EP0251159B1 - Rückführleitung für Leckgase aus dem Kurbelgehäuse - Google Patents

Rückführleitung für Leckgase aus dem Kurbelgehäuse Download PDF

Info

Publication number
EP0251159B1
EP0251159B1 EP87109025A EP87109025A EP0251159B1 EP 0251159 B1 EP0251159 B1 EP 0251159B1 EP 87109025 A EP87109025 A EP 87109025A EP 87109025 A EP87109025 A EP 87109025A EP 0251159 B1 EP0251159 B1 EP 0251159B1
Authority
EP
European Patent Office
Prior art keywords
return conduit
cylinder head
opening
return line
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87109025A
Other languages
English (en)
French (fr)
Other versions
EP0251159A2 (de
EP0251159A3 (en
Inventor
Herbert Schleiermacher
Reinhard Rechberg
Lothar Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19863622024 external-priority patent/DE3622024A1/de
Priority claimed from DE19873704567 external-priority patent/DE3704567A1/de
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Publication of EP0251159A2 publication Critical patent/EP0251159A2/de
Publication of EP0251159A3 publication Critical patent/EP0251159A3/de
Application granted granted Critical
Publication of EP0251159B1 publication Critical patent/EP0251159B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a return line for leak gases from the crankcase of a four-stroke internal combustion engine into the intake pipes of the cylinders.
  • the recirculation of the leakage gases has a positive side effect, especially with diesel engines.
  • the leakage gases returned to the intake pipes take oil droplets out of the crankcase. These finely divided, entrained oil droplets are sufficient to lubricate the valve seats of the intake valves and to protect them from wear. This is much more advantageous than if lubrication along the valve stems were caused by seeping oil. Because of the heat acting on the valve stem there is a risk that the oozing oil cokes on the valve stems and thus narrows the cross section of the intake pipe.
  • the invention has set itself the task of distributing the leakage gases evenly over each cylinder in such a way that sufficient lubrication of the valve seats of all intake valves is ensured.
  • the return line is advantageously connected to each intake pipe of a cylinder via an opening. This ensures that each of the cylinders can suck in leakage gases and thus its inlet valves are adequately lubricated in the valve seats.
  • the different diameters of the orifices in the return line as seen in the direction of flow of the leak gases, so that the last orifice has a much larger diameter and a different exit direction into the intake pipe than the first orifice, ensure that each cylinder is the same Amount of leak gases can be sucked in. According to the flow laws, the area of an opening and the direction of its exit can directly influence the amount of gas flowing through this opening per unit of time.
  • the cylinder lying first in the flow direction of the return line sucks in the leakage gases from the smallest opening.
  • the leakage gases still contain the highest proportion of oil mist in this part of the return line.
  • the amount of leakage gases and their oil mist content decrease in the return line from intake pipe to intake pipe.
  • the last opening in the return line viewed in the direction of flow of the leakage gases, is considerably larger than the first.
  • the openings are arranged in a spiral or almost spiral line around the return line, the first opening as seen in the flow direction of the return line being on the side facing away from the suction opening of the suction pipe and the last one being on the side of the return line facing the suction opening of the suction pipe .
  • This arrangement of the holes advantageously prevents oil from dripping through a vertically downward opening at the point where the leakage gases have the highest content of oil mist and oil droplets can precipitate on the wall, get into the intake port of the cylinder and for an oversupply of oil. Even if oil droplets are deposited at the location of the first hole, only oil mist with the leakage gases gets into the intake pipe of the cylinder. Since the number of cylinders causes the leakage gases to become less oil-rich, the openings can also be turned towards the intake manifold. At the last intake pipe, the leak gases have already become so low in oil mist that there is no danger that larger oil drops will separate.
  • the openings in the return line have a nozzle-like extension toward the outside. This configuration of the openings advantageously ensures that the leakage gases flow out uniformly and thus the oil mist is evenly distributed in the intake air of the intake pipes.
  • the return line is used as a separate tube in the intake box.
  • This design is advantageously used when the intake box is flanged to the cylinder head of the internal combustion engine as a separate component, for example made of plastic.
  • the Return line as a straight line along the intake ports in the cylinder head and the openings open directly into the intake ports leading to the intake valves.
  • the space requirement for the return line is limited to a minimum and the number of attachments is reduced.
  • the cylinder head cover is formed in one piece and the return line is integrated into the cylinder head cover.
  • the cylinder head is composed of single cylinder heads and the return line is integrated into the single cylinder heads or also into the single cylinder head covers.
  • a continuous return line is formed by connecting pieces arranged between the individual cylinder heads.
  • the return line is expediently designed as a bore or is left out when the cylinder head is cast.
  • the return line can also, for. B. are cast as a tube in the cylinder head or the cylinder head.
  • the return line advantageously runs through the entire length of the cylinder head and is arranged in the immediate vicinity of the intake pipes in order to achieve a short connecting line from the return line to the intake pipes.
  • These connecting channels are expediently designed as bores or as throttle screw plugs.
  • the connecting channels expediently open into the return line at the geodetically lowest point.
  • the flow cross-section of the connecting channels in the flow direction of the returned leakage gases is expediently formed.
  • the intake pipes advantageously protrude from the cylinder head base plate at an angle of approximately 30 ° .
  • a supply line for the return line is advantageously incorporated into the cylinder head.
  • FIG. 1 The intake box of a four-cylinder four-stroke diesel engine is shown in the open state. The view is from the air filter side.
  • the housing of the intake box 1 is fastened to the respective cylinder heads, which are not shown here, with fastening tabs 2.
  • the four intake pipes 3 can be seen in the top view. They are inclined with their intake openings 3 "to the left and below the intake box the flanges 4 can be seen for connection to the intake port of the respective cylinder.
  • the return line 6 for the leak gases is led to the crankcase from a connecting piece 5.
  • the return line 6 is located as a pipe inside the intake box I above the intake pipes 3.
  • the return line 6 is fastened to the housing of the intake box I with a screw connection 7.
  • each suction pipe 3 there is an opening 8 in the return line 6. These openings 8 are located on an almost spiral line around the center line 9 of the return line 6.
  • the opening is very small compared to the subsequent openings, which are each rotated by several degrees in the direction of the intake openings of the intake pipes 3, so that the last opening above the last suction pipe points vertically downwards, directly in the direction of the suction opening 3 "of the suction pipe 3. This opening is the largest of all four openings shown.
  • the arrangement of the holes 8 on the return line 6 thus ensures that when entering the intake box I only Oil mist is sucked in by the first suction pipe 3 and that the last suction pipe can also suck in the same amount of leakage gases with the same amount of oil.
  • Tubes can also be inserted into the openings of the return line. If the tubes all have the same cross-section, an opening of any shape and size can be formed by pressing the end together. By bending the pipes, the openings can be rotated as desired in the area of the suction openings of the suction pipes.
  • Fig. 2 shows a section through the intake box I with a view of the intake opening 3 "of an intake pipe 3.
  • the intake pipe 3 opens upwards towards the viewer, while it opens into the intake port of the cylinder at the bottom left of flange 4.
  • return line 6 runs clearly.
  • An opening 8 can be seen clearly, which passes through at an angle of approximately 45 ° to the vertical the center line 9 is directed downward onto the suction opening 3 ′′ of the suction pipe 3.
  • the opening 8 has a nozzle-shaped extension 10 towards the outside.
  • This shape of the opening ensures a uniform outflow of the leakage gases and an optimal fanning out of the emerging jet of leakage gases and oil mist, so that there is good mixing with the air sucked in by the suction pipe 3.
  • the processing of the openings 8 must be done very carefully so that no burrs and unevenness arise. This could namely have a very strong influence on the flow, so that the leakage gases would be distributed unevenly.
  • the intake pipe shown is the penultimate one of the exhaust pipes shown in FIG.
  • the return line 6 can also be shielded from the upstream air filter by a short, downward-reaching, sheet metal plate (not shown here). This can prevent, depending on the position of the openings 8, the upstream filter from being wetted by oil mist.
  • the diameter of the respective openings 8 in the return line 6 increases continuously in the same steps, as seen in the flow direction of the leak gases. If it is advantageous for the flow conditions due to the design, two successive holes can also have the same diameter.
  • the selected angular misalignment of the holes on the circumference of the return line 6 does not take place in angular steps of the same size.
  • two successive holes can be located at the same point on the circumference, at the same angular degree.
  • the return line 6 is incorporated directly into the cylinder head 10.
  • the return line 6 is designed as a straight-line channel, which is cut out directly in the casting process of the cylinder head 2 by a corresponding casting core or is subsequently worked into the cylinder head 10 by, for example, drilling.
  • the return line 6 is arranged above the intake ducts II and the openings 8 open directly into the housing walls of the intake ducts II.
  • the alignment of the openings 8 in the intake ducts II is carried out analogously to the explanations as described in FIGS. I and 2.
  • the supply line, from which the return line 6 is supplied with leakage gases and oil mist, is advantageously incorporated into the cylinder head 10 in this embodiment and connected to the crankcase of the internal combustion engine via corresponding lines and possibly valves.
  • FIGS. 4 and 5 show the different openings of the openings 8 into the intake ducts II of the cylinder head 10, reference being made to the description of the drawing relating to FIGS. I and 2 with regard to the orientation of the openings 8.
  • the return line 6 according to the invention can be used in all types of four-stroke internal combustion engines.
  • three-, five-, six- and multi-cylinder engines are suitable for the application of the invention.
  • FIG. 6 shows a section of a cylinder head 3 'of a four-stroke internal combustion engine with an integrated return line for leak gases.
  • An intake pipe 2 'or an inlet duct for the combustion gases is arranged at an angle of approximately 30 ° from the cylinder head base plate 9'.
  • the intake pipe 2 ' is connected to a combustion chamber (not shown) via an inlet valve 10'.
  • the inlet valve 10 ' can be acted upon by a rocker arm II' against the force of a spring 12 ', the other end, not shown, of the rocker arm II' being operatively connected to the camshaft or the tappet tube of the engine.
  • the rocker arm 11 'together with the spring 12' is covered by a cylinder head cover 5 'which is connected to the cylinder head 3' via a seal 13 '.
  • the cylinder head 3 ' is designed as a block cylinder head or as a single cylinder head and in the cylinder head 3' there is a return line 4 'running through the entire length of the head, ie the return line 4' is integrated in the cylinder head 3 '.
  • the continuous return line 4' is formed by connecting pieces arranged between the cylinder heads 3 '. As connectors are z. B. Double plug-in pieces are ideally suited.
  • the return line 4 ' is arranged in the immediate vicinity of the intake pipes 2' and is either designed as a bore or cast in or recessed in the mold.
  • the return line 4' is connected to the intake pipes 2 'via connecting channels 8'. It is ever a connecting duct 8 'is assigned to the intake pipe or inlet duct.
  • the connecting channels 8' advantageously open into the return line 4 'at the geodetically lowest point.
  • the connecting channels 8 ' can advantageously be designed as bores or as throttle screw plugs 5'.
  • the size of the connecting duct 8 'or its position relative to the intake pipe 2' expediently differs depending on the number of engine cylinders.
  • the flow cross section of the connecting channels 8' in the flow direction of the returned gases is expediently formed.
  • the connecting channels -8 ' are introduced into the return line 4' starting from the inside of the intake pipes 2 '. This eliminates the need for additional closure parts that would be necessary if the connecting channels 8 'were introduced from the outside.
  • a recess 14 ' is arranged between the connecting duct 8' and the intake pipe 2 'and serves for better attachment of the connecting duct 8'.
  • Fig. 7 shows an alternative embodiment in which the cylinder head cover 5 'is formed in one piece and the return line 4' is integrated in the cylinder head cover.
  • the cylinder head cover 5 ' is flanged to the cylinder head 3' with the interposition of seals 13 '.
  • a connecting duct 8 ' leads from the return line 4' in the direction of the seam between the cylinder head cover and the cylinder head and is designed as described in FIG. 6.
  • the connecting channel 8 ' can easily be introduced into the cylinder head cover 5' before it is installed.
  • the connecting duct 8 ' is connected to the intake pipe 2' via a further connecting duct 8 'with a larger diameter.
  • the arrangement of the return line 4 'in the region of the steeply rising intake pipes 2' or inlet channels prevents the formation of oil sump or an oil deposit in the air intake housing or in the intake pipe 2 '. Even with extreme engine inclinations, the oil drain is guaranteed by the 30 ° angle of attack of the intake pipe 2 'to the cylinder head base 9' (see FIG. 6), in the direction of the valve seat 15 '.
  • Fig. 8 shows a view Fig. 8a and a section of a breather valve housing 7 'arranged on the engine.
  • This vent valve housing 7 ' is part of the return line. It can be seen that the return line 4 'directly via sealing elements 6' z. B. a round seal is flanged to the vent valve housing 7 '.
  • the vent valve housing 7 ' is in turn connected directly to the crankcase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft eine Rückführleitung für Leckgase aus dem Kurbelgehäuse eines Viertakt-Verbrennungsmotors in die Ansaugrohre der Zylinder.
  • Beim Viertakt-Verfahren eines Verbrennungsmotors gelangen bei den Takten des Verdichtens und Verbrennens Gase an den Kolben vorbei in das Kurbelgehäuse. Der Grund liegt darin, daß die Kolbenringe nie eine hundertprozentige Abdichtung zwischen Zylinder und Kurbelgehäuse herstellen können. Deshalb gelangen sog. Leckgase ins Kurbelgehäuse, die teils aus unverbranntem Luft-Kraftstoff-Gemisch, teils aus den Verbrennungsgasen bestehen. Während früher das Kurbelgehäuse in die Umgebung entlüftet wurde, ist heutzutage aus Gründen des Umweltschutzes eine Rückführung der Leckgase erforderlich. Die Rückführung erfolgt bei Viertakt-Benzinmotoren in der Regel hinter dem Luftfilter in das Ansaugrohr des Vergasers, bei Viertakt-Diesemotoren hinter dem Luftfilter vor die Ansaugrohre der Zylinder.
  • Die Rückführung der Leckgase hat vor allem bei Dieselmotoren einen positiven Nebeneffekt. Die vor die Ansaugrohre rückgeführten Leckgase reißen nämlich Öltröpfchen aus dem Kurbelgehäuse mit. Diese feinverteilten, mitgerissenen Oltröpfchen genügen, um die Ventilsitze der Einlaßventile zu schmieren und vor Verschleiß zu schützen. Dieses ist wesentlich vorteilhafter, als wenn eine Schmierung entlang der Ventilschäfte durch herabsickerndes Öl erfolgen würde. Aufgrund der Wärmeeinwirkung auf den Ventilschaft besteht nämlich die Gefahr, daß das herabsickernde Öl an den Ventilschäften verkokt und damit den Querschnitt des Ansaugrohrs verengt.
  • Werden die Leckgase aber unkontrolliert vor die Ansaugrohre der Zylinder über eine einzige Öffnung rückgeführt, besteht die Gefahr, daß der Zylinder, dem die Öffnung der Rückführleitung am nächsten liegt, die meisten Leckgase ansaugt, und daß der am entferntesten liegende Zylinder keine Leckgase mehr ansaugen kann. Das führt naturgemäß zu einer ungleichmäßigen Verteilung des Ölnebels auf die einzelnen Zylinder, so daß sich die Einlaßventile der Zylinder, die den meisten Ölnebel ansaugen, mit Ölkohle zusetzen, während bei Ventilen der Zylinder, die keine Leckgase mehr ansaugen, wegen mangelnder Schmierung Ventilschäden durch Ventilsitzverschleiß auftreten.
  • Um die Nachteile dieser unkontrollierten Leckgasrückführung zu vermeiden, hat die Erfindung sich die Aufgabe gestellt, die Leckgase so gleichmäßig auf jeden Zylinder zu verteilen, daß eine ausreichende Schmierung der Ventilsitze aller Einlaßventile gewährleistet ist.
  • Die Aufgabe wird mit Hilfe der kennzeichnenden Merkmale des Anspruchs I gelöst.
  • In vorteilhafter Weise steht die Rückführleitung mit jedem Ansaugrohr eines Zylinders über eine Öffnung in Verbindung. Dadurch ist gewährleistet, daß jeder der Zylinder Leckgase ansaugen kann und damit seine Einlaßventile eine genügende Schmierung in den Ventilsitzen erfahren. Die unterschiedlichen Durchmesser der Öffnungen, die sich in Strömungsrichtung der Leckgase gesehen in der Rückführleitung, so ändern, daß die letzte Öffnung einen wesentlich größeren Durchmesser und eine andere Austrittsrichtung in das Ansaugrohr aufweist als die erste Öffnung, stellen sicher, daß von jedem Zylinder die gleiche Menge Leckgase angesaugt werden kann. Nach den Strömungsgesetzen kann über die Fläche einer Öffnung sowie über die Richtung ihres Austritts direkt auf die pro Zeiteinheit durch diese Öffnung strömende Gasmenge Einfluß genommen werden. Der in Strömungsrichtung der Rückführleitung gesehen erstliegende Zylinder saugt die Leckgase aus der kleinsten Öffnung an. In diesem Teil der Rückführleitung enthalten die Leckgase noch den höchsten Ölnebelanteil. Die Menge der Leckgase und ihr Ölnebelanteil nimmt aber in der Rückführleitung von Ansaugrohr zu Ansaugrohr ab. Um alle Zylinder gleichmäßig mit Leckgasen zu versorgen und dadurch eine Schmierung der Ventilsitze der Einlaßventile sicherzustellen, ist die in Strömungsrichtung der Leckgase gesehen letzte Öffnung in der Rückführleitung wesentlich größer als die erste.
  • In Ausgestaltung der Erfindung sind die Öffnungen in einer spiralförmigen oder nahezu spiralförmigen Linie um die Rückführleitung angeordnet, wobei die in Strömungsrichtung der Rückführleitung gesehen erste Öffnung auf der der Ansaugöffnung des Ansaugrohrs abgewandten Seite und die letzte auf der der Ansaugöffnung des Ansaugrohrs zugewandten Seite der Rückführleitung liegen. Diese Anordnung der Löcher verhindert vorteilhaft, daß an der Stelle, wo die Leckgase den höchsten Gehalt an Ölnebel aufweisen und sich Öltröpfchen an der Wandung niederschlagen können, durch eine senkrecht nach unten weisende Öffnung Öl heraustropft, in den Ansaugstutzen des Zylinders gelangt und fur ein Überangebot an Öl sorgt. Selbst wenn sich an der Stelle des ersten Lochs Öltröpfchen abscheiden sollten, gelangt doch nur Ölnebel mit den Leckgasen in das Ansaugrohr des Zylinders. Da mit zunehmender Anzahl der Zylinder die Leckgase ölärmer werden, können auch die Öffnungen entsprechend zu den Ansaugstutzen hin gedreht werden. Am letzten Ansaugrohr sind die Leckgase bereits so ölnebelarm geworden, daß keine Gefahr besteht, daß sich größere Öltropfen abscheiden.
  • In weiterer Ausgestaltung der Erfindung weisen die Öffnungen in der Rückführleitung nach außen hin eine düsenförmige Erweiterung auf. Durch diese Ausgestaltung der Öffnungen wird vorteilhaft sichergestellt, daß die Leckgase gleichmäßig ausströmen und sich damit der Olnebel gleichmäßig in der angesaugten Luft der Ansaugrohre verteilt.
  • In Weiterbildung der Erfindung ist die Rückführleitung als separates Rohr in den Ansaugkasten eingesetzt. Diese Ausbildung wird vorteilhaft dann angewendet, wenn der Ansaugkasten als separates beispielsweise aus Kunststoff gefertigtes Bauteil an den Zylinderkopf des Verbrennungsmotors angeflanscht ist. Es ist auch erfindungsgemäß vorgesehen, die Rückführleitung direkt in den Zylinderkopf einzuarbeiten bzw. zu integrieren. In dieser erfindungsgemäßen Ausgestaltung erstreckt sich die Rückführleitung als geradliniger Kanal entlang der Ansaugkanäle in dem Zylinderkopf und die Öffnungen münden direkt in die zu den Einlaßventilen führenden Ansaugkanäle.
  • Durch die erfindungsgemäße Integrierung der Rückführleitung in den Blockzylinderkopf oder den Einzelzylinderkopf ist der Platzbedarf für die Rückführleitung auf ein Minimum beschränkt und die Zahl der Anbauteile verrringert.
  • In einer vorteilhaften Ausführungsform ist die Zylinderkopfhaube einteilig ausgebildet und die Rückführleitung in die Zylinderkopfhaube integriert.
  • In einer alternativen Ausführungsform ist der Zylinderkopf aus Einzelzylinderköpfen zusammengesetzt und die Rückführleitung in die Einzelzylinderköpfe oder auch in die Einzelzylinderkopfhauben integriert. Dabei ist durch zwischen den Einzelzylinderköpfen angeordnete Verbindungsstücke eine durchgehende Rückführleitung gebildet.
  • Die Rückfuhrleitung ist in allen Ausführungsformen zweckmäßigerweise als Bohrung ausgebildet oder aber beim Gießen des Zylinderkopfes ausgespart. Ferner kann die Rückführleitung auch z. B. als Rohr in den Zylinderkopf bzw. die Zylinderkopfhabe eingegossen werden.
  • Damit die Leckgase auf alle Zylinder verteilt werden können, durchzieht vorteilhafterweise die Rückführleitung die ganze Länge des Zylinderkopfes und ist jeweils in unmittelbarer Nachbarschaft der Ansaugrohre angeordnet, um eine kurze Verbindungsleitung von der Rückführleitung zu den Ansaugrohren zu erreichen. Diese Verbindungskanäle sind zweckmäßigerweise als Bohrungen oder als Drosselschraubstopfen ausgebildet. Zur Vermeidung eines Ölsumpfes in der Rückführleitung münden zweckmäßigerweise die Verbindungskanäle an geodätisch tiefster Stelle in die Rückführleitung. Damit, in Strömungsrichtung gesehen, alle Zylinder die gleiche Menge an Leckgasen zugeführt bekommen, ist sinnvollerweise der Strömungsquerschnitt der Verbindungskanäle, in Strömungsrichtung der rückgeführten Leckgase, zunehmend ausgebildet.
  • Um ein Abfließen des in den Leckgasen enthaltenen Öls in die Zylinder auch bei Schräglage des Motors sicherzustellen, stehen die Ansaugrohre vorteilhafterweise in einem Winkel von ca. 30° von der Zylinderkopfbodenplatte ab.
  • Weiterhin ist es zweckmäßig, die Rückführleitung unmittelbar über Dichtungselemente an ein Entlüftungsventilgehäuse anzuflanschen, um eine möglichst kompakte Bauform des Motors zu erreichen.
  • Vorteilhafterweise ist eine Versorgungsleitung für die Rückführleitung in den Zylinderkopf eingearbeitet.
  • Weitere Merkmale der Erfindung ergeben sich aus der Beschreibung und den Figuren, die verschiedene Ausführungsformen der Erfindung zeigen und nachfolgend näher beschrieben sind.
  • Es zeigt:
    • Fig. I: den geöffneten Ansaugkasten eines Viertakt-Dieselmotors von der Luftfilterseite aus gesehen,
    • Fig. 2: einen Querschnitt durch diesen Ansaugkasten mit Blick auf ein Ansaugrohr,
    • Fig. 3: eine in den Zylinderkopf eingearbeitete Rückführleitung,
    • Fig. 4 u. 5: Querschnitte durch die Rückführleitung im Bereich der Öffnungen in die Ansaugkanäle,
    • Fig. 6: einen Ausschnitt aus einem Zylinderkopf mit integrierter Rückführleitng für Leckgase,
    • Fig. 7: einen Ausschnitt aus einem Zylinderkopf mit in die Zylinderkopfhaube integrierter Rückführleitung und
    • Fig. 8: eine Ansicht und einen Schnitt von einem am Motor angeordneten Entlüftungsventilgehäuse.
  • In Fig. ist der Ansaugkasten eines vierzylindrigen Viertakt-Dieselmotors in geöffnetem Zustand dargestellt. Die Ansicht erfolgt von der Luftfilterseite aus. Das Gehäuse des Ansaugkastens 1 wird mit Befestigungslaschen 2 an den jeweiligen Zylinderköpfen, die hier nicht näher dargestellt sind, befestigt. In dem Ansaugkasten I sind die vier Ansaugrohre 3 in der Aufsicht zu erkennen. Sie sind mit ihren Ansaugöffnungen 3" nach links geneigt und unterhalb des Ansaugkastens sind die Flansche 4 zum Anschluß an den Ansaugkanal des jeweiligen Zylinders zu sehen. Af der linken Seite wird von einem Anschlußstutzen 5 die Rückführleitung 6 für die Leckgase zum Kurbelgehäuse hingeführt. Die Rückführleitung 6 liegt als Rohr im Inneren des Ansaugkastens I oberhalb der Ansaugrohre 3. Mit einer Schraubverbindung 7 ist die Rückführleitung 6 an dem Gehäuse des Ansaugkastens I befestigt.
  • In Höhe der Ansaugöffnung 3" eines jeden Ansaugrohrs 3 ist in der Rückführleitung 6 jeweils eine Öffnung 8. Diese Öffnungen 8 befinden sich auf einer nahezu spiralförmigen Linie um die Mittellinie 9 der Rückführleitung 6. Am Anfang der Rückführleitung 6 in dem Ansaugkasten I befindet sich die Öffnung oberhalb des ersten Ansaugrohrs links nahezu auf der entgegengesetzten Seite von der Ansaugöffnung 3" des Ansaugrohrs 3. Außerdem ist die Öffnung sehr klein im Vergleich zu den darauf folgenden Öffnungen, die jeweils um mehrere Winkelgrade in Richtung auf die Ansaugöffnungen der Ansaugrohre 3 hingedreht sind, so daß die letzte Öffnung über dem letzten Ansaugrohr senkrecht nach unten weist, direkt in Richtung auf die Ansaugöffnung 3" des Ansaugrohrs 3 hin. Diese Öffnung ist die größte von allen vier dargestellten Öffnungen.
  • Werden sehr stark mit Olnebel beladene Leckgase aus dem Kurbelgehäuse angesaugt, besteht die Gefahr, daß sich Öltröpfchen in der Olleitung niederschlagen. Das ist besonders beim Eintritt der Rückführleitung in den Ansaugkasten I der Fall, wo die kalte, angesaugte Luft das Rohr umströmt. Wäre dort die Öffnung 8 direkt im Bereich der Ansaugöffnung 3" des Ansaugrohrs 3 nach unten gerichtet, würde die Gefahr bestehen, daß die abgeschiedenen Öltröpfchen in das erste Ansaugrohr hineingesaugt würden und somit ein Überangebot an 01 in dem darunterliegenden Ansaugrohr und damit an dem Einlaßventil anfiele, während beim letzten Ansaugrohr kein Öl mehr ankäme. Die Anordnung der Löcher 8 auf der Rückführleitung 6 stellt somit sicher, daß beim Eintritt in den Ansaugkasten I nur Ölnebel von dem ersten Ansaugrohr 3 angesaugt wird und daß auch das letzte Ansaugrohr die gleiche Menge Leckgase mit dem gleichen Ölanteil ansaugen kann. In die Öffnungen der Rückführleitung können auch Röhrchen gesteckt werden. Weisen die Röhrchen alle den gleichen Querschnitt auf, kann durch Zusammendrücken des Endes eine Öffnung beliebiger Form und Größe geformt werden. Durch Biegen der Rohre können die Öffnungen beliebig in den Bereich der Ansaugöffnungen der Ansaugrohre gedreht werden.
  • Fig. 2 zeigt einen Schnitt durch den Ansaugkasten I mit Blick auf die Ansaugöffnung 3" eines Ansaugrohrs 3. Auf der rechten Seite des Ansaugkastens I muß man sich den Luftfilter ergänzt denken, während die Befestigungslasche 2 mit dem zugehörigen Zylinderkopf verschraubt ist. Das Ansaugrohr 3 öffnet sich nach oben zum Betrachter hin, während es unten links am Flansch 4 in den Ansaugstutzen des Zylinders mündet. Oberhalb des Ansaugrohrs 3 verläuft die Rückführleitung 6. Deutlich zu erkennen ist eine Öffnung 8, die unter einem Winkel von etwa 45 0 zur Senkrechten durch die Mittellinie 9 nach unten auf die Ansaugöffnung 3" des Ansaugrohrs 3 hin gerichtet ist. Die Öffnung 8 weist nach außen hin eine düsenförmige Erweiterung 10 auf. Diese Form der Öffnung sichert ein gleichmäßiges Ausströmen der Leckgase und eine optimale Auffächerung des austretenden Strahles an Leckgasen und Olnebel, so daß eine gute Vermischung mit der vom Ansaugrohr 3 angesaugten Luft erfolgt. Die Bearbeitung der Öffnungen 8 muß sehr sorgfältig erfolgen, damit keinerlei Grate und Unebenheiten entstehen. Diese könnten nämlich die Strömung sehr stark beeinflussen, so daß es zu einem ungleichmäßigen Verteilen der Leckgase käme. Der Lage der Öffnung 8 in der Rückführleitung 6 entsprechend ist das dargestellte Ansaugrohr das vorletzte der in Fig. dargestellten Ausaugrohre, von links an gerechnet.
  • Um die Strömungsverhältnisse in dem Ansaugkasten I zu verbessern, kann die Rückführleitung 6 auch durch ein hier nicht dargestelltes kurzes, nach unten reichendes, das Rohr überdeckendes Blech gegenüber dem vorgesetzten Luftfilter abgeschirmt sein. Dadurch kann verhindert werden, daß, je nach Lage der Öffnungen 8, der vorgeschaltete Filter durch Ölnebel benetzt wird.
  • Im vorliegenden Ausführungsbeispiel, wie in Fig. I dargestellt, nimmt, in Strömungsrichtung der Leckgase gesehen, der Durchmesser der jeweiligen Öffnungen 8 in der Rückführleitung 6 kontinuierlich in gleichen Schritten zu. Ist es aufgrund der konstruktiven Ausführung für die Strömungsverhältnisse vorteilhaft, können auch zwei aufeinanderfolgende Löchen den gleichen Durchmesser aufweisen.
  • Außerdem ist es denkbar, daß der gewählte Winkelversatz der Löcher auf dem Umfang der Rückführleitung 6 nicht in gleich großen Winkelschritten erfolgt. So können beispielsweise zwei aufeinanderfolgende Löcher an der gleichen Stelle des Umfangs, auf demselben Winkelgrad, liegen.
  • Bei dem Ausführungsbeispiel nach Fig. 3 ist die Rückführleitung 6 direkt in den Zylinderkopf 10 eingearbeitet. Dabei ist die Rückführleitung 6 als geradliniger Kanal ausgebildet, der direkt beim Gießvorgang des Zylinderkopfs 2 durch einen entsprechenden Gießkern ausgespart wird oder nachträglich durch beispielsweise Bohren in den Zylinderkopf 10 eingearbeitet wird. Die Rückführleitung 6 ist oberhalb der Ansaugkanäle II angeordnet und die Öffnungen 8 münden direkt in die Gehäusewandungen der Ansaugkanäle II. Die Ausrichtung der Öffnungen 8 in die Ansaugkanäle II erfolgt analog zu den Ausführungen, wie sie in den Fig. I und 2 beschrieben sind. Die Versorgungsleitung, von der die Rückführleitung 6 mit Leckgasen und Ölnebel versorgt wird, ist bei dieser Ausführung vorteilhaft in den Zylinderkopf 10 eingearbeitet und über entsprechende Leitungen und ggf. Ventile mit dem Kurbelgehäuse des Verbrennungsmotors verbunden.
  • Die Schnitte nach Fig. 4 und 5 zeigen die unterschiedlichen Mündungen der Öffnungen 8 in die Ansaugkanäle II des Zylinderkopfs 10, wobei bezüglich der Ausrichtung der Öffnungen 8 auf die Zeichnungsbeschreibung zu den Fig. I und 2 verwiesen wird.
  • Die erfindungsgemäße Rückführleitung 6 kann bei allen Arten von Viertakt-Verbrennungsmotoren verwendet werden. Neben den in den Figuren dargestellten Zwei- und Vierzylinder-Motoren kommen für die Anwendung der Erfindung beispielsweise Drei-, Fünf-, Sechs- und Mehrzylindermotoren in Frage.
  • Fig. 6 zeigt einen Ausschnitt aus einem Zylinderkopf 3' eines Viertakt-Verbrennungsmotors mit integrierter Rückführleitung für Leckgase. Ein Ansaugrohr 2' bzw. ein Einlaßkanal für die Verbrennungsgase ist in einem Winkel von ca. 30° von der Zylinderkopfbodenplatte 9' abstehend angeordnet. Über ein Einlaßventil 10' steht das Ansaugrohr 2' mit einem nicht gezeigten Brennraum in Verbindung. Das Einlaßventil 10' ist von einem Kipphebel II' entgegen der Kraft einer Feder 12' kraftbeaufschlagbar, wobei das andere, nicht gezeigte Ende des Kipphebels II' mit der Nockenwelle bzw. dem Stößelrohr des Motors in Wirkverbindung steht. Der Kipphebel 11' mitsamt der Feder 12' ist von einer Zylinderkopfhaube 5' abgedeckt, die über eine Dichtung 13' mit dem Zylinderkopf 3' verbunden ist. Erfindungsgemäß ist der Zylinderkopf 3' als Blockzylinderkopf oder als Einzelzylinderkopf ausgebildet und im Zylinderkopf 3' eine die ganze Länge des Kopfes durchziehende Rückführleitung 4' angeordnet, d. h. die Rückführleitung 4' ist in den Zylinderkopf 3' integriert.
  • Ist der Zylinderkopf 3' aus Einzelzylinderköpfen zusammengesetzt, so ist die durchgehende Rückführleitung 4' durch zwischen den Zylinderköpfen 3' angeordnete Verbindungsstücke gebildet. Als Verbindungsstücke sind z. B. Doppelsteckstücke bestens geeignet.
  • Die Rückführleitung 4' ist dabei in unmittelbarer Nachbarschaft der Ansaugrohre 2' angeordnet und ist entweder als Bohrung ausgebildet oder eingegossen bzw. in der Gußform ausgespart.
  • Damit die rückgeführten Leckgase in die jeweiligen Ansaugrohre 2' der Zylinder gelangen können, ist die Rückführleitung 4' mit den Ansaugrohren 2' über Verbindungskanäle 8' verbunden. Dabei ist jedem Ansaugrohr bzw. Einlaßkanal ein Verbindungskanal 8' zugeordnet.
  • Zur Vermeidung eine Olsumpfes in der Rückführleitung 4' münden vorteilhafterweise die Verbindungskanäle 8' an geodätisch tiefster Stelle in die Rückführleitung 4' .
  • Die Verbindungskanäle 8' können vorteilhafterweise als Bohrungen oder als Drosselschraubstopfen 5' ausgebildet sein. Zweckmäßigerweise ist die Größe des Verbindungskanals 8' bzw. dessen Lage zuum Ansaugrohr 2' je nach Motorzylinderzahl unterschiedlich. Um eine gleichmäßige Versorgung aller Ansaugrohre 2' mit der gleichen Menge an Leckgasen sicherzustellen, ist sinnvollerweise der Strömungsquerschnitt der Verbindungskanäle 8' in Strömungsrichtung der rückgeführten Gase zunehmend ausgebildet. Wie in der Fig. 6 zu sehen, sind die Verbindungskanäle -8' von der Innenseite der Ansaugrohre 2' ausgehend in die Rückführleitung 4' eingebracht. Es entfallen dadurch zusätzliche Verschlußteile, die nötig wären, wenn die Verbindungskanäle 8' von außen eingeführt würden. Zwischen dem Verbindungskanal 8' und dem Ansaugrohr 2' ist eine Ausnehmung 14' angeordnet, die zur besseren Anbringung des Verbindungskanals 8' dient.
  • Fig. 7 zeigt eine alternative Ausführungsform, bei der die Zylinderkopfhaube 5' einteilig ausgebildet ist und die Rückführleitung 4' in die Zylinderkopfhaube integriert ist. Die Zylinderkopfhaube 5' ist unter Zwischenschaltung von Dichtungen 13' am Zylinderkopf 3' angeflanscht. Von der Rückführleitung 4' in Richtung Verbindungsnaht Zylinderkopfhaube-Zylinderkopf führt ein Verbindungskanal 8', der wie in Fig. 6 beschrieben ausgeführt ist. Der Verbindungskanal 8' kann leicht vor der Montage der Zylinderkopfhaube 5' in diesen eingebracht werden. Der Verbindungskanal 8' ist mit dem Ansaugrohr 2' über einen weiteren, im Durchmesser größeren Verbindungskanal 8' verbunden. In der Verbindungsnaht Zylinderkopfhaube-Zylinderkopf gehen die beiden Verbindungskanäle 8' ineinander über. Durch die Anordnung der Rückführleitung 4' im Bereich der steil ansteigenden Ansaugrohre 2' bzw. Einlaßkanäle, ist eine Olsumpfbildung bzw. eine Ölablagerung im Luftansauggehäuse bzw. im Ansaugrohr 2' verhindert. Selbst bei extremen Motorschräglagen ist der Ölablauf durch den 30°-Anstellwinkel des Ansaugrohrs 2' zum Zylinderkopfboden 9' (siehe Fig. 6), in Richtung Ventilsitz 15' gewährleistet.
  • Fig. 8 zeigt eine Ansicht Fig. 8a und einen Schnitt von einem am Motor angeordneten Entlüftungsventilgehäuse 7'. Dieses Entlüftungsventilgehäuse 7' ist Bestandteil der Rückführleitung. Es ist zu erkennen, daß die Rückführleitung 4' unmittelbar über Dichtungselemente 6' z. B. einer Runddichtung an das Entlüftungsventilgehäuse 7' angeflanscht ist. Das Entlüftungsventilgehäuse 7' ist wiederum direkt mit dem Kurbelgehäuse verbunden.
  • Im Betrieb des Motors gelangen die Leckgase vom Kurbelgehäuse I' über das Entlüftungsventil im Entlüftungsventilgehäuse 7' in die Rückführleitung 4' und vo dort aus über die Verbindungskanäle 8' in die jeweiligen Ansaugrohre 2' der Zylinder. Diese erfindungsgemäße Ausführung ist kostengünstig, da kein separates Olverteilrohr und keine Verbindungsleitung zwischen Entlüftungsventil und Zylinderkopf nötig ist. Ferner ist der Platzbedarf auf ein Minimum reduziert, da die Rückführleitung 4' im vorhandenen Zylinderkopfbauraum bzw. in der Zylinderkopfhaube 5' untergebracht ist.

Claims (20)

1. Rückführleitung für Leckgase aus dem Kurbelgehäuse eines Viertakt-Verbrennungsmotors in die Ansaugrohre der Zylinder, dadurch gekennzeichnet, daß die Rückführleitung (6) mit jedem Ansaugrohr (3) eines Zylinders über eine Öffnung (8) in Verbindung steht, wobei sich die Durchmesser der Öffnungen (8) in Strömungsrichtung der Leckgase in der Rückführleitung (6) gesehen ändern und die letzte Öffnung einen wesentlich größeren Durchmesser und eine andere Austrittsrichtung in das Ansaugrohr aufweist als die erste Öffnung.
2. Rückführleitung für Leckgase nach Anspruch 1, dadurch gekennzeichnet, daß die Öffnungen (8) in einer spiralförmigen oder nahezu spiralförmigen Linie um die Rückführleitung (6) angeordnet sind, wobei die in Strömungsrichtung der Rückführleitung (6) gesehen erste Öffnung (8) auf der der Ansaugöffnung (3") des Ansaugrohrs (3) abgewandten Seite und die letzte auf der der Ansaugöffnung (3") des Ansaugrohrs (3) zugewandten Seite der Rückführleitung (6) liegen.
3. Rückführleitung für Leckgase nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß, in Strömungsrichtung der Leckgase gesehen, der Durchmesser der jeweiligen Öffnungen (8) in der Rückführleitung (6) von der ersten bis zur letzten Öffnung zunimmt.
4. Rückführleitung für Leckgase nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Öffnungen (8) der Rückführleitung (6) nach außen hin eine düsenförmige Erweiterung (10) aufweisen.
5. Rückführleitung für Leckgase nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Rückführleitung (6) als separates Rohr im Ansaugkasten (I) angeordnet ist.
6. Rückführleitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Zylinderkopf (3') als Blockzylinderkopf ausgebildet ist und die Rückführleitung (4') in den Zylinderkopf (3') integriert ist.
7. Rückführleitung nach Anspruch 6, dadurch gekennzeichnet, daß die Zylinderkopfhaube (5') einteilig ausgebildet ist und die Rückführleitung (4') in die Zylinderkopfhaube (5') integriert ist.
8. Rückführleitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Zylinderkopf (3') aus Einzelzylinderköpfen zusammengesetzt ist, die Rückführleitung (4') in die Einzelzylinderköpfe integriert ist und durch zwischen den Einzelzylinderköpfen angeordnete Verbindungsstücke eine durchgehende Rückführleitung (4') gebildet ist.
9. Rückführleitung nach Anspruch 8, dadurch gekennzeichnet, daß die Rückführleitung (4') in die Einzelzylinderkopfhauben integriert ist.
10. Rückführleitung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Rückführleitung (4') als Bohrung ausgebildet ist.
11. Rückführleitung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Rückführleitung (4') eingegosssen ist.
12. Rückführleitung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß die Rückführleitung (4') die ganze Länge des Zylinderkopfes (3') durchzieht und in unmittelbarer Nachbarschaft der Ansaugrohre (2') angeordnet ist.
13. Rückführleitung nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß die Rückführleitung (4') unmittelbar über Dichtungselemente (6') an ein Entlüftungsventilgehäuse (7') angeflanscht ist.
14. Rückführleitung nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß die Rückführleitung (4') mit den Ansaugrohren (2') über Verbindungskanäle (8') verbunden ist.
15. Rückführleitung nach Anspruch 14, dadurch gekennzeichnet, daß die Verbindungskanäle (8') an geodätisch tiefster Stelle in die Rückführleitung (4') einmünden.
16. Rückführleitung nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die Verbindungskanäle (8') als Bohrungen ausgebildet sind.
17. Rückführleitung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß die Verbindungskanäle (8') als Drosselschraubstopfen ausgebildet sind.
18. Rückführleitung nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß der Strömungsquerschnitt der Verbindungskanäle (8') in Strömungsrichtung der rückgeführten Gase zunimmt.
19. Rückführleitung nach einem der Ansprüche 6 bis 18, dadurch gekennzeichnet, daß die Ansaugrohre (2') in einem Winkel von ca. 30° von der Zylinderkopfbodenplatte (9') abstehen.
20. Rückführleitung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß eine Versorgungsleitung für die Rückführleitung (6) in den Zylinderkopf (10) eingearbeitet ist.
EP87109025A 1986-07-01 1987-06-23 Rückführleitung für Leckgase aus dem Kurbelgehäuse Expired - Lifetime EP0251159B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3622024 1986-07-01
DE19863622024 DE3622024A1 (de) 1986-07-01 1986-07-01 Rueckfuehrleitung fuer leckgase aus dem kurbelgehaeuse
DE19873704567 DE3704567A1 (de) 1987-02-13 1987-02-13 Rueckfuehrleitung fuer leckgase aus dem kurbelgehaeuse
DE3704567 1987-02-13

Publications (3)

Publication Number Publication Date
EP0251159A2 EP0251159A2 (de) 1988-01-07
EP0251159A3 EP0251159A3 (en) 1989-02-01
EP0251159B1 true EP0251159B1 (de) 1990-10-24

Family

ID=25845142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87109025A Expired - Lifetime EP0251159B1 (de) 1986-07-01 1987-06-23 Rückführleitung für Leckgase aus dem Kurbelgehäuse

Country Status (2)

Country Link
EP (1) EP0251159B1 (de)
DE (1) DE3765705D1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038509A1 (de) * 1990-12-03 1992-06-11 Mann & Hummel Filter Ansaugverteiler fuer eine brennkraftmaschine
DE10045636A1 (de) * 2000-09-15 2002-03-28 Audi Ag Vorrichtung zum Führen eines sekundären Gases
DE19546545B4 (de) * 1995-12-13 2006-01-12 Mahle Filtersysteme Gmbh Saugrohrmodul
DE102008021055A1 (de) 2008-04-26 2009-10-29 Ford Global Technologies, LLC, Dearborn Geschütztes PCV System

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111772A1 (de) * 1991-04-11 1992-10-15 Kloeckner Humboldt Deutz Ag Ansaugsystem fuer eine selbstzuendende brennkraftmaschine
DE4221913C1 (de) * 1992-07-03 1994-01-27 Freudenberg Carl Fa Ansaugkrümmer für eine Verbrennungskraftmaschine mit einem Zylinderkopf
US5307784A (en) * 1993-04-05 1994-05-03 Ford Motor Company Induction system for internal combustion engine
DE4406986B4 (de) * 1994-03-03 2005-05-12 Deutz Ag Hubkolben-Brennkraftmaschine
DE29901854U1 (de) * 1999-02-03 2000-06-29 Fink, Gerhard, 35080 Bad Endbach Brennkraftmaschine, Verdichter oder Pumpe mit, die Kanäle steuernden um die Achsen der Zylinder rotierenden und über eine Außenverzahnung direkt angetriebenen Drehschiebern
SE520863C2 (sv) 2000-05-05 2003-09-09 Volvo Personvagnar Ab Metod och anordning för ventilering av gaser i en förbränningsmotor
US7246610B2 (en) * 2003-10-07 2007-07-24 S & S Cycle, Inc. Cylinder head
DE102011014541B4 (de) 2011-03-19 2019-01-17 Audi Ag Luftzufuhrelement für eine Verbrennungskraftmaschine und Verfahren zum Fertigen eines Luftzufuhrelements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE318639C (de) *
US1478094A (en) * 1922-12-30 1923-12-18 Harry D Barrett Oiling system
US2057123A (en) * 1935-11-09 1936-10-13 William B Ullrich Means for lubricating and cooling engine valves
US2681051A (en) * 1952-07-03 1954-06-15 Lawton H Robinson Vapor top oiler
US3156226A (en) * 1963-05-23 1964-11-10 William J Linn Air intake fitting for internal combustion engine
DE2036045A1 (de) * 1970-07-21 1972-03-09 Daimler-Benz Ag, 7000 Stuttgart Mehrzylindrige Einspritzbrennkraftmaschine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038509A1 (de) * 1990-12-03 1992-06-11 Mann & Hummel Filter Ansaugverteiler fuer eine brennkraftmaschine
DE19546545B4 (de) * 1995-12-13 2006-01-12 Mahle Filtersysteme Gmbh Saugrohrmodul
DE10045636A1 (de) * 2000-09-15 2002-03-28 Audi Ag Vorrichtung zum Führen eines sekundären Gases
DE10045636B4 (de) * 2000-09-15 2012-04-12 Audi Ag Vorrichtung zum Führen eines sekundären Gases
DE102008021055A1 (de) 2008-04-26 2009-10-29 Ford Global Technologies, LLC, Dearborn Geschütztes PCV System
DE102008021055B4 (de) * 2008-04-26 2015-10-22 Ford Global Technologies, Llc Verbrennungsmotor mit einem geschützten PCV System

Also Published As

Publication number Publication date
EP0251159A2 (de) 1988-01-07
DE3765705D1 (de) 1990-11-29
EP0251159A3 (en) 1989-02-01

Similar Documents

Publication Publication Date Title
DE102018116622B4 (de) Zylinderkopfdeckelstruktur für Motor
DE60009266T2 (de) Zylinder für eine brennkraftmaschine
DE3542900C2 (de)
EP1065350B1 (de) Brennkraftmaschine mit einer Entlüftungseinrichtung
DE60109845T2 (de) Verfahren und Vorrichtung zur Abgasentlüftung einer Brennkraftmaschine
DE69909703T2 (de) Anti-Schaumblech einer Brennkraftmaschine
EP0251159B1 (de) Rückführleitung für Leckgase aus dem Kurbelgehäuse
DE2950905A1 (de) Kuehleinrichtung sowie zylinderkopf fuer verbrennungsmotor
DE69007816T2 (de) Zweitaktbrennkraftmaschine mit Einrichtung zur direkten Schmierung.
DE19531875C1 (de) Zylinderkopf für eine flüssigkeitsgekühlte, mehrzylindrische Brennkraftmaschine
DE2249802A1 (de) Kurbelgehaeuse-entlueftungsventil fuer brennkraftmaschinen
DE10000631A1 (de) Luftverteiler-/Ansaugkanalbaugruppe für Verbrennungsmotoren
DE69712611T2 (de) Verfahren und vorrichtung zur verteilung von dämpfen oder gasen zu jedem zylinder einer mehrzylinderbrennkraftmaschine
DE60013730T2 (de) Brennstoffversorgungssystem für Brennkraftmaschine
DE68905316T2 (de) Zweitaktbrennkraftmaschine.
DE2911555C2 (de) Ansaugkanalsystem für eine Mehrzylinder-Brennkraftmaschine
DE102014109587A1 (de) Zweiflutiges Rückschlagventil für Kurbelgehäuse-Zwangsentlüftungssystem
DE3842887A1 (de) Schmiersystem fuer motoren
DE3050893C2 (de)
DE19941863B4 (de) Ansaugsystem für einen Verbrennungsmotor
DE2823357A1 (de) Brennstoffeinspritzsystem
DE4435555C1 (de) Mehrzylindrige Brennkraftmaschine
DE19703771C1 (de) Entlüftungsvorrichtung für ein Kurbelgehäuse einer Brennkraftmaschine
DE102014102102B4 (de) Motorbaugruppe mit kurbelgehäuse-zwangsentlüftungssystem
DE3040472C2 (de) Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890105

17Q First examination report despatched

Effective date: 19891221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3765705

Country of ref document: DE

Date of ref document: 19901129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920513

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010518

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020627

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050623