EP0263373B1 - Procédé de préparation d'un alliage fritté résistant à l'abrasion - Google Patents

Procédé de préparation d'un alliage fritté résistant à l'abrasion Download PDF

Info

Publication number
EP0263373B1
EP0263373B1 EP87114025A EP87114025A EP0263373B1 EP 0263373 B1 EP0263373 B1 EP 0263373B1 EP 87114025 A EP87114025 A EP 87114025A EP 87114025 A EP87114025 A EP 87114025A EP 0263373 B1 EP0263373 B1 EP 0263373B1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
wear
phosphorus
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87114025A
Other languages
German (de)
English (en)
Other versions
EP0263373A2 (fr
EP0263373A3 (en
Inventor
Karl Leithner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Supervis
Original Assignee
Supervis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supervis filed Critical Supervis
Priority to AT87114025T priority Critical patent/ATE77846T1/de
Publication of EP0263373A2 publication Critical patent/EP0263373A2/fr
Publication of EP0263373A3 publication Critical patent/EP0263373A3/de
Application granted granted Critical
Publication of EP0263373B1 publication Critical patent/EP0263373B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%

Definitions

  • the invention relates to a method for producing a highly wear-resistant sintered alloy.
  • Chilled cast iron is an iron-carbon alloy, in which the carbon and silicon content, in addition to the other elements manganese, phosphorus and sulfur, as well as nickel and chromium contents, are adjusted so that the base piece either completely by cooling in the molding sand or only by the action of quenching plates Solidified surface layer white. The carbon is therefore not excreted as graphite. The structure then consists of ledeburite with cementite or decayed austenite. Chilled cast iron is one of the best known, most wear-resistant alloys. The wear resistance is mostly achieved by cementite, more rarely by martensite, the latter can be achieved by appropriate alloying or by quenching. Chilled cast iron is practically not deformable.
  • Powder metallurgy has proven itself for the production of bulk articles with qualified and specified properties.
  • an iron-molybdenum-nickel sintered alloy with a phosphorus additive has been developed (DE-PS 26 13 255, AT-PS 361 959), and the objects made therefrom have a tensile strength of 600 N / mm2 and more, whereby these Parts are manufactured using the simple sintering technique and without additional heat treatment.
  • Workpieces sintered from these alloys achieve the desired tensile strength, but not the wear resistance of chilled castings.
  • an alloy of the desired composition is melted and atomized into powder using the conventional method. Since this process takes place under high-purity protective gas, it is ensured that the oxygen-affine element chromium also dissolves in the alloy.
  • the powder obtained in this way is mixed with elemental carbon (graphite), pressed and sintered. Chromium forms carbides during sintering, which significantly improve wear resistance. The interaction of phosphorus and carbon cause the formation of a liquid phase and thus increase the sintering activity. Parts that are made from this pre-alloyed iron powder have a high shrinkage, the particles of the powder are very hard and therefore difficult to compress. The longitudinal shrinkage is in the range of 5%.
  • the aim of the invention is therefore to propose a method for producing a highly wear-resistant sintered alloy with phosphorus additive, with which mass parts can be produced in essentially conventional sintering technology and without additional hardening treatment, with regard to their wear properties Chilled castings are equivalent. They should have a surface hardness of approx. 50 Rockwell (RC) and only a slight shrinkage, so the powder must be easy to compress.
  • the workpiece manufactured with this sintered alloy should retain the character of powder metallurgical production, so it should have a not inconsiderable proportion of pores, which experience has shown to have a positive effect on the emergency running properties.
  • the method for producing the sintered alloy for solving this complex task is defined by the features of patent claim 1.
  • the method according to the invention for producing the highly wear-resistant sintered alloy is characterized in that the carbon content by weight is up to 5 times as large as the phosphorus content.
  • GB-A-2 156 851 gives a wear-resistant sintered alloy of 1.5 - 3.5% C, 0.3 - 1.0% P, 0.5 - 3.0% Mo, 0.5 - 5.0% Ni and / or Cu (where Cu can replace Ni with a conversion rate of 0.5 for Cu), the rest iron is phosphated.
  • the examples given contain Ni or Cu alone or both components.
  • the state of the art says nothing more than that the elements manganese, silicon, sulfur and phosphorus make up no more than 2 percent by weight. It is reasonable to assume that the four components are approximately equally important in this summary. Assuming a proportion of 0.5 percent by weight for each of these four alloy elements, the prior art makes only a fraction of the inventive concept, namely only when the carbon content is above 1.5%. If the relevant specialist works according to the teaching of the prior art, his success rate with respect to the present invention is (2.0-1.5): (2.0-0.3), therefore, less than 30%.
  • Bulk parts made from this alloy according to the invention do not have to be subjected to a hardening process, they have surface hardnesses in the range of approximately 50 Rockwell (RC) and only slight shrinkage or growth. They also have the character of a powder metallurgically manufactured workpiece, that is to say they have a relatively high proportion of pores, which favors the emergency running properties.
  • the constituents of the sintered alloy are mixed in elemental form with iron powder or diffusion alloyed, the powder obtained in this way is shaped in a press tool to the desired part under pressure, for example under pressures of 400-1000 N / mm 2 and then at about 1120 ° C.
  • the sintering process in a manner known per se essentially comprising three immediately consecutive time phases, namely the smoking of the lubricant, the actual sintering and the cooling, these processes taking place under protective gas.
  • the good compressibility is ensured by the fact that the components are elementary in the alloyed powder and thus the good deformability of pure metals can be used.
  • the cementite network can be seen in the micrograph as a white network. It encloses almost all grains. Its thickness is less than 3 ⁇ m, in most places the thickness is 1 ⁇ m.
  • the white dots that can be seen in a few places inside the grain are cementite balls.
  • the structure of the grains consists of acicular (needle-like) martensite, which is embedded in residual austenite.
  • the martensite appears in the form of dark needles, the resaustenite lies in between.
  • a volume fraction of 40% for the residual austenite is to be expected with this alloy.
  • a volume fraction of 14% there are areas rich in austenite (light spots in Fig. 1), which are partially intersected by the cementite network.
  • the slight gray coloration of the residual austenite could indicate a partial transformation into lower bainite by the tempering treatment.
  • Residual austenite can have an adverse effect on the dimensional stability of the components. Nevertheless, the appearance of residual austenite in the structure does not have to be a disadvantage in terms of wear. With increasing volume of residual austenite, the resistance to abrasive wear increases. The conversion of the residual austenite into bainite represents an advantage in the case of sliding wear. With the same hardness, a bainitic structure has better sliding wear properties than a martensitic one.
  • micro load hardness tests showed a hardness of 612 ⁇ 23 HV 0.05 for the martensitic grains. In areas with a high proportion of austenite (or lower bainite), the hardness is significantly lower at 476 ⁇ 88.
  • the cementite network is stronger than that of the alloy discussed first. It encloses all grains.
  • the thickness is between 1 ⁇ m and 15 ⁇ m, with particularly wide areas of the cementite network being observed at triple grain boundary points.
  • the cementite grains that occur sporadically in the alloy discussed first occur here increasingly.
  • Well-rounded cementite grains (hardness 1018 HV 0.025) can be seen in almost every grain.
  • the martensitic areas are somewhat harder than those of the alloy discussed first. In contrast, the remaining austenite areas are softer at 353 ⁇ 36 HV 0.05.
  • the cementite network has the expected hardness of 1035 ⁇ 67 HV 0.05.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Claims (2)

  1. Procédé de préparation d'un alliage fritté résistant à l'abrasion, qui est composé de 1,0 à 5,0 % en poids de nickel, de 1,0 à 3,0 % en poids de cuivre, de 0,3 à 1 % en poids de molybdène, de 1,0 à 2,5 % en poids de carbone ainsi que de phosphore et le reste de fer, dans lequel la teneur en phosphore se situe dans la zone de 0,3 à 0,6 % en poids et la teneur en carbone est ajustée par rapport à la teneur en phosphore, de façon qu'elle dépasse cette dernière en poids au moins du double.
  2. Procédé selon la revendication 1, caractérisé en ce que le contenu en poids de carbone est jusqu'à 5 fois supérieur à celui de phosphore.
EP87114025A 1986-10-04 1987-09-25 Procédé de préparation d'un alliage fritté résistant à l'abrasion Expired - Lifetime EP0263373B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87114025T ATE77846T1 (de) 1986-10-04 1987-09-25 Verfahren zur herstellung einer hochverschleissfesten sinterlegierung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863633879 DE3633879A1 (de) 1986-10-04 1986-10-04 Hochverschleissfeste eisen-nickel-kupfer-molybdaen-sinterlegierung mit phosphorzusatz
DE3633879 1986-10-04

Publications (3)

Publication Number Publication Date
EP0263373A2 EP0263373A2 (fr) 1988-04-13
EP0263373A3 EP0263373A3 (en) 1989-08-02
EP0263373B1 true EP0263373B1 (fr) 1992-07-01

Family

ID=6311076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114025A Expired - Lifetime EP0263373B1 (fr) 1986-10-04 1987-09-25 Procédé de préparation d'un alliage fritté résistant à l'abrasion

Country Status (5)

Country Link
US (1) US4909843A (fr)
EP (1) EP0263373B1 (fr)
AT (1) ATE77846T1 (fr)
DE (2) DE3633879A1 (fr)
ES (1) ES2033761T3 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520093B2 (ja) * 1991-02-27 2004-04-19 本田技研工業株式会社 二次硬化型高温耐摩耗性焼結合金
GB9405946D0 (en) * 1994-03-25 1994-05-11 Brico Eng Sintered valve seat insert
SE9401823D0 (sv) * 1994-05-27 1994-05-27 Hoeganaes Ab Nickel free iron powder
US5552109A (en) * 1995-06-29 1996-09-03 Shivanath; Rohith Hi-density sintered alloy and spheroidization method for pre-alloyed powders
JP3447030B2 (ja) * 1996-01-19 2003-09-16 日立粉末冶金株式会社 耐摩耗性焼結合金およびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549127B2 (fr) * 1971-06-28 1979-04-21
US3837816A (en) * 1972-09-05 1974-09-24 Nippon Piston Ring Co Ltd Thermal and abrasion resistant sintered alloy
JPS5835256B2 (ja) * 1976-02-11 1983-08-01 住友電気工業株式会社 組合せ摺動部材
DE2613255C2 (de) * 1976-03-27 1982-07-29 Robert Bosch Gmbh, 7000 Stuttgart Verwendung einer Eisen-Molybdän-Nickel-Sinterlegierung mit Phosphorzusatz zur Herstellung hochfester Werkstücke
SE7612279L (sv) * 1976-11-05 1978-05-05 British Steel Corp Finfordelat glodgat stalpulver, samt sett att framstella detta.
GB1576143A (en) * 1977-07-20 1980-10-01 Brico Eng Sintered metal articles
JPS609587B2 (ja) * 1978-06-23 1985-03-11 トヨタ自動車株式会社 耐摩耗性焼結合金
US4170474A (en) * 1978-10-23 1979-10-09 Pitney-Bowes Powder metal composition
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine
JPS55145152A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Sintered alloy material for internal combustion engine
JPS55164060A (en) * 1979-05-07 1980-12-20 Nippon Piston Ring Co Ltd Abrasion resistant iron-based sintered alloy material
JPS5918463B2 (ja) * 1980-03-04 1984-04-27 トヨタ自動車株式会社 耐摩耗性焼結合金およびその製法
JPS5767148A (en) * 1980-10-09 1982-04-23 Mitsubishi Metal Corp Sintered roller chain bush containing coil
JPS5881954A (ja) * 1981-11-09 1983-05-17 Mitsubishi Metal Corp 耐摩耗性および自己潤滑性にすぐれた高強度鉄基焼結合金
JPS5993855A (ja) * 1982-11-18 1984-05-30 Mitsubishi Metal Corp 高強度Fe基焼結材料
JPS6070163A (ja) * 1983-09-28 1985-04-20 Nippon Piston Ring Co Ltd 耐摩耗性焼結合金部材
JPS6075501A (ja) * 1983-09-29 1985-04-27 Kawasaki Steel Corp 高強度焼結部品用の合金鋼粉
JPS60152658A (ja) * 1984-01-20 1985-08-10 Nissan Motor Co Ltd 耐摩耗性焼結合金
JPS60169541A (ja) * 1984-02-10 1985-09-03 Hitachi Powdered Metals Co Ltd 析出硬化型焼結合金の製造方法
JPS61243156A (ja) * 1985-04-17 1986-10-29 Hitachi Powdered Metals Co Ltd 耐摩耗性鉄系焼結合金およびその製造方法
AT382334B (de) * 1985-04-30 1987-02-10 Miba Sintermetall Ag Nocken zum aufschrumpfen auf einer nockenwelle und verfahren zur herstellung eines solchen nockens durch sintern
JPS62271914A (ja) * 1986-04-11 1987-11-26 Nippon Piston Ring Co Ltd 焼結カムシヤフト

Also Published As

Publication number Publication date
DE3633879C2 (fr) 1992-01-16
DE3633879A1 (de) 1988-04-14
US4909843A (en) 1990-03-20
ATE77846T1 (de) 1992-07-15
EP0263373A2 (fr) 1988-04-13
EP0263373A3 (en) 1989-08-02
DE3780114D1 (de) 1992-08-06
ES2033761T3 (es) 1993-04-01

Similar Documents

Publication Publication Date Title
DE4031408C2 (de) Gesintertes Maschinenteil
DE2846122C2 (de) Sinterlegierung für die Herstellung von Gleitelementen für Motoren
DE2625212C2 (de) Pulvermischung zur Herstellung von Sinterkörpern
DE102012018964B4 (de) Auf Eisen-Basis gesinterter Gleitkörper und Verfahren zu seiner Herstellung
DE60203893T2 (de) Verfahren zur herstellung eines kupfer enthaltenden gesinterten eisenmateriales
DE69114243T2 (de) Sintereisenlegierung.
DE3853000T2 (de) Zusammengesetztes legierungsstahlpulver und gesinterter legierungsstahl.
DE4036614A1 (de) Ventilsitz aus einer gesinterten fe-basis-legierung mit hoher verschleissfestigkeit
DE3881979T2 (de) Legiertes Stahlpulver für Pulvermetallurgische Verfahren.
DE2414909A1 (de) Stahlpulver
DE3232001C2 (de) Verschleißfeste Sinterlegierung, Verfahren zu deren Herstellung und deren Verwendung
DE4340758C2 (de) Verwendung einer Sinterlegierung für Synchronringe
DE2201515C3 (de) Verfahren zur Herstellung einer bei hohen Temperaturen verschleißfesten Sinterlegierungen
DE60002470T2 (de) Sinterstahlwerkstoff
DE19521941C1 (de) Verfahren und Vorrichtung zur Herstellung von Sinterteilen
DE68919635T2 (de) Verfahren zur Herstellung einer mittels Nitriddispersion verstärkten Legierung.
DE2362026A1 (de) Verfahren zur oberflaechenbehandlung von werkstuecken und halbzeugen aus aluminium oder aluminiumlegierungen
WO2001079575A1 (fr) Acier allie a l'azote, compacte par pulverisation, procede permettant de le produire et materiau composite produit a partir dudit acier
EP0263373B1 (fr) Procédé de préparation d'un alliage fritté résistant à l'abrasion
DE3619664C2 (fr)
DE3730082A1 (de) Verfahren zur herstellung eisenhaltiger sinterlegierungen mit erhoehter abriebfestigkeit
DE19708197B4 (de) Gesintertes Gleitelement und Verfahren zu dessen Herstellung
DE2728287C2 (fr)
DE3785746T2 (de) Abriebfeste, gesinterte legierung und deren herstellung.
EP0719349B1 (fr) Procede de production des articles frittes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19891003

17Q First examination report despatched

Effective date: 19910524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 77846

Country of ref document: AT

Date of ref document: 19920715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3780114

Country of ref document: DE

Date of ref document: 19920806

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2033761

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87114025.7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050831

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050909

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050921

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050930

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20051223

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060913

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060925

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060925

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002