EP0255473A1 - Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements - Google Patents

Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements Download PDF

Info

Publication number
EP0255473A1
EP0255473A1 EP87810287A EP87810287A EP0255473A1 EP 0255473 A1 EP0255473 A1 EP 0255473A1 EP 87810287 A EP87810287 A EP 87810287A EP 87810287 A EP87810287 A EP 87810287A EP 0255473 A1 EP0255473 A1 EP 0255473A1
Authority
EP
European Patent Office
Prior art keywords
constant
component
resonance
protuberances
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87810287A
Other languages
English (en)
French (fr)
Other versions
EP0255473B1 (de
Inventor
Alfred Schneider
Hans Rudolf Tschudi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matec Holding AG
Original Assignee
Matec Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matec Holding AG filed Critical Matec Holding AG
Publication of EP0255473A1 publication Critical patent/EP0255473A1/de
Application granted granted Critical
Publication of EP0255473B1 publication Critical patent/EP0255473B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24537Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24661Forming, or cooperating to form cells

Definitions

  • the present invention relates to a method for producing an airborne sound-absorbing component which has a plurality of cup-shaped protuberances, the surfaces of which are excited to vibrate by impinging sound energy, the sound energy being at least partially absorbed and converted into heat, and a component and produced by this method a preferred use of this component
  • Components of the type described are usually made from a plastic film. They have a dense surface, a low mass and are resistant to most acids, oils, solvents as well as to relatively high temperatures and are therefore preferably used for the absorption of airborne noise in noisy workshops and for lining the housing of noise sources, especially internal combustion engines.
  • the best known embodiments of such components can be assigned to one of two different groups.
  • one group DE-OS 27 58 041
  • the rear openings ie the openings of the protuberances facing away from the incident sound field
  • the rear openings of the protuberances are closed so that the mass of the vibrating cover surface with the enclosed air forms a physical mass-spring system with a clear resonance frequency.
  • CH 626 936 the rear openings of the protuberances are not closed.
  • the components of both groups are preferably arranged in front of and at a distance from a sound-reflecting wall.
  • the resonance frequency of the cover or resonance surface depends on the shape, size and mass of this surface, on the height of the protuberance and on the mechanical loss factor and the modulus of elasticity of the used material is dependent. Practical experience has confirmed that even relatively small differences in the dimensions of the protuberances severely impair the course of both the sound absorption depending on the frequency of the incident sound and the strength of the sound absorption. Despite these findings, no method for producing such components is known to date which enables the shape and dimensions of the resonance surfaces to be optimized for a given use, taking into account the material properties.
  • the maximum permissible height of the protuberances is often predetermined by the shape and dimensions of the sound source or its cladding and is usually smaller than in the known embodiments mentioned above.
  • the present invention was therefore based on the object of creating a method which enables the production of airborne sound-absorbing components which have optimum absorption properties as a function of the permissible height of the protuberances.
  • FIGS 1a and 1b are not drawn to scale for clarity.
  • the airborne sound absorbing component shown in FIGS. 1a and 1b contains a base area 10, the peripheral edge of which is provided with a stabilizing frame 11.
  • the base area has a plurality of similar truncated pyramidal protuberances, of which simply the protuberance 12 is simply identified by a reference symbol.
  • Each protuberance contains four lateral surfaces 13, 14, 15 and 16 and a cover surface 17.
  • the sizes of the protuberances which are important for the present invention are their height h and the thickness d and the size A of the cover surface which acts as the determining resonance surface. Sound absorption measurements have shown that the horizontal distance between adjacent protuberances and the angle of inclination of the side walls to the base surface have little influence on the course of the sound absorption coefficient depending on the frequency.
  • the protuberances are therefore preferably as close to one another and the side walls are designed to be as slightly inclined as the manufacturing process and practical requirements allow.
  • a plastic film can simply be thermoformed to produce the component. However, it is also possible to manufacture the component in plastic injection molding or to glue or weld protuberances formed from individual sub-areas connected to one another on a carrier film.
  • Suitable plastics are, for example, polyvinyl chloride, polyethylene, polypropylene, acrylonitrile-butadiene-styrene polymer or polycarbonate, which can be used both in compact and in foamed form. Except Due to the fact that the choice of a plastic that is best suited for a given purpose as well as its processing are within the range of expert knowledge, a detailed description of the usable materials and their processing is expressly omitted.
  • the optimal thickness d of the resonance surface becomes smaller as the height h of the protuberance increases.
  • the curves confirm that the thickness d of the resonance surface is within the range of the height h of the protuberance which is important for the practical use of the component, i.e. between 10 and 35 mm is most dependent on this height.
  • the optimal size A of the resonance surface is approximately proportional to the resonance surface thickness d.
  • Curve 30 shows the typical course of the sound level as a function of the frequency for an internal combustion engine (four-stroke gasoline engine) with four cylinders and at idle at about 800 revolutions / minute. It goes without saying that the exact course of this curve is determined not only by the type of engine mentioned, the number of revolutions and the load, but also by specific design features, the operating temperature and other parameters. However, measurements on different motors under different operating conditions have shown that the curve 30 corresponds to an average value. Curve 30 shows that the sound level is low at frequencies up to 1000 Hz, increases with increasing frequencies, reaches the maximum value at 1600 Hz, slowly decreases until around 2500 Hz and rapidly decreases at even higher frequencies.
  • FIG. 4 shows the strength of the sound absorption as a function of the frequency of the incident sound for three different embodiments of airborne sound absorbing components. All three components have truncated pyramid-shaped protuberances on the back, as in the 1a and 1b is shown. In all three embodiments, the plastic foils were deep-drawn in such a way that the side surfaces are inclined by approximately 20 ° with respect to the vertical and the protuberances are 5 mm apart in the plane of the base surface.
  • the height of the protuberances and the size of the resonance surfaces are the same for all three embodiments and are 30 mm and 35 cm2. In these embodiments, the resonance surfaces are rectangular and have an aspect ratio of approximately 0.8: 1.
  • Curve 41 shows the sound absorption of a component made of foamed polyethylene, in which the thickness of the resonance surface is 1.5 mm. This curve rises evenly from values of low sound absorption at low frequencies to a maximum sound absorption corresponding to ⁇ s ⁇ 0.8 at 1000 Hz, then drops only slightly up to frequencies of around 1250 Hz and then drops steeply to ⁇ s up to around 1500 hz ⁇ 0.3.
  • Curve 42 shows the sound absorption of a component made of compact PVC, in which the thickness of the resonance surface is 0.15 mm.
  • the curve begins at higher frequencies than curve 41, rises steeply and reaches a relatively narrow maximum value of ⁇ s ⁇ 0.9 for a frequency of 1000 Hz and then drops steeply again until ⁇ s ⁇ 0.45 at 1500 Hz.
  • Curve 43 shows the sound absorption of a component made of foamed polypropylene, in which the thickness of the resonance surfaces is 3 mm. This curve rises to frequencies zen of approximately 1250 Hz similar to curve 41, but then continues to rise to a maximum value of more than 0.95 in the frequency range around 1500 Hz and then falls more flatly than curves 41 and 42 and reaches a value of ⁇ s ⁇ 0.5 at a frequency of 4000 Hz.
  • the method according to the invention and a component produced using this method can be adapted to special working conditions or uses. It has already been mentioned that instead of the films used for the exemplary embodiments described, other plastic films with similar properties can also be used. It is also possible to design the component differently than the simple plastic film provided with protuberances. For certain uses, it may be advantageous to cover the back of the component with a porous, sound-absorbing material or to insert or put a "cover” of such material in or on the rear openings of the protuberances. It is also possible to produce a combined component with two components of the type described. Of the simple components used for this, one is to be provided with protuberances that are somewhat higher and whose base area is somewhat larger than the other.
  • protuberances enables the components to be placed on one another in such a way that only the webs of the base surfaces arranged between the protuberances lie one on top of the other. Then the overlapping protuberances form a closed and a rearwardly open resonance space, with which the sound absorption and its frequency range can be further improved or expanded. Finally, it is also possible to produce a combined component from more than two components.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Building Environments (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Das Verfahren ermöglicht, für schallabsorbierende Bauelemente aus kompaktem oder geschäumtem Kunststoff mit becherförmigen Ausstülpungen (12) die für eine optimale Schallabsorption erforderliche Dicke (d) und Flächengrösse (A) der Resonanzflächen in Abhängigkeit von der Höhe (h) der Ausstülpungen under der angestrebten Resonanzfrequenz zu bestimmen. Die Anwendung dieses Verfahrens ermöglicht weiter, den Frequenzverlauf des Schallabsorptionskoeffizienten des Bauelements an den Frequenzverlauf des Schallpegels einer Lärmquelle anzupassen.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Her­stellen eines Luftschall absorbierenden Bauelements, das ei­ne Mehrzahl becherförmige Ausstülpungen aufweist, deren Oberflächen von auftreffender Schallenergie zu Schwingungen angeregt werden, wobei die Schallenergie mindestens teilwei­se absorbiert und in Wärme umgewandelt wird, sowie ein nach diesem Verfahren hergestelltes Bauelement und eine bevorzug­te Verwendung dieses Bauelements
  • Bauelemente der beschriebenen Art werden gewöhnlich aus ei­ner Kunststoffolie hergestellt. Sie haben eine dichte Ober­fläche, eine geringe Masse und sind beständig gegen die mei­sten Säuren, Oele, Lösungsmittel sowie gegen relativ hohe Temperaturen und werden darum vorzugsweise für die Absorp­tion von Luftschall in lärmigen Werkhallen und zum Ausklei­den der Gehäuse von Lärmquellen, insbesondere Verbrennungs­motoren, verwendet.
  • Die bekanntesten Ausführungsformen solcher Bauelemente las­sen sich einer von zwei unterschiedlichen Gruppen zuordnen. Bei der einen Gruppe (DE-OS 27 58 041) sind die rückseiti­gen, d.h. dem einfallenden Schallfeld abgewandten Oeffnungen der Ausstülpungen verschlossen, damit die Masse der schwin­genden Deckfläche mit der eingeschlossenen Luft ein physika­lisches Masse-Feder-System mit einer deutlichen Resonanzfre­quenz bildet. Bei der anderen Gruppe (CH 626 936) sind die rückseitigen Oeffnungen der Ausstülpungen unverschlossen.
  • Bei der Verwendung werden die Bauelemente beider Gruppen vorzugsweise vor einer schallreflektierenden Wand und von dieser beabstandet angeordnet.
  • In den Publikationen, die Ausführungsformen dieser beiden Gruppen von Bauelementen betreffen, wird erwähnt, dass die Resonanzfrequenz der Deck- bzw. Resonanzfläche von der Form, der Grösse und der Masse dieser Fläche, von der Höhe der Ausstülpung sowie vom mechanischen Verlustfaktor und dem Elastizitätsmodul des verwendeten Materials abhängig ist. Dazu hat die praktische Erfahrung bestätigt, dass auch rela­tiv geringe Unterschiede der Abmessungen der Ausstülpungen den Verlauf sowohl der Schallabsorption in Abhängigkeit von der Frequenz des auftreffenden Schalls als auch die Stärke der Schallabsorption stark beeinträchtigen. Trotz dieser Er­kenntnisse ist bisher noch kein Verfahren zum Herstellen solcher Bauelemente bekannt, das es ermöglicht, die Form und Abmessungen der Resonanzflächen unter Berücksichtigung der Materialeigenschaften für eine vorgegebene Verwendung zu op­timieren.
  • Bei der Verwendung schallabsorbierender Bauelemente in un­mittelbarer Nähe einer Schallquelle ist die maximal zulässi­ge Höhe der Ausstülpungen oft durch die Form und Abmessungen der Schallquelle bzw. deren Verkleidung vorgegeben und ist meistens kleiner als bei den oben erwähnten bekannten Aus­führungsformen. Der vorliegenden Erfindung lag darum die Aufgabe zugrunde, ein Verfahren zu schaffen, das die Her­stellung von Luftschall absorbierenden Bauelementen ermög­licht, die in Abhängigkeit von der zulässigen Höhe der Aus­stülpungen optimale Absorprionseigenschaften aufweisen.
  • Ausgehend von der Ueberlegung, dass die Schallabsorption ei­nes schwingungsfähigen Systems, bestehend aus biegeschwin­genden Flächen und einer dahinterliegenden Luftschicht am grössten ist, wenn die Resonanzfrequenz f₀ reell und unge­fähr gleich der spezifischen Impedanz Z₀ der Luft ist, wur­den theoretische und experimentelle Untersuchungen durchge­führt, um ein Verfahren zum Herstellen eines schallabsorbie­renden Bauelements zu schaffen, bei dem die Schallabsorption für einen den praktischen Anforderungen entsprechenden Be­reich der Höhe der Ausstülpungen optimiert ist und im Be­reich der Resonanzfrequenz nur eine geringe Frequenzabhän­gigkeit aufweist.
  • Diese Aufgabe wurde mit einem Verfahren der eingangs genann­ten Art gelöst, bei dem für eine optimale Schallabsorption durch Resonanzschwingungen die Dicke d der Resonanzflächen entsprechend der Formel
    Figure imgb0001
    und die Flächengrösse A jeder Resonanzfläche entsprechend der Formel
    Figure imgb0002
    ausgebildet werden, in welcher Formel h die Höhe der Aus­stülpungen bzw. der Abstand von einer schallreflektierenden Wand und f₀ die Resonanzfrequenz ist und K₁, K₂ und K₃ vom Material des Bauelements und von der Schwingungsform der Re­sonanzfläche abhängige Konstante sind.
  • Als Schwingungsform s = 1 werden nachfolgend solche Schwin­gungen bezeichnet, die im Längsschnitt durch eine an ihren seitlichen Kanten befestigte Resonanzfläche nur einen Schwingungsbauch aufweisen, als Schwingungsform s = 2 werden Schwingungen bezeichnet, die im gleichen Längsschnitt drei Schwingungsbäuche (und dazwischen zwei Schwingungsknoten) zeigen.
  • Zahlenwerte für die Konstante K₁, K₂ und K₃ für zwei ge­bräuchliche unterschiedliche Materialien und die beiden Schwingungsformen s = 1 und s = 2 sind in der folgenden Ta­belle angegeben:
    Figure imgb0003
    Das erfindungsgemässe Verfahren ermöglicht, die für eine wirksame Schallabsorption durch Resonanzschwingungen wich­tigen Werte, nämlich die Dicke und die Grösse der Resonanz­fläche in Abhängigkeit von der Höhe der Ausstülpung auszu­bilden und damit bisher nicht oder bestenfalls zufällig er­reichte Werte der Schallabsorption systematisch und reprodu­zierbar zu verwirklichen.
  • Nachfolgend wird das erfindungsgemässe Verfahren anhand ei­niger Ausführungsformen von Luftschall absorbierenden Bau­elementen und mit Hilfe der Figuren erläutert. Es zeigen:
    • Fig. 1a die perspektivische Draufsicht auf einen Teil eines typischen zur Absorption von Luftschall geeigneten Bauelements mit pyramidenstumpfförmigen Ausstülpun­gen,
    • Fig. 1b den Schnitt durch das in Fig. 1a gezeigte Bauelement längs der Linie X-X,
    • Fig. 2a die grafische Darstellung der erfindungsgemäss be­stimmten Werte für die optimale Dicke d und die op­timale Grösse A einer Resonanzfläche aus kompakter PVC-Folie in Abhängigkeit von der Höhe h der Aus­stülpung und für eine Resonanzfrequenz von f₀ = 1000 Hz,
    • Fig. 2b die zur Fig. 2a analoge Darstellung für eine Reso­nanzfläche aus geschäumter Polypropylen-Folie und für eine Resonanzfrequenz von f₀ = 1600 Hz,
    • Fig. 3 den Verlauf des Schallpegels des von einem Verbren­nungsmotor erzeugten Lärms in Abhängigkeit von der Frequenz, und
    • Fig. 4 den Schallabsorptionskoeffizienten für ein Bauele­ment der bisher bekannten Art und für zwei erfin­dungsgemässe Bauelemente, ebenfalls in Abhängigkeit von der Frequenz.
  • Die Figuren 1a und 1b sind der deutlicheren Darstellung we­gen nicht massstäblich gezeichnet.
  • Das in den Fig. 1a und 1b gezeigte Luftschall absorbierende Bauelement enthält eine Grundfläche 10, deren umlaufender Rand mit einem stabilisierenden Rahmen 11 versehen ist. Die Grundfläche weist eine Mehrzahl gleichartiger pyramiden­stumpfförmiger Ausstülpungen auf, von denen einfacherweise nur die Ausstülpung 12 mit einem Bezugszeichen identifiziert ist. Jede Ausstülpung enthält vier seitliche Flächen 13, 14, 15 und 16 und eine Deckfläche 17. Für die vorliegende Erfin­dung wichtige Grössen der Ausstülpungen sind deren Höhe h sowie die Dicke d und die Grösse A der als bestimmende Reso­nanzfläche wirksamen Deckfläche. Schallabsorptionsmessungen haben gezeigt, dass der horizontale Abstand zwischen benach­barten Ausstülpungen und der Neigungswinkel der Seitenwände zur Grundfläche den Verlauf des Schallabsorptionskoeffizien­ten in Abhängigkeit von der Frequenz wenig beeinflussen. Für eine möglichst grosse Gesamtschallabsorption sind darum die Ausstülpungen vorzugsweise so nahe benachbart und die Sei­tenwände so wenig geneigt auszubilden, wie es das Herstell­verfahren und praktische Bedürfnisse ermöglichen.
  • Zur Herstellung des Bauelements kann einfacherweise eine Kunststoffolie tiefgezogen werden. Es ist aber auch möglich, das Bauelement im Kunststoffspritzguss herzustellen oder aus einzelnen miteinander verbundenen Teilflächen gebildete Aus­stülpungen auf eine Trägerfolie zu kleben oder zu schweis­sen. Geeignete Kunststoffe sind beispielsweise Polyvinyl­chlorid, Polyäthylen, Polypropylen, Acrylnitril-Butadien-­Styrol-Polymerisat oder Polykarbonat, die sowohl in kompak­ter wie in geschäumter Form verwendet werden können. Ausge­ hend davon, dass die Wahl eines für einen gegebenen Verwen­dungszweck bestgeeigneten Kunststoff ebenso wie dessen Ver­arbeitung im Bereich fachmännischen Könnens liegen, wird auf eine ausführliche Beschreibung der brauchbaren Materialien und deren Verarbeitung ausdrücklich verzichtet.
  • In den Fig. 2a und 2b sind die Membrandicke d und die Mem­branfläche A in Abhängigkeit von der Höhe h der Ausstülpung für einen kompakten bzw. einen geschäumten Kunststoff darge­stellt.
  • In Fig. 2a entspricht die Kurve 21 der erfindungsgemäss op­timalen Dicke d der als Resonanzfläche wirksamen Deckfläche der Ausstülpung in Abhängigkeit von der Höhe h der Ausstül­pung für die Schwingungsform s = 1 und einen kompakten PVC-­Kunststoff. Die Kurve 22 zeigt ebenfalls die optimale Dicke d der gleichen Fläche in Abhängigkeit von der Höhe h, aber für die Schwingungsform s = 2. Beide Kurven gelten für eine optimale Resonanzfrequenz bzw. optimale Schallabsorp­tion im Frequenzbereich f₀ ≃ 1000 Hz.
  • Die Kurve 23 entspricht der erfindungsgemäss optimalen Grös­se A der Resonanzfläche in Abhängigkeit von der Höhe h der Ausstülpung für die Schwingungsform s = 1 und einen kompak­ten PVC-Kunststoff. Die Kurve 24 zeigt ebenfalls die optima­le Fläche A in Abhängigkeit von der Höhe h, aber für die Schwingungsform s = 2. Auch diese beiden Kurven gelten für eine Resonanzfrequenz im Bereich f₀ ≃ 1000 Hz.
  • In Fig. 2b ist die erfindungsgemässe optimale Dicke d der Resonanzfläche in Abhängigkeit von der Höhe h der Ausstül­pung und für die Schwingungsform s = 1 durch die Kurve 25 sowie für die Schwingungsform s = 2 durch die Kurve 26 für ein Bauelement aus geschäumtem Polypropylen-Kunststoff dar­gestellt. Beide Kurven gelten für eine Resonanzfrequenz bzw. eine optimale Schallabsorption im Frequenzbereich f₀ ≃ 1600 Hz.
  • Weiter zeigt die Kurve 27 die erfindungsgemäss optimale Grösse A der Resonanzfläche in Abhängigkeit von der Höhe h der Ausstülpung für die Schwingungsform s = 1 und die Kurve 28 die gleiche Grösse für die Schwingungsform s = 2 für ei­nen geschäumten Polypropylen-Kunststoff. Beide Kurven gelten für eine Resonanzfrequenz bzw. eine optimale Schallabsorp­tion im Frequenzbereich f₀ ≃ 1600 Hz.
  • Aus diesen Kurven ist zu ersehen, dass die optimale Dicke d der Resonanzfläche kleiner wird, wenn die Höhe h der Aus­stülpung grösser wird. Die Kurven bestätigen, dass die Dicke d der Resonanzfläche in dem für die praktische Verwen­dung des Bauelements wichtigen Bereich der Höhe h der Aus­stülpung, d.h. zwischen 10 und 35 mm am stärksten von dieser Höhe abhängig ist. Die Kurven bestätigen weiter, dass für Schwingungsformen s = 2 Ausstülpungen mit Höhen im ge­zeigten Bereich von 10 bis 50 mm die optimale Dicke d auf Werte sinkt, bei denen die geforderte mechanische Stabilität des fertigen Bauelements nicht mehr gewährleistet ist.
  • Aus der Darstellung ist ersichtlich, dass sich die optimale Grösse A der Resonanzfläche ungefähr proportional zur Reso­nanzflächendicke d verhält. Die Kurven zeigen ferner, dass die optimale Fläche A für die Schwingungsform s = 2 kleiner ist als für die Schwingungsform s = 1 und dass die dem er­findungsgemässen Verfahren entsprechenden Werte der Dicke d und der Grösse A der Resonanzfläche wesentlich unter den Werten liegen, die bisher gebräuchlich waren und in den ein­gangs genannten Publikationen aufgeführt sind.
  • Schliesslich zeigt der Vergleich der Kurven in den Fig. 2a und 2b, dass die Abhängigkeit der für eine optimale Schall­absorption bestimmten Dicke und Grösse der Resonanzfläche von der Höhe der Ausstülpung für eine Resonanzfläche aus ge­schäumtem Kunststoff sehr viel stärker ist als für eine Re­sonanzfläche aus kompaktem Kunststoff.
  • Die Fig. 3 zeigt den typischen Verlauf des Schallpegels in Abhängigkeit von der Frequenz für einen Verbrennungsmotor (Viertakt-Ottomotor) mit vier Zylindern und im Leerlauf bei etwa 800 Umdrehungen/Minute. Dabei versteht sich, dass der genaue Verlauf dieser Kurve nicht nur von der genannten Mo­torenart, der Umdrehungszahl und der Belastung, sondern auch von spezifischen Konstruktionsmerkmalen, der Betriebstempe­ratur und weiteren Parametern bestimmt wird. Messungen an unterschiedlichen Motoren bei unterschiedlichen Betriebsbe­dingungen haben jedoch gezeigt, dass der Verlauf der Kurve 30 einem Mittelwert entspricht. Die Kurve 30 zeigt, dass der Schallpegel bei Frequenzen bis 1000 Hz klein ist, mit zuneh­menden Frequenzen ansteigt, bei 1600 Hz den Maximalwert er­reicht, bis etwa 2500 Hz langsam und bei noch höheren Fre­quenzen rasch absinkt.
  • Die Fig. 4 zeigt die Stärke der Schallabsorption in Abhän­gigkeit von der Frequenz des auftreffenden Schalls für drei verschiedene Ausführungsformen von Luftschall absorbierenden Bauelementen. Alle drei Bauelemente weisen rückseitig offe­ne, pyramidenstumpfförmige Ausstülpungen auf, wie es in den Fig. 1a und 1b gezeigt ist. Bei allen drei Ausführungsformen wurden die Kunststoff-Folien derart tiefgezogen, dass die Seitenflächen um ca. 20° gegenüber der Senkrechten geneigt sind und die Ausstülpungen in der Ebene der Grundfläche ei­nen Abstand von 5 mm haben.
  • Die Höhe der Ausstülpungen und die Grösse der Resonanzflä­chen ist für alle drei Ausführungsformen gleich und beträgt 30 mm bzw. 35 cm². Die Resonanzflächen sind bei diesen Aus­führungsformen rechteckig und weisen ein Seitenverhältnis von etwa 0,8 : 1 auf.
  • Die Kurve 41 zeigt die Schallabsorption eines Bauelements aus geschäumtem Polyäthylen, bei dem die Dicke der Resonanz­fläche 1,5 mm beträgt. Diese Kurve steigt von Werten gerin­ger Schallabsorption bei niedrigen Frequenzen gleichmässig an bis zu einer maximalen Schallabsorption entsprechend αs ∼ 0,8 bei 1000 Hz, fällt dann bis zu Frequenzen von etwa 1250 Hz nur wenig und danach bis etwa 1500 hz steil ab auf αs ∼ 0,3.
  • Die Kurve 42 zeigt die Schallabsorption eines Bauelements aus kompakten PVC, bei dem die Dicke der Resonanzfläche 0,15 mm beträgt. Die Kurve beginnt bei höheren Frequenzen als die Kurve 41, steigt steil an und erreicht für eine Frequenz von 1000 Hz einen relativ schmalen Maximalwert von α s ∼ 0,9 und fällt danach wieder steil ab bis α s ∼ 0,45 bei 1500 Hz.
  • Die Kurve 43 zeigt die Schallabsorption eines Bauelements aus geschäumtem Polypropylen, bei dem die Dicke der Reso­nanzflächen 3 mm beträgt. Diese Kurve steigt bis zu Frequen­ zen von etwa 1250 Hz ähnlich an wie die Kurve 41, steigt dann aber weiter bis zu einem Maximalwert von mehr als 0,95 im Frequenzbereich um 1500 Hz und fällt danach flacher als die Kurven 41 und 42 ab und erreicht einen Wert von α s ∼ 0,5 bei einer Frequenz von 4000 Hz.
  • Die gezeigten Kurven machen deutlich, dass die Schallabsorp­tion von geschäumtem Kunststoff höhere Werte erreicht und in einem breiteren Frequenzbereich wirksam ist als diejenige von kompaktem Kunststoff und dass ein Bauelement mit erfin­dungsgemäss dimensionierten Ausstülpungen (Kurve 43) eine Schallabsorptionskurve aufweist, die sehr gut mit dem Schallpegel eines Verbrennungsmotors (Fig. 3) übereinstimmt.
  • Es versteht sich, dass das erfindungsgemässe Verfahren und ein nach diesem Verfahren herstelltes Bauelement an speziel­le Arbeitsbedingungen oder Verwendungen angepasst werden kann. Es wurde bereits erwähnt, dass anstelle der für die beschriebenen Ausführungsbeispiele verwendeten Folien auch andere Kunststoff-Folien mit ähnlichen Eigenschaften verwen­det werden können. Es ist auch möglich, das Bauelement an­ders als die beschriebene einfache, mit Ausstülpungen verse­hene Kunststoff-Folie auszubilden. Für bestimmte Verwendun­gen kann es vorteilhaft sein, die Rückseite des Bauelements mit einem porösen, schallschluckenden Material zu belegen oder in bzw. auf die rückseitigen Oeffnungen der Ausstülpun­gen einen "Deckel" aus solchem Material ein- oder aufzuset­zen. Weiter ist es möglich, mit zwei Bauelementen der be­schriebenen Art ein kombiniertes Bauelement herzustellen. Von den dafür vertwendeten einfachen Bauelementen ist das ei­ne mit Ausstülpungen zu versehen, die etwas höher und deren Grundfläche etwas grösser ist als bei dem anderen. Diese Ausbildung der Ausstölpungen ermöglicht, die Bauelemente derart aufeinanderzulegen, dass nur die zwischen den Aus­stülpungen angeordneten Stege der Grundflächen aufeinander­liegen. Dann bilden die übereinanderstehenden Ausstülpungen einen geschlossenen und einen rückwärtig offenen Resonanz­raum, womit die Schallabsorption und deren Frequenzbereich nochmals verbessert bzw. erweitert werden können. Schliess­lich ist es auch möglich, aus mehr als zwei Bauelementen ein kombiniertes Bauelement herzustellen.

Claims (12)

1. Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements, das eine Mehrzahl becherförmige Ausstülpun­gen aufweist, deren als Resonanzflächen wirksame Deck­flächen von auftreffender Schallenergie zu Schwingungen angeregt werden, wobei die Schallenergie mindestens teil­weise absorbiert und in Wärme umgewandelt wird,
dadurch gekennzeichnet, dass für eine optimale Schallab­sorption durch Resonanzschwingungen die Dicke d der Resonanzflächen entsprechend der Formel
Figure imgb0004
und die Flächengrösse A jeder Resonanzfläche entsprechend der Formel
Figure imgb0005
ausgebildet werden,
in welchen Formeln h die Höhe der Ausstülpung und f₀ die Resonanzfrequenz ist und K₁, K₂ und K₃ vom Material des Bauelements und von der Schwingungsform der Resonanzflä­che abhängige Konstante sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für ein Bauelement aus kompaktem Kunststoff und Resonanz­schwingungen im Bereich von 1000 Hz sowie die Schwin­gungsform s = 1 der Wert für die Konstante K₁ = 1,1 ms⁻¹, für die Konstante K₂ = 1,6 m²s⁻² und für die Konstante K₃ = 4,7.10³ ms⁻¹ ist.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für ein Bauelement aus kompaktem Kunststoff und Resonanz­schwingungen im Bereich von 1000 Hz sowie der Schwin­gungsform s = 2 (Oberschwingung) der Wert für die Kon­stante K₁ = 0,12 ms⁻¹, für die Konstante K₂ = 0,17 m²s⁻² und für die Konstante K₃ = 2,1.10⁴ ms⁻¹ ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für ein Bauelement aus geschäumtem Kunststoff und der Schwingungsform s = 1 der Wert für die Konstante K₁ = 3,2 ms⁻¹, für die Konstante K₂ = 70,6 m²s⁻² und für die Konstante K₃ = 1,5.10³ ms⁻¹ ist.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für ein Bauelement aus geschäumtem Kunststoff und der Schwingungsform s = 2 der Wert für die Konstante K₁ = 0,34 ms⁻¹, für die Konstante K₂ = 7,5 m²s⁻² und für die Konstante K₃ = 7,5.10³ ms⁻¹ ist.
6. Nach dem Verfahren gemäss Anspruch 1 hergestelltes Luft­schall absorbierendes Bauelement, gekennzeichnet durch mindestens eine kompakte oder geschäumte Kunststoffolie, aus der die becherförmigen Ausstülpungen einstückig aus­geformt sind.
7. Bauelement nach Anspruch 6, dadurch gekennzeichnet, dass zwei oder mehrer Kunststoffolien mit unterschiedlicher Höhe und Grundfläche der Ausstülpungen derart aufeinan­dergelegt werden, dass nur die zwischen benachbarten Ausstülpungen angeordneten Stege der Grundflächen sich berühren.
8. Bauelement nach Anspruch 6, dadurch gekennzeichnet, dass die Deck- oder Resonanzflächen der Ausstülpungen die Form eines Rechtecks, eines Trapezes, eines Parallelo­gramms, eines Kreises oder eines regulären Vielecks ha­ben.
9. Bauelement nach Anspruch 8, dadurch gekennzeichnet, dass die becherförmigen Ausstülpungen in Richtung der Deck­fläche verjüngt sind.
10. Bauelement nach Anspruch 6, dadurch gekennzeichnet, dass die inneren Oeffnungen der becherförmigen Ausstülpungen mit einer Schicht aus porösem Material verschlossen sind.
11. Verwendung des Bauelements gemäss dem Anspruch 6 zur mindestens teilweisen Innenverkleidung der Verschalung einer Maschine, insbesondere eines Verbrennungsmotors.
12. Verwendung des Bauelementes gemäss dem Anspruch 6 zur mindestens teilweisen Innenverkleidung eines Raumes.
EP87810287A 1986-05-16 1987-05-07 Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements Expired - Lifetime EP0255473B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH200686A CH671848B (de) 1986-05-16 1986-05-16
CH2006/86 1986-05-16

Publications (2)

Publication Number Publication Date
EP0255473A1 true EP0255473A1 (de) 1988-02-03
EP0255473B1 EP0255473B1 (de) 1992-01-29

Family

ID=4223700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87810287A Expired - Lifetime EP0255473B1 (de) 1986-05-16 1987-05-07 Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements

Country Status (9)

Country Link
US (1) US4755416A (de)
EP (1) EP0255473B1 (de)
JP (1) JPH0818389B2 (de)
BR (1) BR8702500A (de)
CA (1) CA1277922C (de)
CH (1) CH671848B (de)
DE (1) DE3776450D1 (de)
ES (1) ES2030092T3 (de)
MX (1) MX168844B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334984C1 (de) * 1993-10-14 1995-01-19 Freudenberg Carl Fa Schall absorbierendes Formteil
DE4414566A1 (de) * 1994-04-27 1995-11-02 Freudenberg Carl Fa Luftschalldämpfer
WO1996005591A1 (de) * 1994-08-12 1996-02-22 Illbruck Gmbh Schall-absorber
FR2823467A1 (fr) * 2001-04-17 2002-10-18 Sofitec Sa Produit thermoforme pour panneau d'isolation acoustique et/ou thermique
ITRA20100013A1 (it) * 2010-05-04 2011-11-05 Simone Meneghel "pannello fonoisolante frangi-onda"

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340054A (en) * 1991-02-20 1994-08-23 The United States Of America As Represented By The Secretary Of The Navy Suppressor of oscillations in airframe cavities
US5904318A (en) * 1996-12-18 1999-05-18 Towfiq; Foad Passive reduction of aircraft fuselage noise
US5823467A (en) * 1997-04-01 1998-10-20 Mcdonnell Douglas Corp Passive damping wedge
US6471157B1 (en) * 1999-03-22 2002-10-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Device and method for reducing aircraft noise
US6598701B1 (en) * 2000-06-30 2003-07-29 3M Innovative Properties Company Shaped microperforated polymeric film sound absorbers and methods of manufacturing the same
US7434660B2 (en) * 2001-06-21 2008-10-14 Kabushiki Kaisha Kobe Seiko Sho Perforated soundproof structure and method of manufacturing the same
DE10323045A1 (de) * 2003-05-20 2004-12-09 Behr Gmbh & Co. Kg Gehäuse, insbesondere Luftführungsgehäuse und Verfahren zur Herstellung eines solchen
DE502004009480D1 (de) * 2004-03-03 2009-06-25 Rolls Royce Plc Anordnung zur Erzeugung von Schallfeldern mit bestimmter modaler Zusammensetzung
JP2007223341A (ja) * 2006-02-21 2007-09-06 Nagoya Oil Chem Co Ltd ドア用シール材
CN104507797B (zh) 2012-07-06 2017-11-07 C&D佐迪阿克公司 带有声学材料的飞机内部面板
US9194136B2 (en) * 2013-04-18 2015-11-24 Viconic Defense Inc. Recoiling energy absorbing system
US9279258B2 (en) * 2013-04-18 2016-03-08 Viconic Defense Inc. Recoiling energy absorbing system with lateral stabilizer
KR101655522B1 (ko) * 2014-07-30 2016-09-07 현대자동차주식회사 흡음성능이 우수한 흡차음 보드 부품의 제조방법 및 그에 의해 제조된 흡차음 보드 부품
US10220736B2 (en) 2016-10-25 2019-03-05 Viconic Defense Inc. Seat impact energy absorbing system
US10607589B2 (en) 2016-11-29 2020-03-31 Milliken & Company Nonwoven composite
US10788091B2 (en) 2017-08-22 2020-09-29 Oakwood Energy Management, Inc. Mass-optimized force attenuation system and method
US11585102B2 (en) 2018-11-07 2023-02-21 Viconic Sporting Llc Load distribution and absorption underpayment system
US10982451B2 (en) 2018-11-07 2021-04-20 Viconic Sporting Llc Progressive stage load distribution and absorption underlayment system
WO2020162602A1 (ja) * 2019-02-07 2020-08-13 三菱ケミカル株式会社 遮音シート及び遮音構造体
CN112116901B (zh) * 2020-09-18 2024-03-05 北京市燃气集团有限责任公司 一种改善中低压燃气调压箱声学主观评价指标的方法
CN112735368A (zh) * 2020-12-24 2021-04-30 江苏建声影视设备研制有限公司 一种环保型防火吸声板
CN113757817B (zh) * 2021-10-22 2022-11-29 广东美芝制冷设备有限公司 隔声结构、空调室外机及空调器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758041A1 (de) * 1977-12-24 1979-06-28 Fraunhofer Ges Forschung Schallabsorbierendes bauelement aus kunststoff-folie
CH626936A5 (en) * 1980-06-09 1981-12-15 Matec Holding Sound-absorbing structural element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2069413A (en) * 1935-12-06 1937-02-02 Burgess Lab Inc C F Sound and vibration damping construction
US3050426A (en) * 1958-11-21 1962-08-21 Livermore Corp H F Vibration absorbing material and method for making the same
US3026224A (en) * 1959-05-01 1962-03-20 Fabreeka Products Co Vibration absorbing pad
US3231454A (en) * 1961-04-14 1966-01-25 Cadillac Products Cushioning material
NL7605978A (nl) * 1975-06-04 1976-12-07 Scott Paper Co Akoestisch film-schuimlaminaat en werkwijze ter vervaardiging daarvan.
CA1101494A (en) * 1977-09-12 1981-05-19 Pierre A. Lapeyre Exercise monitor system and method
US4482592A (en) * 1981-02-23 1984-11-13 The B. F. Goodrich Company Vibration isolation pad
DE3233654C2 (de) * 1982-09-10 1986-01-16 Ewald Dörken AG, 5804 Herdecke Schallabsorbierendes Bauelement
US4531609A (en) * 1983-08-06 1985-07-30 Midwest Acounst-A-Fiber Sound absorption panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758041A1 (de) * 1977-12-24 1979-06-28 Fraunhofer Ges Forschung Schallabsorbierendes bauelement aus kunststoff-folie
CH626936A5 (en) * 1980-06-09 1981-12-15 Matec Holding Sound-absorbing structural element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACUSTICA, Band 47, 1981, Seiten 83-88, Hirzel S. Verlag, Stuttgart, DE; F. MECHEL et al.: "Schallabsorber aus Kunststoff-Folie" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334984C1 (de) * 1993-10-14 1995-01-19 Freudenberg Carl Fa Schall absorbierendes Formteil
DE4414566A1 (de) * 1994-04-27 1995-11-02 Freudenberg Carl Fa Luftschalldämpfer
WO1996005591A1 (de) * 1994-08-12 1996-02-22 Illbruck Gmbh Schall-absorber
US5959264A (en) * 1994-08-12 1999-09-28 Brueck; Eduard Sound absorber
FR2823467A1 (fr) * 2001-04-17 2002-10-18 Sofitec Sa Produit thermoforme pour panneau d'isolation acoustique et/ou thermique
EP1251001A1 (de) * 2001-04-17 2002-10-23 Sofitec SA Thermogeformte Platte mit Schall und thermischen Isolationseigenschaften
ITRA20100013A1 (it) * 2010-05-04 2011-11-05 Simone Meneghel "pannello fonoisolante frangi-onda"

Also Published As

Publication number Publication date
CH671848B (de) 1989-09-29
JPS6327242A (ja) 1988-02-04
EP0255473B1 (de) 1992-01-29
CA1277922C (en) 1990-12-18
US4755416A (en) 1988-07-05
DE3776450D1 (de) 1992-03-12
ES2030092T3 (es) 1992-10-16
BR8702500A (pt) 1988-02-23
JPH0818389B2 (ja) 1996-02-28
MX168844B (es) 1993-06-11

Similar Documents

Publication Publication Date Title
EP0255473B1 (de) Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements
DE3615360C2 (de)
DE2921050C2 (de)
EP0474593B1 (de) Schallisolierendes und schalldämpfendes Verbundwerk
EP0806030B1 (de) l/4-SCALLABSORBER
DE19645030B4 (de) Schwingungsdämpfendes Verbundbauteil und Herstellungsverfahren
DE3044865C2 (de)
EP0781445B1 (de) Schichtenabsorber zum absorbieren von akustischen schallwellen
DE4414566C2 (de) Luftschalldämpfer
DE10347084B4 (de) Abstimmbare, den Schall absorbierende, und die Luft filternde Dämpfungseinrichtung und Herstellungsverfahren
EP0131616A1 (de) Schallabsorptionsplatte.
DE2424933C2 (de) Resonanzwand
CH647454A5 (de) Verfahren zur herstellung eines ueberzogenen geschaeumten produktes.
DE602004002864T2 (de) Bauteil zur geräuschmindenderung, insbesondere bodenplatte eines fahrzeuges
DE10228395C1 (de) Schall-Absorber
DE69028749T2 (de) Schalldämpfer
DE19757097A1 (de) Schallwiedergabeanordnung
DE102004013654A1 (de) Lufteinlassvorrichtung
EP0605784A1 (de) Akustikplatte
EP0046559B1 (de) Resonatorschallabsorptionselement
DE2744382C3 (de) Schallschluckende Wand- oder Deckenverkleidung mit einer raumseitig dichten Schicht, die mit öffnungen versehen ist
EP0453877A1 (de) Verfahren zum Herstellen von multifunktionalen Verkleidungsteilen
EP2575127B1 (de) Schallabsorptionselement
DE102009046277A1 (de) Vorrichtung zur akustischen und thermischen Abschirmung
CH626936A5 (en) Sound-absorbing structural element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19880217

17Q First examination report despatched

Effective date: 19900102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3776450

Country of ref document: DE

Date of ref document: 19920312

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030092

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87810287.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980427

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980514

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980531

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990508

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

EUG Se: european patent has lapsed

Ref document number: 87810287.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040421

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040429

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040729

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20050407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050507

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050507

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060131