30 to 180 seconds for the galvanized steel. If workpieces are to be treated that have areas made of cold-rolled steel and galvanized steel (composite metals), it is recommended to use the treatment time for cold-rolled steel.
- the particular advantage of the method according to the invention is that at temperatures which are practically room temperature, high quality Phosphate coatings are obtained which advantageously influence the properties of a subsequently applied lacquer.
- the low temperatures in turn have the advantage that the expenditure on equipment for heating the phosphating baths and the energy expenditure itself can be considerably reduced.
- the permissible tolerances with regard to temperature and zinc concentration are comparatively large, so that the process is easy to carry out.
- the sheets were treated with a conventional alkaline cleaner (pH 12, score 19 ⁇ 1) at 40 ⁇ 2 ° C while diving for 180 seconds, sprayed with tap water at room temperature for 20 seconds, then with a 1 g / l titanium phosphate Activation solution from room temperature conditioned by immersion for 30 seconds and then phosphated in immersion for 120 seconds (except for comparative example 3, in which the phosphating was carried out by spraying).
- a conventional alkaline cleaner pH 12, score 19 ⁇ 1
- rinsing was carried out first with tap water at room temperature for 30 seconds, then with fully demineralized water (electrical conductivity 0.2 ⁇ S x cm ⁇ 1) for 20 seconds and at 100 ° C. for a period dried for 180 sec.
- the paint is built up in three stages. First, a cationic electrocoat (Elecron 9400 from Kansai Paint Co., Ltd.) was applied.
- the layer thickness was 20 ⁇ m.
- the intermediate layer was produced with a lacquer based on melamine / alkyd resin (Amilac N-2 Sealer from Kansai Paint Co., Ltd.) in a spraying process with air as the blowing agent.
- the film with a thickness of 30 microns was after a waiting time of 10 to 20 minutes. at 140 ° C for 30 min. branded.
- a lacquer based on melamine / alkyd resin (Amilac White M3 from Kansai Paint Co., Ltd.) was used as the topcoat, which in the aforementioned manner, but with a film thickness of 40 microns was applied. The follow-up was done as mentioned above.
- the evaluation of the phosphate coating was carried out in terms of the appearance of the coating, layer weight, crystal size and phosphophyllite content in the phosphate coating (in the treatment of steel sheet).
- the weight difference between phosphated and phosphate-coated sheets was determined.
- the phosphate coating was detached with a chromic acid solution with a concentration of 50 g / l.
- the hot-dip galvanized sheets (plated) were freed from the phosphate coating with a solution which had been obtained by filling 20 g of ammonium dichromate and 480 g of concentrated ammonia solution with distilled water to 1 liter.
- the layer weight is given in g / m2.
- the size of the phosphate crystals was measured with an electron microscope by scanning line by line. The crystal size is listed in ⁇ m.
- the proportion of phosphophyllite in the phosphate coating was determined by the method of X-ray diffractometry using the diffraction intensities for the area (100) for phosphophyllite and (020) for hopeit. It is given as the ratio of phosphophyllite to phosphophyllite + hopeit (P / P + H).
- Sheets that had only been treated with the cationic electrocoat were cross-cut and exposed to the salt spray test with a 5% saline solution in accordance with JIS-Z-2371 for 1000 hours.
- the test result is given as paint infiltration along the cutting lines in mm.
- Sheets provided with the complete paint structure were immersed in deionized water of 40 ⁇ 1 ° C. after a waiting time of 24 h 120 h in such a way that the sheets did not come into contact with one another. The mixture was then dried in air at room temperature for 1 h.
- test sheets were then fixed at an angle of 45 ° C with the paint film upwards and exposed to 100 screw nuts with a diameter of approx. 6 mm, which came from a height of 4.5 m - calculated from the intersection of the cutting lines - through a guide tube with an internal diameter of approx. 50 mm (total weight of the screw nuts 198 ⁇ 0.5 g).
- the panels were then subjected to the salt spray test according to JIS-Z-2371 for 72 hours and then 92 hours of outdoor weathering.
- Test sheets provided with the complete paint structure were immersed in fully demineralized water at 40 ° C. for 20 days and then provided with a cross cut in such a way that 100 squares each having an edge length of 2 mm were produced.
- adhesive tape was pressed onto the surface having the squares and pulled off again. The evaluation was made by counting the paint squares remaining on the test sheet.
- Table 1 shows that if all process-essential parameters are observed exactly, excellent results are achieved in every respect.
- Table 2 clearly shows that Even changing just one parameter, even changing the way the phosphating solution is applied, is associated with considerable impairments in the quality of the paint film.
- the process according to the invention can achieve properties which are at least as good as when working at higher temperatures in accordance with the prior art.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP246088/86 | 1986-10-16 | ||
JP61246088A JPS63100185A (ja) | 1986-10-16 | 1986-10-16 | 冷延鋼板または亜鉛めっき鋼板のりん酸塩化成処理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0264811A1 true EP0264811A1 (fr) | 1988-04-27 |
EP0264811B1 EP0264811B1 (fr) | 1991-06-26 |
Family
ID=17143309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87115011A Expired - Lifetime EP0264811B1 (fr) | 1986-10-16 | 1987-10-14 | Procédé d'obtention de revêtements de phosphate |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0264811B1 (fr) |
JP (1) | JPS63100185A (fr) |
AU (1) | AU7978387A (fr) |
BR (1) | BR8705531A (fr) |
DE (2) | DE3734596A1 (fr) |
ES (1) | ES2022854B3 (fr) |
GB (1) | GB2199047B (fr) |
NZ (1) | NZ222135A (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0370535A1 (fr) * | 1988-11-25 | 1990-05-30 | Metallgesellschaft Aktiengesellschaft | Procédé pour appliquer des revêtements de phosphate |
EP0381190A1 (fr) * | 1989-01-31 | 1990-08-08 | Nihon Parkerizing Co., Ltd. | Solution de phosphatation pour structures complexes et méthode pour l'appliquer |
WO1995004842A1 (fr) * | 1993-08-06 | 1995-02-16 | Metallgesellschaft Aktiengesellschaft | Procede de phosphatage d'un feuillard d'acier galvanise une face |
EP0759096A1 (fr) * | 1994-05-11 | 1997-02-26 | Henkel Corporation | Procede de pre-traitement de materiaux en aluminum avant leur peinture |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595424A (en) * | 1985-08-26 | 1986-06-17 | Parker Chemical Company | Method of forming phosphate coating on zinc |
JPH0633465B2 (ja) * | 1986-04-26 | 1994-05-02 | 日本パ−カライジング株式会社 | りん酸塩処理した自動車車体の後処理方法 |
AU593156B2 (en) * | 1986-12-09 | 1990-02-01 | Nihon Parkerizing Company Limited | Process for the phosphate chemical conversion treatment of a steel material |
JPH0730455B2 (ja) * | 1988-09-27 | 1995-04-05 | 日本パーカライジング株式会社 | リン酸塩化成処理液 |
US20050145303A1 (en) | 2003-12-29 | 2005-07-07 | Bernd Schenzle | Multiple step conversion coating process |
DE102019134298A1 (de) | 2019-12-13 | 2021-06-17 | Thyssenkrupp Steel Europe Ag | Verfahren zum Herstellen eines Stahlflachprodukts mit einer metallischen Schutzschicht auf Basis von Zink und einer auf einer Oberfläche der metallischen Schutzschicht erzeugten Phosphatierschicht und derartiges Stahlflachprodukt |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0015021A1 (fr) * | 1979-02-23 | 1980-09-03 | Metallgesellschaft Ag | Procédé de préparation de surfaces métalliques avant dépôt de primaire par immersion électrophorétique |
EP0056881A1 (fr) * | 1981-01-22 | 1982-08-04 | Metallgesellschaft Ag | Procédé pour la phosphatation de métaux |
FR2512840A1 (fr) * | 1981-09-17 | 1983-03-18 | Amchem Prod | Solutions aqueuses acides pour revetements de phosphate de zinc et leurs concentres, procedes de revetement les mettant en oeuvre et solutions d'activation du metal utilisables dans ces procedes |
GB2148951A (en) * | 1983-11-02 | 1985-06-05 | Pyrene Chemical Services Ltd | Phosphating processes and compositions |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3597283A (en) * | 1969-10-08 | 1971-08-03 | Lubrizol Corp | Phosphating solutions for use on ferrous metal and zinc surfaces |
US3676224A (en) * | 1970-10-16 | 1972-07-11 | Lubrizol Corp | Phosphating solution with scale suppressing characteristics |
GB1414484A (en) * | 1972-05-03 | 1975-11-19 | Pyrene Chemical Services Ltd | Treatment of zinc surfaces |
GB1591039A (en) * | 1977-05-03 | 1981-06-10 | Pyrene Chemical Services Ltd | Processes and compositions for coating metal surfaces |
JPS5811515B2 (ja) * | 1979-05-11 | 1983-03-03 | 日本ペイント株式会社 | 金属表面にリン酸亜鉛皮膜を形成するための組成物 |
DE3118375A1 (de) * | 1981-05-09 | 1982-11-25 | Metallgesellschaft Ag, 6000 Frankfurt | Verfahren zur phosphatierung von metallen sowie dessen anwendung zur vorbehandlung fuer die elektrotauchlackierung |
ZA826595B (en) * | 1981-09-17 | 1983-07-27 | Amchem Prod | Composition and process for treating steel |
JPS58224172A (ja) * | 1982-06-24 | 1983-12-26 | Nippon Parkerizing Co Ltd | カチオン電着塗装前処理方法 |
DE3239088A1 (de) * | 1982-10-22 | 1984-04-26 | Chemische Werke Kluthe GmbH & Co, 6900 Heidelberg | Verfahren zur phosphatierung von metalloberflaechen |
DE3407513A1 (de) * | 1984-03-01 | 1985-09-05 | Gerhard Collardin GmbH, 5000 Köln | Verfahren zur zink-calcium-phosphatierung von metalloberflaechen bei niedriger behandlungstemperatur |
JPS60251279A (ja) * | 1984-05-25 | 1985-12-11 | Nippon Parkerizing Co Ltd | 鉄系材料のリン酸亜鉛系皮膜化成法 |
JPS6169974A (ja) * | 1984-09-12 | 1986-04-10 | Nippon Parkerizing Co Ltd | 電着塗装前処理用リン酸亜鉛系皮膜化成法 |
JPS6179782A (ja) * | 1984-09-27 | 1986-04-23 | Nippon Parkerizing Co Ltd | りん酸塩処理方法 |
JPH06169974A (ja) * | 1992-12-09 | 1994-06-21 | Terumo Corp | ポリオレフィン系医療容器用基材 |
-
1986
- 1986-10-16 JP JP61246088A patent/JPS63100185A/ja active Granted
-
1987
- 1987-10-12 NZ NZ222135A patent/NZ222135A/xx unknown
- 1987-10-13 DE DE19873734596 patent/DE3734596A1/de not_active Withdrawn
- 1987-10-14 DE DE8787115011T patent/DE3771026D1/de not_active Expired - Fee Related
- 1987-10-14 ES ES87115011T patent/ES2022854B3/es not_active Expired - Lifetime
- 1987-10-14 EP EP87115011A patent/EP0264811B1/fr not_active Expired - Lifetime
- 1987-10-15 AU AU79783/87A patent/AU7978387A/en not_active Abandoned
- 1987-10-16 GB GB8724339A patent/GB2199047B/en not_active Expired - Fee Related
- 1987-10-16 BR BR8705531A patent/BR8705531A/pt unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0015021A1 (fr) * | 1979-02-23 | 1980-09-03 | Metallgesellschaft Ag | Procédé de préparation de surfaces métalliques avant dépôt de primaire par immersion électrophorétique |
EP0056881A1 (fr) * | 1981-01-22 | 1982-08-04 | Metallgesellschaft Ag | Procédé pour la phosphatation de métaux |
FR2512840A1 (fr) * | 1981-09-17 | 1983-03-18 | Amchem Prod | Solutions aqueuses acides pour revetements de phosphate de zinc et leurs concentres, procedes de revetement les mettant en oeuvre et solutions d'activation du metal utilisables dans ces procedes |
GB2148951A (en) * | 1983-11-02 | 1985-06-05 | Pyrene Chemical Services Ltd | Phosphating processes and compositions |
Non-Patent Citations (1)
Title |
---|
CHEMICAL ABSTRACTS, Band 105, Nr. 6, August 1986, Seite 264, Zusammenfassung Nr. 47114s, Columbus, Ohio, US; & JP-A-61 69 974 (NIHON PARKERIZING CO., LTD, NIPPONDENSO CO., LTD) 10-04-1986 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0370535A1 (fr) * | 1988-11-25 | 1990-05-30 | Metallgesellschaft Aktiengesellschaft | Procédé pour appliquer des revêtements de phosphate |
GB2226829B (en) * | 1988-11-25 | 1993-01-20 | Ardrox Pyrene Ltd | Process of applying phosphate coatings to metals |
EP0381190A1 (fr) * | 1989-01-31 | 1990-08-08 | Nihon Parkerizing Co., Ltd. | Solution de phosphatation pour structures complexes et méthode pour l'appliquer |
WO1995004842A1 (fr) * | 1993-08-06 | 1995-02-16 | Metallgesellschaft Aktiengesellschaft | Procede de phosphatage d'un feuillard d'acier galvanise une face |
EP0759096A1 (fr) * | 1994-05-11 | 1997-02-26 | Henkel Corporation | Procede de pre-traitement de materiaux en aluminum avant leur peinture |
EP0759096A4 (fr) * | 1994-05-11 | 1997-06-04 | Henkel Corp | Procede de pre-traitement de materiaux en aluminum avant leur peinture |
US5795407A (en) * | 1994-05-11 | 1998-08-18 | Henkel Corporation | Method for pre-treating aluminum materials prior to painting |
Also Published As
Publication number | Publication date |
---|---|
DE3771026D1 (de) | 1991-08-01 |
JPS63100185A (ja) | 1988-05-02 |
GB8724339D0 (en) | 1987-11-18 |
DE3734596A1 (de) | 1988-04-21 |
JPH055899B2 (fr) | 1993-01-25 |
GB2199047B (en) | 1990-12-12 |
NZ222135A (en) | 1989-12-21 |
BR8705531A (pt) | 1988-05-24 |
EP0264811B1 (fr) | 1991-06-26 |
AU7978387A (en) | 1988-04-21 |
GB2199047A (en) | 1988-06-29 |
ES2022854B3 (es) | 1991-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69211004T2 (de) | Zinkphosphat konversionsüberzugszusammensetzung und verfahren | |
DE3234558C2 (fr) | ||
EP0796356B1 (fr) | Procede d'application de revetements de phosphate sur des surfaces metalliques | |
EP0478648B1 (fr) | Procede de production d'enduits en phosphate de zinc contenant du manganese et du magnesium | |
DE3650659T2 (de) | Verfahren zur Phosphatierung von Metalloberflächen | |
EP0056881A1 (fr) | Procédé pour la phosphatation de métaux | |
DE2155670A1 (de) | Phosphatumsetzungsueberzug auf aluminium, zink oder eisen | |
EP0578670B1 (fr) | Procede de phosphatation de surfaces metalliques | |
EP0359296B1 (fr) | Procédé de phosphatation | |
DE3932006A1 (de) | Verfahren zum aufbringen von phosphatueberzuegen | |
EP0264811B1 (fr) | Procédé d'obtention de revêtements de phosphate | |
DE3631667A1 (de) | Schichtbildende passivierung bei multimetall-verfahren | |
EP0410497B1 (fr) | Procédé pour le rinçage passif de couches de phosphates | |
DE2406411A1 (de) | Verfahren zur erhoehung der korrosionsbestaendigkeit von metallen | |
EP0486576B1 (fr) | Procede pour la realisation de revetements de phosphate de zinc comportant du manganese sur de l'acier galvanise | |
EP0111223B1 (fr) | Procédé de phosphatation de surfaces métalliques et compositions appropriées à ce procédé | |
DE19639596A1 (de) | Verfahren zur Phosphatierung von Stahlband | |
WO1994008074A1 (fr) | Procede de phosphatation de surfaces en acier galvanisees | |
EP1155163B1 (fr) | Procede pour la phosphatisation de surfaces en zinc ou en aluminium | |
DE4214992A1 (de) | Kupfer enthaltendes, nickelfreies Phosphatierverfahren | |
WO1990015167A1 (fr) | Procede pour appliquer sur des surfaces metalliques des couches de phosphate insoluble contenant du manganese | |
DE19544614A1 (de) | Verfahren zur Phospatierung von Metalloberflächen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR IT NL SE |
|
17P | Request for examination filed |
Effective date: 19880601 |
|
17Q | First examination report despatched |
Effective date: 19891116 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR IT NL SE |
|
REF | Corresponds to: |
Ref document number: 3771026 Country of ref document: DE Date of ref document: 19910801 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19941007 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19941014 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19941031 Year of fee payment: 8 Ref country code: BE Payment date: 19941031 Year of fee payment: 8 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 87115011.6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19951015 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19951030 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19951031 |
|
BERE | Be: lapsed |
Owner name: NIHON PARKERIZING CO. LTD Effective date: 19951031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960628 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87115011.6 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960917 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19961015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980801 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051014 |