EP0255473B1 - Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements - Google Patents
Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements Download PDFInfo
- Publication number
- EP0255473B1 EP0255473B1 EP87810287A EP87810287A EP0255473B1 EP 0255473 B1 EP0255473 B1 EP 0255473B1 EP 87810287 A EP87810287 A EP 87810287A EP 87810287 A EP87810287 A EP 87810287A EP 0255473 B1 EP0255473 B1 EP 0255473B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resonance
- protuberances
- sound
- vibration
- element according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 29
- 229920003023 plastic Polymers 0.000 claims description 15
- 239000004033 plastic Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 5
- 241000826860 Trapezium Species 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- 239000004743 Polypropylene Substances 0.000 description 7
- -1 polypropylene Polymers 0.000 description 7
- 239000004800 polyvinyl chloride Substances 0.000 description 7
- 229920000915 polyvinyl chloride Polymers 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000002985 plastic film Substances 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24521—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
- Y10T428/24537—Parallel ribs and/or grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/2457—Parallel ribs and/or grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24661—Forming, or cooperating to form cells
Definitions
- the present invention relates to a method for producing an airborne sound-absorbing component which has a plurality of cup-shaped protuberances made of compact PVC film or foamed PP film, the cover surfaces of which are effective as resonance surfaces and are excited to vibrate by impacting sound energy, the sound energy being at least partially is absorbed and converted into heat, as well as a component produced by this method and a preferred use of this component.
- Components of the type described are usually made from a plastic film. They have a dense surface, a low mass and are resistant to most acids, oils, solvents as well as to relatively high temperatures and are therefore preferably used for the absorption of airborne noise in noisy workshops and for lining the housing of noise sources, especially internal combustion engines.
- the best known embodiments of such components can be assigned to one of two different groups.
- one group DE-OS 27 58 041
- the rear openings ie the openings of the protuberances facing away from the incident sound field
- the rear openings of the protuberances are closed, so that the mass of the vibrating cover surface with the enclosed air forms a physical mass-spring system with a clear resonance frequency.
- CH 626 936 the rear openings of the protuberances are not closed.
- the components of both groups are preferably arranged in front of and at a distance from a sound-reflecting wall.
- the resonance frequency of the cover or resonance surface depends on the shape, size and mass of this surface, on the height of the protuberance and on the mechanical loss factor and the modulus of elasticity of the used material is dependent. Practical experience has confirmed that even relatively small differences in the dimensions of the protuberances severely impair the course of both the sound absorption depending on the frequency of the incident sound and the strength of the sound absorption. Despite these findings, no method for producing such components is known to date which enables the shape and dimensions of the resonance surfaces to be optimized for a given use, taking into account the material properties.
- the maximum permissible height of the protuberances is often predetermined by the shape and dimensions of the sound source or its cladding and is usually smaller than in the known embodiments mentioned above.
- the present invention was therefore based on the object of creating a method which enables the production of airborne sound-absorbing components which have optimal absorption properties as a function of the permissible height of the protuberances.
- the method according to the invention makes it possible to form the values important for effective sound absorption by resonance vibrations, namely the thickness and the size of the resonance surface as a function of the height of the protuberance, and thus to systematically and reproducibly achieve values of sound absorption that have hitherto not been achieved or, at best, at random.
- FIGS 1a and 1b are not drawn to scale for clarity.
- the airborne sound absorbing component shown in FIGS. 1a and 1b contains a base area 10, the peripheral edge of which is provided with a stabilizing frame 11.
- the base area has a plurality of similar truncated pyramidal protuberances, of which simply the protuberance 12 is simply identified by a reference symbol.
- Each protuberance contains four lateral surfaces 13, 14, 15 and 16 and a cover surface 17.
- the sizes of the protuberances which are important for the present invention are their height h and the thickness d and the size A of the cover surface which acts as the determining resonance surface. Sound absorption measurements have shown that the horizontal distance between adjacent protuberances and the angle of inclination of the side walls to the base surface have little influence on the course of the sound absorption coefficient depending on the frequency.
- the protuberances are therefore preferably as close to one another and the side walls are designed to be as slightly inclined as the manufacturing process and practical requirements allow.
- a plastic film can simply be thermoformed to produce the component. However, it is also possible to manufacture the component in plastic injection molding or to glue or weld protuberances formed from individual sub-areas connected to one another on a carrier film.
- Suitable plastics are, for example, polyvinyl chloride, polyethylene, polypropylene, acrylonitrile-butadiene-styrene polymer or polycarbonate, which can be used both in compact and in foamed form.
- the optimal thickness d of the resonance surface becomes smaller as the height h of the protuberance increases.
- the curves confirm that the thickness d of the resonance surface is within the range of the height h of the protuberance which is important for the practical use of the component, i.e. between 10 and 35 mm is most dependent on this height.
- the optimal size A of the resonance surface is approximately proportional to the resonance surface thickness d.
- Curve 30 shows the typical course of the sound level as a function of the frequency for an internal combustion engine (four-stroke gasoline engine) with four cylinders and at idle at about 800 revolutions / minute. It goes without saying that the exact course of this curve is determined not only by the type of engine mentioned, the number of revolutions and the load, but also by specific design features, the operating temperature and other parameters. However, measurements on different motors under different operating conditions have shown that the curve 30 corresponds to an average value. Curve 30 shows that the sound level is low at frequencies up to 1000 Hz, increases with increasing frequencies, reaches the maximum value at 1600 Hz, slowly decreases until around 2500 Hz and rapidly decreases at even higher frequencies.
- FIG. 4 shows the strength of the sound absorption as a function of the frequency of the incident sound for three different embodiments of airborne sound absorbing components. All three components have truncated pyramid-shaped protuberances on the back, as in the 1a and 1b is shown. In all three embodiments, the plastic foils were deep-drawn in such a way that the side surfaces are inclined by approximately 20 ° from the vertical and the protuberances are 5 mm apart in the plane of the base surface.
- the height of the protuberances and the size of the resonance surfaces are the same for all three embodiments and are 30 mm and 35 cm2. In these embodiments, the resonance surfaces are rectangular and have an aspect ratio of approximately 0.8: 1.
- Curve 41 shows the sound absorption of a component made of foamed polyethylene, in which the thickness of the resonance surface is 1.5 mm. This curve rises evenly from values of low sound absorption at low frequencies to a maximum sound absorption corresponding to ⁇ s ⁇ 0.8 at 1000 Hz, then drops only slightly up to frequencies of around 1250 Hz and then drops steeply to ⁇ s up to around 1500 hz ⁇ 0.3.
- Curve 42 shows the sound absorption of a component made of compact PVC, in which the thickness of the resonance surface is 0.15 mm.
- the curve begins at higher frequencies than curve 41, rises steeply and reaches a relatively narrow maximum value of ⁇ s ⁇ 0.9 for a frequency of 1000 Hz and then drops steeply again until ⁇ s ⁇ 0.45 at 1500 Hz.
- Curve 43 shows the sound absorption of a component made of foamed polypropylene, in which the thickness of the resonance surfaces is 3 mm. This curve rises to frequencies of approximately 1250 Hz similar to curve 41, but then continues to rise to a maximum value of more than 0.95 in the frequency range around 1500 Hz and then falls more flatly than curves 41 and 42 and reaches a value of ⁇ s ⁇ 0 , 5 at a frequency of 4000 Hz.
- the method according to the invention and a component produced using this method can be adapted to special working conditions or uses. It has already been mentioned that instead of the films used for the exemplary embodiments described, other plastic films with similar properties can also be used. It is also possible to design the component differently than the simple plastic film provided with protuberances. For certain uses, it may be advantageous to cover the back of the component with a porous, sound-absorbing material or to insert or put a "cover” of such material in or on the rear openings of the protuberances. It is also possible to produce a combined component with two components of the type described. Of the simple components used for this, one is to be provided with protuberances that are somewhat higher and whose base area is somewhat larger than the other.
- protuberances enables the components to be placed on one another in such a way that only the webs of the base surfaces arranged between the protuberances lie on one another. Then the overlapping protuberances form a closed and a rearwardly open resonance space, with which the sound absorption and its frequency range can be further improved or expanded. Finally, it is also possible to produce a combined component from more than two components.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Laminated Bodies (AREA)
- Building Environments (AREA)
- Transducers For Ultrasonic Waves (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2006/86 | 1986-05-16 | ||
CH200686A CH671848B (sv) | 1986-05-16 | 1986-05-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0255473A1 EP0255473A1 (de) | 1988-02-03 |
EP0255473B1 true EP0255473B1 (de) | 1992-01-29 |
Family
ID=4223700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87810287A Expired - Lifetime EP0255473B1 (de) | 1986-05-16 | 1987-05-07 | Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements |
Country Status (9)
Country | Link |
---|---|
US (1) | US4755416A (sv) |
EP (1) | EP0255473B1 (sv) |
JP (1) | JPH0818389B2 (sv) |
BR (1) | BR8702500A (sv) |
CA (1) | CA1277922C (sv) |
CH (1) | CH671848B (sv) |
DE (1) | DE3776450D1 (sv) |
ES (1) | ES2030092T3 (sv) |
MX (1) | MX168844B (sv) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5340054A (en) * | 1991-02-20 | 1994-08-23 | The United States Of America As Represented By The Secretary Of The Navy | Suppressor of oscillations in airframe cavities |
DE4334984C1 (de) * | 1993-10-14 | 1995-01-19 | Freudenberg Carl Fa | Schall absorbierendes Formteil |
DE4414566C2 (de) * | 1994-04-27 | 1997-11-20 | Freudenberg Carl Fa | Luftschalldämpfer |
CA2197439C (en) * | 1994-08-12 | 2006-06-13 | Eduard Bruck | Sound absorber |
US5904318A (en) * | 1996-12-18 | 1999-05-18 | Towfiq; Foad | Passive reduction of aircraft fuselage noise |
US5823467A (en) * | 1997-04-01 | 1998-10-20 | Mcdonnell Douglas Corp | Passive damping wedge |
US6471157B1 (en) * | 1999-03-22 | 2002-10-29 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Device and method for reducing aircraft noise |
US6598701B1 (en) * | 2000-06-30 | 2003-07-29 | 3M Innovative Properties Company | Shaped microperforated polymeric film sound absorbers and methods of manufacturing the same |
FR2823467B1 (fr) * | 2001-04-17 | 2005-07-15 | Sofitec Sa | Produit thermoforme pour panneau d'isolation acoustique et/ou thermique |
US7434660B2 (en) * | 2001-06-21 | 2008-10-14 | Kabushiki Kaisha Kobe Seiko Sho | Perforated soundproof structure and method of manufacturing the same |
DE10323045A1 (de) * | 2003-05-20 | 2004-12-09 | Behr Gmbh & Co. Kg | Gehäuse, insbesondere Luftführungsgehäuse und Verfahren zur Herstellung eines solchen |
EP1571650B1 (de) * | 2004-03-03 | 2009-05-13 | Rolls-Royce Deutschland Ltd & Co KG | Anordnung zur Erzeugung von Schallfeldern mit bestimmter modaler Zusammensetzung |
JP2007223341A (ja) * | 2006-02-21 | 2007-09-06 | Nagoya Oil Chem Co Ltd | ドア用シール材 |
ITRA20100013A1 (it) * | 2010-05-04 | 2011-11-05 | Simone Meneghel | "pannello fonoisolante frangi-onda" |
CN104507797B (zh) * | 2012-07-06 | 2017-11-07 | C&D佐迪阿克公司 | 带有声学材料的飞机内部面板 |
US9279258B2 (en) * | 2013-04-18 | 2016-03-08 | Viconic Defense Inc. | Recoiling energy absorbing system with lateral stabilizer |
US9194136B2 (en) * | 2013-04-18 | 2015-11-24 | Viconic Defense Inc. | Recoiling energy absorbing system |
KR101655522B1 (ko) * | 2014-07-30 | 2016-09-07 | 현대자동차주식회사 | 흡음성능이 우수한 흡차음 보드 부품의 제조방법 및 그에 의해 제조된 흡차음 보드 부품 |
US10220736B2 (en) | 2016-10-25 | 2019-03-05 | Viconic Defense Inc. | Seat impact energy absorbing system |
US10607589B2 (en) | 2016-11-29 | 2020-03-31 | Milliken & Company | Nonwoven composite |
US10788091B2 (en) | 2017-08-22 | 2020-09-29 | Oakwood Energy Management, Inc. | Mass-optimized force attenuation system and method |
US11585102B2 (en) | 2018-11-07 | 2023-02-21 | Viconic Sporting Llc | Load distribution and absorption underpayment system |
US10982451B2 (en) | 2018-11-07 | 2021-04-20 | Viconic Sporting Llc | Progressive stage load distribution and absorption underlayment system |
JPWO2020162602A1 (ja) * | 2019-02-07 | 2021-12-09 | 三菱ケミカル株式会社 | 遮音シート及び遮音構造体 |
CN112116901B (zh) * | 2020-09-18 | 2024-03-05 | 北京市燃气集团有限责任公司 | 一种改善中低压燃气调压箱声学主观评价指标的方法 |
CN112735368A (zh) * | 2020-12-24 | 2021-04-30 | 江苏建声影视设备研制有限公司 | 一种环保型防火吸声板 |
CN113757817B (zh) * | 2021-10-22 | 2022-11-29 | 广东美芝制冷设备有限公司 | 隔声结构、空调室外机及空调器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2069413A (en) * | 1935-12-06 | 1937-02-02 | Burgess Lab Inc C F | Sound and vibration damping construction |
US3050426A (en) * | 1958-11-21 | 1962-08-21 | Livermore Corp H F | Vibration absorbing material and method for making the same |
US3026224A (en) * | 1959-05-01 | 1962-03-20 | Fabreeka Products Co | Vibration absorbing pad |
US3231454A (en) * | 1961-04-14 | 1966-01-25 | Cadillac Products | Cushioning material |
GB1550226A (en) * | 1975-06-04 | 1979-08-08 | Scott Paper Co | Perforated embossed film or foil to foam laminates |
IE45892B1 (en) * | 1977-09-12 | 1982-12-29 | Lapeyre P | Exercise monitor apparatus and method |
DE2758041C2 (de) * | 1977-12-24 | 1985-10-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München | Verwendung eines aus mindestens zwei übereinander angeordneten Folien, insbesondere Kunststoffolien, bestehenden Bauelements |
CH626936A5 (en) * | 1980-06-09 | 1981-12-15 | Matec Holding | Sound-absorbing structural element |
US4482592A (en) * | 1981-02-23 | 1984-11-13 | The B. F. Goodrich Company | Vibration isolation pad |
DE3233654C2 (de) * | 1982-09-10 | 1986-01-16 | Ewald Dörken AG, 5804 Herdecke | Schallabsorbierendes Bauelement |
US4531609A (en) * | 1983-08-06 | 1985-07-30 | Midwest Acounst-A-Fiber | Sound absorption panel |
-
1986
- 1986-05-16 CH CH200686A patent/CH671848B/de not_active IP Right Cessation
-
1987
- 1987-05-07 DE DE8787810287T patent/DE3776450D1/de not_active Expired - Lifetime
- 1987-05-07 ES ES198787810287T patent/ES2030092T3/es not_active Expired - Lifetime
- 1987-05-07 EP EP87810287A patent/EP0255473B1/de not_active Expired - Lifetime
- 1987-05-13 US US07/049,179 patent/US4755416A/en not_active Expired - Lifetime
- 1987-05-14 MX MX006482A patent/MX168844B/es unknown
- 1987-05-14 JP JP62118066A patent/JPH0818389B2/ja not_active Expired - Fee Related
- 1987-05-15 CA CA000537264A patent/CA1277922C/en not_active Expired - Fee Related
- 1987-05-15 BR BR8702500A patent/BR8702500A/pt not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE3776450D1 (de) | 1992-03-12 |
MX168844B (es) | 1993-06-11 |
CA1277922C (en) | 1990-12-18 |
JPS6327242A (ja) | 1988-02-04 |
US4755416A (en) | 1988-07-05 |
JPH0818389B2 (ja) | 1996-02-28 |
ES2030092T3 (es) | 1992-10-16 |
BR8702500A (pt) | 1988-02-23 |
CH671848B (sv) | 1989-09-29 |
EP0255473A1 (de) | 1988-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0255473B1 (de) | Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements | |
DE3615360C2 (sv) | ||
DE2921050C2 (sv) | ||
EP0781445B1 (de) | Schichtenabsorber zum absorbieren von akustischen schallwellen | |
DE3044865C2 (sv) | ||
EP0474593B1 (de) | Schallisolierendes und schalldämpfendes Verbundwerk | |
DE68926283T2 (de) | Dachverkleidungen mit verbesserten Schalldämmungseigenschaften | |
EP0806030B1 (de) | l/4-SCALLABSORBER | |
EP0962013B1 (de) | Lambda/4-absorber mit einstellbarer bandbreite | |
EP0131616A1 (de) | Schallabsorptionsplatte. | |
DE2424933C2 (de) | Resonanzwand | |
DE2724172A1 (de) | Schallschluckender schichtstoff | |
DE10228395C1 (de) | Schall-Absorber | |
DE69028749T2 (de) | Schalldämpfer | |
DE4334984C1 (de) | Schall absorbierendes Formteil | |
EP0605784A1 (de) | Akustikplatte | |
DE3603069C2 (sv) | ||
AT402435B (de) | Abschlussteil oder abschirmteil für motorgehäuse von brennkraftmaschinen | |
EP0046559A2 (de) | Resonatorschallabsorptionselement | |
EP2575127B1 (de) | Schallabsorptionselement | |
CH626936A5 (en) | Sound-absorbing structural element | |
DE20017581U1 (de) | Matratze | |
DE2444737A1 (de) | Leichtbauelement und verfahren zu dessen herstellung | |
EP1406792A1 (de) | Schallabschirmelement | |
DE2445685B2 (de) | Verfahren zur herstellung eines keramikresonators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19880217 |
|
17Q | First examination report despatched |
Effective date: 19900102 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3776450 Country of ref document: DE Date of ref document: 19920312 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2030092 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87810287.0 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980427 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19980514 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980531 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990508 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87810287.0 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19991201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20010503 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040421 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040429 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040729 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20050407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050507 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050507 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060131 |