EP0255473A1 - Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements - Google Patents
Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements Download PDFInfo
- Publication number
- EP0255473A1 EP0255473A1 EP87810287A EP87810287A EP0255473A1 EP 0255473 A1 EP0255473 A1 EP 0255473A1 EP 87810287 A EP87810287 A EP 87810287A EP 87810287 A EP87810287 A EP 87810287A EP 0255473 A1 EP0255473 A1 EP 0255473A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- constant
- component
- resonance
- protuberances
- sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000010521 absorption reaction Methods 0.000 claims abstract description 31
- 239000004033 plastic Substances 0.000 claims abstract description 18
- 229920003023 plastic Polymers 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 7
- 239000002985 plastic film Substances 0.000 claims description 6
- 229920006255 plastic film Polymers 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims 1
- -1 polypropylene Polymers 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24521—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
- Y10T428/24537—Parallel ribs and/or grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/2457—Parallel ribs and/or grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24661—Forming, or cooperating to form cells
Definitions
- the present invention relates to a method for producing an airborne sound-absorbing component which has a plurality of cup-shaped protuberances, the surfaces of which are excited to vibrate by impinging sound energy, the sound energy being at least partially absorbed and converted into heat, and a component and produced by this method a preferred use of this component
- Components of the type described are usually made from a plastic film. They have a dense surface, a low mass and are resistant to most acids, oils, solvents as well as to relatively high temperatures and are therefore preferably used for the absorption of airborne noise in noisy workshops and for lining the housing of noise sources, especially internal combustion engines.
- the best known embodiments of such components can be assigned to one of two different groups.
- one group DE-OS 27 58 041
- the rear openings ie the openings of the protuberances facing away from the incident sound field
- the rear openings of the protuberances are closed so that the mass of the vibrating cover surface with the enclosed air forms a physical mass-spring system with a clear resonance frequency.
- CH 626 936 the rear openings of the protuberances are not closed.
- the components of both groups are preferably arranged in front of and at a distance from a sound-reflecting wall.
- the resonance frequency of the cover or resonance surface depends on the shape, size and mass of this surface, on the height of the protuberance and on the mechanical loss factor and the modulus of elasticity of the used material is dependent. Practical experience has confirmed that even relatively small differences in the dimensions of the protuberances severely impair the course of both the sound absorption depending on the frequency of the incident sound and the strength of the sound absorption. Despite these findings, no method for producing such components is known to date which enables the shape and dimensions of the resonance surfaces to be optimized for a given use, taking into account the material properties.
- the maximum permissible height of the protuberances is often predetermined by the shape and dimensions of the sound source or its cladding and is usually smaller than in the known embodiments mentioned above.
- the present invention was therefore based on the object of creating a method which enables the production of airborne sound-absorbing components which have optimum absorption properties as a function of the permissible height of the protuberances.
- FIGS 1a and 1b are not drawn to scale for clarity.
- the airborne sound absorbing component shown in FIGS. 1a and 1b contains a base area 10, the peripheral edge of which is provided with a stabilizing frame 11.
- the base area has a plurality of similar truncated pyramidal protuberances, of which simply the protuberance 12 is simply identified by a reference symbol.
- Each protuberance contains four lateral surfaces 13, 14, 15 and 16 and a cover surface 17.
- the sizes of the protuberances which are important for the present invention are their height h and the thickness d and the size A of the cover surface which acts as the determining resonance surface. Sound absorption measurements have shown that the horizontal distance between adjacent protuberances and the angle of inclination of the side walls to the base surface have little influence on the course of the sound absorption coefficient depending on the frequency.
- the protuberances are therefore preferably as close to one another and the side walls are designed to be as slightly inclined as the manufacturing process and practical requirements allow.
- a plastic film can simply be thermoformed to produce the component. However, it is also possible to manufacture the component in plastic injection molding or to glue or weld protuberances formed from individual sub-areas connected to one another on a carrier film.
- Suitable plastics are, for example, polyvinyl chloride, polyethylene, polypropylene, acrylonitrile-butadiene-styrene polymer or polycarbonate, which can be used both in compact and in foamed form. Except Due to the fact that the choice of a plastic that is best suited for a given purpose as well as its processing are within the range of expert knowledge, a detailed description of the usable materials and their processing is expressly omitted.
- the optimal thickness d of the resonance surface becomes smaller as the height h of the protuberance increases.
- the curves confirm that the thickness d of the resonance surface is within the range of the height h of the protuberance which is important for the practical use of the component, i.e. between 10 and 35 mm is most dependent on this height.
- the optimal size A of the resonance surface is approximately proportional to the resonance surface thickness d.
- Curve 30 shows the typical course of the sound level as a function of the frequency for an internal combustion engine (four-stroke gasoline engine) with four cylinders and at idle at about 800 revolutions / minute. It goes without saying that the exact course of this curve is determined not only by the type of engine mentioned, the number of revolutions and the load, but also by specific design features, the operating temperature and other parameters. However, measurements on different motors under different operating conditions have shown that the curve 30 corresponds to an average value. Curve 30 shows that the sound level is low at frequencies up to 1000 Hz, increases with increasing frequencies, reaches the maximum value at 1600 Hz, slowly decreases until around 2500 Hz and rapidly decreases at even higher frequencies.
- FIG. 4 shows the strength of the sound absorption as a function of the frequency of the incident sound for three different embodiments of airborne sound absorbing components. All three components have truncated pyramid-shaped protuberances on the back, as in the 1a and 1b is shown. In all three embodiments, the plastic foils were deep-drawn in such a way that the side surfaces are inclined by approximately 20 ° with respect to the vertical and the protuberances are 5 mm apart in the plane of the base surface.
- the height of the protuberances and the size of the resonance surfaces are the same for all three embodiments and are 30 mm and 35 cm2. In these embodiments, the resonance surfaces are rectangular and have an aspect ratio of approximately 0.8: 1.
- Curve 41 shows the sound absorption of a component made of foamed polyethylene, in which the thickness of the resonance surface is 1.5 mm. This curve rises evenly from values of low sound absorption at low frequencies to a maximum sound absorption corresponding to ⁇ s ⁇ 0.8 at 1000 Hz, then drops only slightly up to frequencies of around 1250 Hz and then drops steeply to ⁇ s up to around 1500 hz ⁇ 0.3.
- Curve 42 shows the sound absorption of a component made of compact PVC, in which the thickness of the resonance surface is 0.15 mm.
- the curve begins at higher frequencies than curve 41, rises steeply and reaches a relatively narrow maximum value of ⁇ s ⁇ 0.9 for a frequency of 1000 Hz and then drops steeply again until ⁇ s ⁇ 0.45 at 1500 Hz.
- Curve 43 shows the sound absorption of a component made of foamed polypropylene, in which the thickness of the resonance surfaces is 3 mm. This curve rises to frequencies zen of approximately 1250 Hz similar to curve 41, but then continues to rise to a maximum value of more than 0.95 in the frequency range around 1500 Hz and then falls more flatly than curves 41 and 42 and reaches a value of ⁇ s ⁇ 0.5 at a frequency of 4000 Hz.
- the method according to the invention and a component produced using this method can be adapted to special working conditions or uses. It has already been mentioned that instead of the films used for the exemplary embodiments described, other plastic films with similar properties can also be used. It is also possible to design the component differently than the simple plastic film provided with protuberances. For certain uses, it may be advantageous to cover the back of the component with a porous, sound-absorbing material or to insert or put a "cover” of such material in or on the rear openings of the protuberances. It is also possible to produce a combined component with two components of the type described. Of the simple components used for this, one is to be provided with protuberances that are somewhat higher and whose base area is somewhat larger than the other.
- protuberances enables the components to be placed on one another in such a way that only the webs of the base surfaces arranged between the protuberances lie one on top of the other. Then the overlapping protuberances form a closed and a rearwardly open resonance space, with which the sound absorption and its frequency range can be further improved or expanded. Finally, it is also possible to produce a combined component from more than two components.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Laminated Bodies (AREA)
- Building Environments (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements, das eine Mehrzahl becherförmige Ausstülpungen aufweist, deren Oberflächen von auftreffender Schallenergie zu Schwingungen angeregt werden, wobei die Schallenergie mindestens teilweise absorbiert und in Wärme umgewandelt wird, sowie ein nach diesem Verfahren hergestelltes Bauelement und eine bevorzugte Verwendung dieses Bauelements
- Bauelemente der beschriebenen Art werden gewöhnlich aus einer Kunststoffolie hergestellt. Sie haben eine dichte Oberfläche, eine geringe Masse und sind beständig gegen die meisten Säuren, Oele, Lösungsmittel sowie gegen relativ hohe Temperaturen und werden darum vorzugsweise für die Absorption von Luftschall in lärmigen Werkhallen und zum Auskleiden der Gehäuse von Lärmquellen, insbesondere Verbrennungsmotoren, verwendet.
- Die bekanntesten Ausführungsformen solcher Bauelemente lassen sich einer von zwei unterschiedlichen Gruppen zuordnen. Bei der einen Gruppe (DE-OS 27 58 041) sind die rückseitigen, d.h. dem einfallenden Schallfeld abgewandten Oeffnungen der Ausstülpungen verschlossen, damit die Masse der schwingenden Deckfläche mit der eingeschlossenen Luft ein physikalisches Masse-Feder-System mit einer deutlichen Resonanzfrequenz bildet. Bei der anderen Gruppe (CH 626 936) sind die rückseitigen Oeffnungen der Ausstülpungen unverschlossen.
- Bei der Verwendung werden die Bauelemente beider Gruppen vorzugsweise vor einer schallreflektierenden Wand und von dieser beabstandet angeordnet.
- In den Publikationen, die Ausführungsformen dieser beiden Gruppen von Bauelementen betreffen, wird erwähnt, dass die Resonanzfrequenz der Deck- bzw. Resonanzfläche von der Form, der Grösse und der Masse dieser Fläche, von der Höhe der Ausstülpung sowie vom mechanischen Verlustfaktor und dem Elastizitätsmodul des verwendeten Materials abhängig ist. Dazu hat die praktische Erfahrung bestätigt, dass auch relativ geringe Unterschiede der Abmessungen der Ausstülpungen den Verlauf sowohl der Schallabsorption in Abhängigkeit von der Frequenz des auftreffenden Schalls als auch die Stärke der Schallabsorption stark beeinträchtigen. Trotz dieser Erkenntnisse ist bisher noch kein Verfahren zum Herstellen solcher Bauelemente bekannt, das es ermöglicht, die Form und Abmessungen der Resonanzflächen unter Berücksichtigung der Materialeigenschaften für eine vorgegebene Verwendung zu optimieren.
- Bei der Verwendung schallabsorbierender Bauelemente in unmittelbarer Nähe einer Schallquelle ist die maximal zulässige Höhe der Ausstülpungen oft durch die Form und Abmessungen der Schallquelle bzw. deren Verkleidung vorgegeben und ist meistens kleiner als bei den oben erwähnten bekannten Ausführungsformen. Der vorliegenden Erfindung lag darum die Aufgabe zugrunde, ein Verfahren zu schaffen, das die Herstellung von Luftschall absorbierenden Bauelementen ermöglicht, die in Abhängigkeit von der zulässigen Höhe der Ausstülpungen optimale Absorprionseigenschaften aufweisen.
- Ausgehend von der Ueberlegung, dass die Schallabsorption eines schwingungsfähigen Systems, bestehend aus biegeschwingenden Flächen und einer dahinterliegenden Luftschicht am grössten ist, wenn die Resonanzfrequenz f₀ reell und ungefähr gleich der spezifischen Impedanz Z₀ der Luft ist, wurden theoretische und experimentelle Untersuchungen durchgeführt, um ein Verfahren zum Herstellen eines schallabsorbierenden Bauelements zu schaffen, bei dem die Schallabsorption für einen den praktischen Anforderungen entsprechenden Bereich der Höhe der Ausstülpungen optimiert ist und im Bereich der Resonanzfrequenz nur eine geringe Frequenzabhängigkeit aufweist.
- Diese Aufgabe wurde mit einem Verfahren der eingangs genannten Art gelöst, bei dem für eine optimale Schallabsorption durch Resonanzschwingungen die Dicke d der Resonanzflächen entsprechend der Formel
- Als Schwingungsform s = 1 werden nachfolgend solche Schwingungen bezeichnet, die im Längsschnitt durch eine an ihren seitlichen Kanten befestigte Resonanzfläche nur einen Schwingungsbauch aufweisen, als Schwingungsform s = 2 werden Schwingungen bezeichnet, die im gleichen Längsschnitt drei Schwingungsbäuche (und dazwischen zwei Schwingungsknoten) zeigen.
- Zahlenwerte für die Konstante K₁, K₂ und K₃ für zwei gebräuchliche unterschiedliche Materialien und die beiden Schwingungsformen s = 1 und s = 2 sind in der folgenden Tabelle angegeben:
- Nachfolgend wird das erfindungsgemässe Verfahren anhand einiger Ausführungsformen von Luftschall absorbierenden Bauelementen und mit Hilfe der Figuren erläutert. Es zeigen:
- Fig. 1a die perspektivische Draufsicht auf einen Teil eines typischen zur Absorption von Luftschall geeigneten Bauelements mit pyramidenstumpfförmigen Ausstülpungen,
- Fig. 1b den Schnitt durch das in Fig. 1a gezeigte Bauelement längs der Linie X-X,
- Fig. 2a die grafische Darstellung der erfindungsgemäss bestimmten Werte für die optimale Dicke d und die optimale Grösse A einer Resonanzfläche aus kompakter PVC-Folie in Abhängigkeit von der Höhe h der Ausstülpung und für eine Resonanzfrequenz von f₀ = 1000 Hz,
- Fig. 2b die zur Fig. 2a analoge Darstellung für eine Resonanzfläche aus geschäumter Polypropylen-Folie und für eine Resonanzfrequenz von f₀ = 1600 Hz,
- Fig. 3 den Verlauf des Schallpegels des von einem Verbrennungsmotor erzeugten Lärms in Abhängigkeit von der Frequenz, und
- Fig. 4 den Schallabsorptionskoeffizienten für ein Bauelement der bisher bekannten Art und für zwei erfindungsgemässe Bauelemente, ebenfalls in Abhängigkeit von der Frequenz.
- Die Figuren 1a und 1b sind der deutlicheren Darstellung wegen nicht massstäblich gezeichnet.
- Das in den Fig. 1a und 1b gezeigte Luftschall absorbierende Bauelement enthält eine Grundfläche 10, deren umlaufender Rand mit einem stabilisierenden Rahmen 11 versehen ist. Die Grundfläche weist eine Mehrzahl gleichartiger pyramidenstumpfförmiger Ausstülpungen auf, von denen einfacherweise nur die Ausstülpung 12 mit einem Bezugszeichen identifiziert ist. Jede Ausstülpung enthält vier seitliche Flächen 13, 14, 15 und 16 und eine Deckfläche 17. Für die vorliegende Erfindung wichtige Grössen der Ausstülpungen sind deren Höhe h sowie die Dicke d und die Grösse A der als bestimmende Resonanzfläche wirksamen Deckfläche. Schallabsorptionsmessungen haben gezeigt, dass der horizontale Abstand zwischen benachbarten Ausstülpungen und der Neigungswinkel der Seitenwände zur Grundfläche den Verlauf des Schallabsorptionskoeffizienten in Abhängigkeit von der Frequenz wenig beeinflussen. Für eine möglichst grosse Gesamtschallabsorption sind darum die Ausstülpungen vorzugsweise so nahe benachbart und die Seitenwände so wenig geneigt auszubilden, wie es das Herstellverfahren und praktische Bedürfnisse ermöglichen.
- Zur Herstellung des Bauelements kann einfacherweise eine Kunststoffolie tiefgezogen werden. Es ist aber auch möglich, das Bauelement im Kunststoffspritzguss herzustellen oder aus einzelnen miteinander verbundenen Teilflächen gebildete Ausstülpungen auf eine Trägerfolie zu kleben oder zu schweissen. Geeignete Kunststoffe sind beispielsweise Polyvinylchlorid, Polyäthylen, Polypropylen, Acrylnitril-Butadien-Styrol-Polymerisat oder Polykarbonat, die sowohl in kompakter wie in geschäumter Form verwendet werden können. Ausge hend davon, dass die Wahl eines für einen gegebenen Verwendungszweck bestgeeigneten Kunststoff ebenso wie dessen Verarbeitung im Bereich fachmännischen Könnens liegen, wird auf eine ausführliche Beschreibung der brauchbaren Materialien und deren Verarbeitung ausdrücklich verzichtet.
- In den Fig. 2a und 2b sind die Membrandicke d und die Membranfläche A in Abhängigkeit von der Höhe h der Ausstülpung für einen kompakten bzw. einen geschäumten Kunststoff dargestellt.
- In Fig. 2a entspricht die Kurve 21 der erfindungsgemäss optimalen Dicke d der als Resonanzfläche wirksamen Deckfläche der Ausstülpung in Abhängigkeit von der Höhe h der Ausstülpung für die Schwingungsform s = 1 und einen kompakten PVC-Kunststoff. Die Kurve 22 zeigt ebenfalls die optimale Dicke d der gleichen Fläche in Abhängigkeit von der Höhe h, aber für die Schwingungsform s = 2. Beide Kurven gelten für eine optimale Resonanzfrequenz bzw. optimale Schallabsorption im Frequenzbereich f₀ ≃ 1000 Hz.
- Die Kurve 23 entspricht der erfindungsgemäss optimalen Grösse A der Resonanzfläche in Abhängigkeit von der Höhe h der Ausstülpung für die Schwingungsform s = 1 und einen kompakten PVC-Kunststoff. Die Kurve 24 zeigt ebenfalls die optimale Fläche A in Abhängigkeit von der Höhe h, aber für die Schwingungsform s = 2. Auch diese beiden Kurven gelten für eine Resonanzfrequenz im Bereich f₀ ≃ 1000 Hz.
- In Fig. 2b ist die erfindungsgemässe optimale Dicke d der Resonanzfläche in Abhängigkeit von der Höhe h der Ausstülpung und für die Schwingungsform s = 1 durch die Kurve 25 sowie für die Schwingungsform s = 2 durch die Kurve 26 für ein Bauelement aus geschäumtem Polypropylen-Kunststoff dargestellt. Beide Kurven gelten für eine Resonanzfrequenz bzw. eine optimale Schallabsorption im Frequenzbereich f₀ ≃ 1600 Hz.
- Weiter zeigt die Kurve 27 die erfindungsgemäss optimale Grösse A der Resonanzfläche in Abhängigkeit von der Höhe h der Ausstülpung für die Schwingungsform s = 1 und die Kurve 28 die gleiche Grösse für die Schwingungsform s = 2 für einen geschäumten Polypropylen-Kunststoff. Beide Kurven gelten für eine Resonanzfrequenz bzw. eine optimale Schallabsorption im Frequenzbereich f₀ ≃ 1600 Hz.
- Aus diesen Kurven ist zu ersehen, dass die optimale Dicke d der Resonanzfläche kleiner wird, wenn die Höhe h der Ausstülpung grösser wird. Die Kurven bestätigen, dass die Dicke d der Resonanzfläche in dem für die praktische Verwendung des Bauelements wichtigen Bereich der Höhe h der Ausstülpung, d.h. zwischen 10 und 35 mm am stärksten von dieser Höhe abhängig ist. Die Kurven bestätigen weiter, dass für Schwingungsformen s = 2 Ausstülpungen mit Höhen im gezeigten Bereich von 10 bis 50 mm die optimale Dicke d auf Werte sinkt, bei denen die geforderte mechanische Stabilität des fertigen Bauelements nicht mehr gewährleistet ist.
- Aus der Darstellung ist ersichtlich, dass sich die optimale Grösse A der Resonanzfläche ungefähr proportional zur Resonanzflächendicke d verhält. Die Kurven zeigen ferner, dass die optimale Fläche A für die Schwingungsform s = 2 kleiner ist als für die Schwingungsform s = 1 und dass die dem erfindungsgemässen Verfahren entsprechenden Werte der Dicke d und der Grösse A der Resonanzfläche wesentlich unter den Werten liegen, die bisher gebräuchlich waren und in den eingangs genannten Publikationen aufgeführt sind.
- Schliesslich zeigt der Vergleich der Kurven in den Fig. 2a und 2b, dass die Abhängigkeit der für eine optimale Schallabsorption bestimmten Dicke und Grösse der Resonanzfläche von der Höhe der Ausstülpung für eine Resonanzfläche aus geschäumtem Kunststoff sehr viel stärker ist als für eine Resonanzfläche aus kompaktem Kunststoff.
- Die Fig. 3 zeigt den typischen Verlauf des Schallpegels in Abhängigkeit von der Frequenz für einen Verbrennungsmotor (Viertakt-Ottomotor) mit vier Zylindern und im Leerlauf bei etwa 800 Umdrehungen/Minute. Dabei versteht sich, dass der genaue Verlauf dieser Kurve nicht nur von der genannten Motorenart, der Umdrehungszahl und der Belastung, sondern auch von spezifischen Konstruktionsmerkmalen, der Betriebstemperatur und weiteren Parametern bestimmt wird. Messungen an unterschiedlichen Motoren bei unterschiedlichen Betriebsbedingungen haben jedoch gezeigt, dass der Verlauf der Kurve 30 einem Mittelwert entspricht. Die Kurve 30 zeigt, dass der Schallpegel bei Frequenzen bis 1000 Hz klein ist, mit zunehmenden Frequenzen ansteigt, bei 1600 Hz den Maximalwert erreicht, bis etwa 2500 Hz langsam und bei noch höheren Frequenzen rasch absinkt.
- Die Fig. 4 zeigt die Stärke der Schallabsorption in Abhängigkeit von der Frequenz des auftreffenden Schalls für drei verschiedene Ausführungsformen von Luftschall absorbierenden Bauelementen. Alle drei Bauelemente weisen rückseitig offene, pyramidenstumpfförmige Ausstülpungen auf, wie es in den Fig. 1a und 1b gezeigt ist. Bei allen drei Ausführungsformen wurden die Kunststoff-Folien derart tiefgezogen, dass die Seitenflächen um ca. 20° gegenüber der Senkrechten geneigt sind und die Ausstülpungen in der Ebene der Grundfläche einen Abstand von 5 mm haben.
- Die Höhe der Ausstülpungen und die Grösse der Resonanzflächen ist für alle drei Ausführungsformen gleich und beträgt 30 mm bzw. 35 cm². Die Resonanzflächen sind bei diesen Ausführungsformen rechteckig und weisen ein Seitenverhältnis von etwa 0,8 : 1 auf.
- Die Kurve 41 zeigt die Schallabsorption eines Bauelements aus geschäumtem Polyäthylen, bei dem die Dicke der Resonanzfläche 1,5 mm beträgt. Diese Kurve steigt von Werten geringer Schallabsorption bei niedrigen Frequenzen gleichmässig an bis zu einer maximalen Schallabsorption entsprechend αs ∼ 0,8 bei 1000 Hz, fällt dann bis zu Frequenzen von etwa 1250 Hz nur wenig und danach bis etwa 1500 hz steil ab auf αs ∼ 0,3.
- Die Kurve 42 zeigt die Schallabsorption eines Bauelements aus kompakten PVC, bei dem die Dicke der Resonanzfläche 0,15 mm beträgt. Die Kurve beginnt bei höheren Frequenzen als die Kurve 41, steigt steil an und erreicht für eine Frequenz von 1000 Hz einen relativ schmalen Maximalwert von α s ∼ 0,9 und fällt danach wieder steil ab bis α s ∼ 0,45 bei 1500 Hz.
- Die Kurve 43 zeigt die Schallabsorption eines Bauelements aus geschäumtem Polypropylen, bei dem die Dicke der Resonanzflächen 3 mm beträgt. Diese Kurve steigt bis zu Frequen zen von etwa 1250 Hz ähnlich an wie die Kurve 41, steigt dann aber weiter bis zu einem Maximalwert von mehr als 0,95 im Frequenzbereich um 1500 Hz und fällt danach flacher als die Kurven 41 und 42 ab und erreicht einen Wert von α s ∼ 0,5 bei einer Frequenz von 4000 Hz.
- Die gezeigten Kurven machen deutlich, dass die Schallabsorption von geschäumtem Kunststoff höhere Werte erreicht und in einem breiteren Frequenzbereich wirksam ist als diejenige von kompaktem Kunststoff und dass ein Bauelement mit erfindungsgemäss dimensionierten Ausstülpungen (Kurve 43) eine Schallabsorptionskurve aufweist, die sehr gut mit dem Schallpegel eines Verbrennungsmotors (Fig. 3) übereinstimmt.
- Es versteht sich, dass das erfindungsgemässe Verfahren und ein nach diesem Verfahren herstelltes Bauelement an spezielle Arbeitsbedingungen oder Verwendungen angepasst werden kann. Es wurde bereits erwähnt, dass anstelle der für die beschriebenen Ausführungsbeispiele verwendeten Folien auch andere Kunststoff-Folien mit ähnlichen Eigenschaften verwendet werden können. Es ist auch möglich, das Bauelement anders als die beschriebene einfache, mit Ausstülpungen versehene Kunststoff-Folie auszubilden. Für bestimmte Verwendungen kann es vorteilhaft sein, die Rückseite des Bauelements mit einem porösen, schallschluckenden Material zu belegen oder in bzw. auf die rückseitigen Oeffnungen der Ausstülpungen einen "Deckel" aus solchem Material ein- oder aufzusetzen. Weiter ist es möglich, mit zwei Bauelementen der beschriebenen Art ein kombiniertes Bauelement herzustellen. Von den dafür vertwendeten einfachen Bauelementen ist das eine mit Ausstülpungen zu versehen, die etwas höher und deren Grundfläche etwas grösser ist als bei dem anderen. Diese Ausbildung der Ausstölpungen ermöglicht, die Bauelemente derart aufeinanderzulegen, dass nur die zwischen den Ausstülpungen angeordneten Stege der Grundflächen aufeinanderliegen. Dann bilden die übereinanderstehenden Ausstülpungen einen geschlossenen und einen rückwärtig offenen Resonanzraum, womit die Schallabsorption und deren Frequenzbereich nochmals verbessert bzw. erweitert werden können. Schliesslich ist es auch möglich, aus mehr als zwei Bauelementen ein kombiniertes Bauelement herzustellen.
Claims (12)
dadurch gekennzeichnet, dass für eine optimale Schallabsorption durch Resonanzschwingungen die Dicke d der Resonanzflächen entsprechend der Formel
in welchen Formeln h die Höhe der Ausstülpung und f₀ die Resonanzfrequenz ist und K₁, K₂ und K₃ vom Material des Bauelements und von der Schwingungsform der Resonanzfläche abhängige Konstante sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH200686A CH671848B (de) | 1986-05-16 | 1986-05-16 | |
CH2006/86 | 1986-05-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0255473A1 true EP0255473A1 (de) | 1988-02-03 |
EP0255473B1 EP0255473B1 (de) | 1992-01-29 |
Family
ID=4223700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87810287A Expired - Lifetime EP0255473B1 (de) | 1986-05-16 | 1987-05-07 | Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements |
Country Status (9)
Country | Link |
---|---|
US (1) | US4755416A (de) |
EP (1) | EP0255473B1 (de) |
JP (1) | JPH0818389B2 (de) |
BR (1) | BR8702500A (de) |
CA (1) | CA1277922C (de) |
CH (1) | CH671848B (de) |
DE (1) | DE3776450D1 (de) |
ES (1) | ES2030092T3 (de) |
MX (1) | MX168844B (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4334984C1 (de) * | 1993-10-14 | 1995-01-19 | Freudenberg Carl Fa | Schall absorbierendes Formteil |
DE4414566A1 (de) * | 1994-04-27 | 1995-11-02 | Freudenberg Carl Fa | Luftschalldämpfer |
WO1996005591A1 (de) * | 1994-08-12 | 1996-02-22 | Illbruck Gmbh | Schall-absorber |
FR2823467A1 (fr) * | 2001-04-17 | 2002-10-18 | Sofitec Sa | Produit thermoforme pour panneau d'isolation acoustique et/ou thermique |
ITRA20100013A1 (it) * | 2010-05-04 | 2011-11-05 | Simone Meneghel | "pannello fonoisolante frangi-onda" |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5340054A (en) * | 1991-02-20 | 1994-08-23 | The United States Of America As Represented By The Secretary Of The Navy | Suppressor of oscillations in airframe cavities |
US5904318A (en) * | 1996-12-18 | 1999-05-18 | Towfiq; Foad | Passive reduction of aircraft fuselage noise |
US5823467A (en) * | 1997-04-01 | 1998-10-20 | Mcdonnell Douglas Corp | Passive damping wedge |
US6471157B1 (en) * | 1999-03-22 | 2002-10-29 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Device and method for reducing aircraft noise |
US6598701B1 (en) * | 2000-06-30 | 2003-07-29 | 3M Innovative Properties Company | Shaped microperforated polymeric film sound absorbers and methods of manufacturing the same |
US7434660B2 (en) * | 2001-06-21 | 2008-10-14 | Kabushiki Kaisha Kobe Seiko Sho | Perforated soundproof structure and method of manufacturing the same |
DE10323045A1 (de) * | 2003-05-20 | 2004-12-09 | Behr Gmbh & Co. Kg | Gehäuse, insbesondere Luftführungsgehäuse und Verfahren zur Herstellung eines solchen |
DE502004009480D1 (de) * | 2004-03-03 | 2009-06-25 | Rolls Royce Plc | Anordnung zur Erzeugung von Schallfeldern mit bestimmter modaler Zusammensetzung |
JP2007223341A (ja) * | 2006-02-21 | 2007-09-06 | Nagoya Oil Chem Co Ltd | ドア用シール材 |
CN104507797B (zh) | 2012-07-06 | 2017-11-07 | C&D佐迪阿克公司 | 带有声学材料的飞机内部面板 |
US9194136B2 (en) * | 2013-04-18 | 2015-11-24 | Viconic Defense Inc. | Recoiling energy absorbing system |
US9279258B2 (en) * | 2013-04-18 | 2016-03-08 | Viconic Defense Inc. | Recoiling energy absorbing system with lateral stabilizer |
KR101655522B1 (ko) * | 2014-07-30 | 2016-09-07 | 현대자동차주식회사 | 흡음성능이 우수한 흡차음 보드 부품의 제조방법 및 그에 의해 제조된 흡차음 보드 부품 |
US10220736B2 (en) | 2016-10-25 | 2019-03-05 | Viconic Defense Inc. | Seat impact energy absorbing system |
US10607589B2 (en) | 2016-11-29 | 2020-03-31 | Milliken & Company | Nonwoven composite |
US10788091B2 (en) | 2017-08-22 | 2020-09-29 | Oakwood Energy Management, Inc. | Mass-optimized force attenuation system and method |
US11585102B2 (en) | 2018-11-07 | 2023-02-21 | Viconic Sporting Llc | Load distribution and absorption underpayment system |
US10982451B2 (en) | 2018-11-07 | 2021-04-20 | Viconic Sporting Llc | Progressive stage load distribution and absorption underlayment system |
WO2020162602A1 (ja) * | 2019-02-07 | 2020-08-13 | 三菱ケミカル株式会社 | 遮音シート及び遮音構造体 |
CN112116901B (zh) * | 2020-09-18 | 2024-03-05 | 北京市燃气集团有限责任公司 | 一种改善中低压燃气调压箱声学主观评价指标的方法 |
CN112735368A (zh) * | 2020-12-24 | 2021-04-30 | 江苏建声影视设备研制有限公司 | 一种环保型防火吸声板 |
CN113757817B (zh) * | 2021-10-22 | 2022-11-29 | 广东美芝制冷设备有限公司 | 隔声结构、空调室外机及空调器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2758041A1 (de) * | 1977-12-24 | 1979-06-28 | Fraunhofer Ges Forschung | Schallabsorbierendes bauelement aus kunststoff-folie |
CH626936A5 (en) * | 1980-06-09 | 1981-12-15 | Matec Holding | Sound-absorbing structural element |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2069413A (en) * | 1935-12-06 | 1937-02-02 | Burgess Lab Inc C F | Sound and vibration damping construction |
US3050426A (en) * | 1958-11-21 | 1962-08-21 | Livermore Corp H F | Vibration absorbing material and method for making the same |
US3026224A (en) * | 1959-05-01 | 1962-03-20 | Fabreeka Products Co | Vibration absorbing pad |
US3231454A (en) * | 1961-04-14 | 1966-01-25 | Cadillac Products | Cushioning material |
NL7605978A (nl) * | 1975-06-04 | 1976-12-07 | Scott Paper Co | Akoestisch film-schuimlaminaat en werkwijze ter vervaardiging daarvan. |
CA1101494A (en) * | 1977-09-12 | 1981-05-19 | Pierre A. Lapeyre | Exercise monitor system and method |
US4482592A (en) * | 1981-02-23 | 1984-11-13 | The B. F. Goodrich Company | Vibration isolation pad |
DE3233654C2 (de) * | 1982-09-10 | 1986-01-16 | Ewald Dörken AG, 5804 Herdecke | Schallabsorbierendes Bauelement |
US4531609A (en) * | 1983-08-06 | 1985-07-30 | Midwest Acounst-A-Fiber | Sound absorption panel |
-
1986
- 1986-05-16 CH CH200686A patent/CH671848B/de not_active IP Right Cessation
-
1987
- 1987-05-07 ES ES198787810287T patent/ES2030092T3/es not_active Expired - Lifetime
- 1987-05-07 DE DE8787810287T patent/DE3776450D1/de not_active Expired - Lifetime
- 1987-05-07 EP EP87810287A patent/EP0255473B1/de not_active Expired - Lifetime
- 1987-05-13 US US07/049,179 patent/US4755416A/en not_active Expired - Lifetime
- 1987-05-14 MX MX006482A patent/MX168844B/es unknown
- 1987-05-14 JP JP62118066A patent/JPH0818389B2/ja not_active Expired - Fee Related
- 1987-05-15 CA CA000537264A patent/CA1277922C/en not_active Expired - Fee Related
- 1987-05-15 BR BR8702500A patent/BR8702500A/pt not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2758041A1 (de) * | 1977-12-24 | 1979-06-28 | Fraunhofer Ges Forschung | Schallabsorbierendes bauelement aus kunststoff-folie |
CH626936A5 (en) * | 1980-06-09 | 1981-12-15 | Matec Holding | Sound-absorbing structural element |
Non-Patent Citations (1)
Title |
---|
ACUSTICA, Band 47, 1981, Seiten 83-88, Hirzel S. Verlag, Stuttgart, DE; F. MECHEL et al.: "Schallabsorber aus Kunststoff-Folie" * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4334984C1 (de) * | 1993-10-14 | 1995-01-19 | Freudenberg Carl Fa | Schall absorbierendes Formteil |
DE4414566A1 (de) * | 1994-04-27 | 1995-11-02 | Freudenberg Carl Fa | Luftschalldämpfer |
WO1996005591A1 (de) * | 1994-08-12 | 1996-02-22 | Illbruck Gmbh | Schall-absorber |
US5959264A (en) * | 1994-08-12 | 1999-09-28 | Brueck; Eduard | Sound absorber |
FR2823467A1 (fr) * | 2001-04-17 | 2002-10-18 | Sofitec Sa | Produit thermoforme pour panneau d'isolation acoustique et/ou thermique |
EP1251001A1 (de) * | 2001-04-17 | 2002-10-23 | Sofitec SA | Thermogeformte Platte mit Schall und thermischen Isolationseigenschaften |
ITRA20100013A1 (it) * | 2010-05-04 | 2011-11-05 | Simone Meneghel | "pannello fonoisolante frangi-onda" |
Also Published As
Publication number | Publication date |
---|---|
CH671848B (de) | 1989-09-29 |
JPS6327242A (ja) | 1988-02-04 |
EP0255473B1 (de) | 1992-01-29 |
CA1277922C (en) | 1990-12-18 |
US4755416A (en) | 1988-07-05 |
DE3776450D1 (de) | 1992-03-12 |
ES2030092T3 (es) | 1992-10-16 |
BR8702500A (pt) | 1988-02-23 |
JPH0818389B2 (ja) | 1996-02-28 |
MX168844B (es) | 1993-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0255473B1 (de) | Verfahren zum Herstellen eines Luftschall absorbierenden Bauelements | |
DE3615360C2 (de) | ||
DE2921050C2 (de) | ||
EP0474593B1 (de) | Schallisolierendes und schalldämpfendes Verbundwerk | |
EP0806030B1 (de) | l/4-SCALLABSORBER | |
DE19645030B4 (de) | Schwingungsdämpfendes Verbundbauteil und Herstellungsverfahren | |
DE3044865C2 (de) | ||
EP0781445B1 (de) | Schichtenabsorber zum absorbieren von akustischen schallwellen | |
DE4414566C2 (de) | Luftschalldämpfer | |
DE10347084B4 (de) | Abstimmbare, den Schall absorbierende, und die Luft filternde Dämpfungseinrichtung und Herstellungsverfahren | |
EP0131616A1 (de) | Schallabsorptionsplatte. | |
DE2424933C2 (de) | Resonanzwand | |
CH647454A5 (de) | Verfahren zur herstellung eines ueberzogenen geschaeumten produktes. | |
DE602004002864T2 (de) | Bauteil zur geräuschmindenderung, insbesondere bodenplatte eines fahrzeuges | |
DE10228395C1 (de) | Schall-Absorber | |
DE69028749T2 (de) | Schalldämpfer | |
DE19757097A1 (de) | Schallwiedergabeanordnung | |
DE102004013654A1 (de) | Lufteinlassvorrichtung | |
EP0605784A1 (de) | Akustikplatte | |
EP0046559B1 (de) | Resonatorschallabsorptionselement | |
DE2744382C3 (de) | Schallschluckende Wand- oder Deckenverkleidung mit einer raumseitig dichten Schicht, die mit öffnungen versehen ist | |
EP0453877A1 (de) | Verfahren zum Herstellen von multifunktionalen Verkleidungsteilen | |
EP2575127B1 (de) | Schallabsorptionselement | |
DE102009046277A1 (de) | Vorrichtung zur akustischen und thermischen Abschirmung | |
CH626936A5 (en) | Sound-absorbing structural element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19880217 |
|
17Q | First examination report despatched |
Effective date: 19900102 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3776450 Country of ref document: DE Date of ref document: 19920312 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2030092 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87810287.0 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980427 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19980514 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980531 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990508 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87810287.0 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19991201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20010503 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040421 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040429 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040729 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20050407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050507 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050507 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060131 |