EP0245744A2 - Verfahren und Vorrichtung zum Trennen von Feststoff-Feinpulvern in Korngrössenfraktionen - Google Patents

Verfahren und Vorrichtung zum Trennen von Feststoff-Feinpulvern in Korngrössenfraktionen Download PDF

Info

Publication number
EP0245744A2
EP0245744A2 EP87106418A EP87106418A EP0245744A2 EP 0245744 A2 EP0245744 A2 EP 0245744A2 EP 87106418 A EP87106418 A EP 87106418A EP 87106418 A EP87106418 A EP 87106418A EP 0245744 A2 EP0245744 A2 EP 0245744A2
Authority
EP
European Patent Office
Prior art keywords
suspension
height
fine powder
grain size
suspended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87106418A
Other languages
English (en)
French (fr)
Other versions
EP0245744A3 (de
Inventor
Otto Volz
Enrique Mechau
Werner Lohfink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfred Hempel & Co KG GmbH
Original Assignee
Alfred Hempel & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfred Hempel & Co KG GmbH filed Critical Alfred Hempel & Co KG GmbH
Publication of EP0245744A2 publication Critical patent/EP0245744A2/de
Publication of EP0245744A3 publication Critical patent/EP0245744A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D3/00Differential sedimentation

Definitions

  • the invention relates to a method and a device for separating solid fine powders into particle size fractions.
  • Micro-grains of silicon carbide and electro-corundum in the range from 0 ⁇ m to 1 ⁇ m are currently used to produce so-called "modern ceramics". Obtaining such grain classes by sieving or processes using centrifugal force is extremely complex. In addition, such a grain size distribution is not yet optimal for the desired purposes, because grain classes which are subdivided again are required within this range, for example with grain sizes of 0 ⁇ m to 0.5 ⁇ m and 0.5 ⁇ m to 1 ⁇ m.
  • the object on which the invention is based is therefore to create a method and a device with which large quantities of sub-micro-grain separated according to grain classes can be produced from powdery solid fine powders in an economical manner.
  • This object is achieved in that the fine powder is suspended in a liquid, the suspension is allowed to sediment in a suspension column, suspension fractions are drawn off successively from top to bottom at certain heights of the suspension column after certain sedimentation times and the fine powder contained in each suspension fraction is obtained.
  • This method is carried out with a device which has a columnar suspension container, which has on its upper side a connection for the suspension feed and staggered in height height of slide openings for the respective suspension fraction.
  • the particle size of disperse particles in the size range from approximately 1 to 100 ⁇ m it is already known to produce a uniform slurry of a small amount of the powder to be examined in a suitable dispersion medium and then to allow it to sediment. Since there is a clear connection between the size and density of spherically conceived particles and their sinking speed according to Stokes' law, the percentage distribution of the grain sizes is inferred from the temporal course of the sedimentation (Römpp's Chemistry Lexicon, 7th edition, pages 3151 and 3152) . With this so-called sedimentation analysis, the grain sizes of powders can be determined with the aid of sedimentation, but the extraction of grain size fractions according to the invention cannot be derived from this in an obvious manner.
  • sub-micro-grain can be obtained economically in large quantities from pulverulent ceramic fine powders by grain size class fractions with reasonable effort.
  • micropowder made of silicon carbide, high-grade corundum and tetrasodium diphosphate with a grain size distribution of 0 to 1.5 ⁇ m can be separated into grain size fractions of 0 to 0.5 ⁇ m, 0.5 to 1.0 ⁇ m and 1.0 to 1.5 ⁇ m.
  • the columnar sedimentation container 1 shown in FIG. 1 has an inlet 2 at its height H, an outlet 3 on its underside, an outlet 4 closable by a slide 5 at height H 1 and a slide 7 at height H 2 lockable drain 6.
  • the columnar sedimentation container 1 is filled via the inlet 2 over its entire height H with a suspension which has been produced from a liquid and a solid-fine powder or fine powder mixture of known grain size distribution, for example in the range from 0 to 1.5 ⁇ m.
  • the slide 5 is opened at the outlet 4 at the height H 1 and the suspension fraction located at the height H - H 1 is allowed to run off.
  • the sub-micro-grain obtained from this suspension fraction essentially contains grains with a size of 0 to 0.5 ⁇ m.
  • the suspension column located above the outlet 6 with the height H1-H2 is allowed to run off by opening the slide 7 and further treated.
  • a fine powder with a grain size in the range from 0.5 to 1.0 ⁇ m is obtained.
  • the suspension located in the sedimentation area under the outlet 6 above the height H 2, which contains the coarse fractions containing the grains is withdrawn through outlet 3.
  • Fig. 2 the separation of fine corundum fine dust in grain size fractions is shown schematically.
  • the fine corundum dust stored in a container 10 is emulsified in a high-speed mixer 12 with a suspension liquid which is supplied from a container 11 and can consist of water with additives.
  • additives are, for example, 0.5% of an emulsifier in the form of a sodium salt of a polyalkylnaphthalenesulfonic acid and 0.2% of a sequestering agent.
  • the emulsion or suspension discharged from the mixer 12 passes through the inlet 2 into the columnar sedimentation container 1. After a sedimentation time t 1, the suspension column H - H 1 of FIG.
  • a centrifuge 16 via the outlet 4, which still contains water and drying agent can be supplied from a container 13.
  • the filtrate leaving centrifugation enters a container 14 and is returned to the container 11 via a line 15 for recycling.
  • the particle sludge obtained in the centrifuge 16 is dried in an oven 17 and disintegrates there into a granular powder which is packaged in suitable containers in the station 18 in compliance with the safety regulations for inert dusts.
  • the suspension fraction discharged after the sedimentation time t 1 + t 2 at the outlet 6 by opening the slide 7 with the liquid height H 1 - H 2 is then treated in the same way in the centrifuge 16 and the particle sludge obtained is dried in the oven 17 and in place of a station 18 after determination packed in the grain size distribution.
  • the oversized grain withdrawn from the outlet 3 reaches a container 13 for further processing.
  • ultrasound can be used in the production of the suspension from liquid and fine powder and in the powder extraction after drying.
  • Fine grain fine dust is to be separated into grain size fractions consisting of 40% with a grain size of 0.1 to 0.5 ⁇ m, 35% of 0.5 to 1 ⁇ m, 20% of 1 to 2 ⁇ m, 3% of 2 to 3 ⁇ m and 2% of over 3 ⁇ m.
  • a columnar sedimentation container 1 with a height H of 3 m is used.
  • the drain 4 is at a height H1 of 92 cm, the drain 6 at a height H2 of 33 cm.
  • the suspension column H - H 1 is allowed to run without vortex after a sedimentation time of 30 minutes by opening the slide 5.
  • the fine powder of fine corundum obtained according to the treatment of FIG.

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

Zum Trennen von Feststoff-Feinpulvern in Korngrößenfraktionen wird das Feinpulver in einer Flüssigkeit suspendiert. Die Suspension wird in einem säulenförmigen Suspensionsbehälter(1) sedimentieren gelassen. Der Suspensionsbehälter (1) hat in der Höhe gestaffelt von Schiebern (5,7) verschließbare Entnahmeöffnungen (4,6) für die jeweilige Suspensionsfraktion. Abhängig von der Art des zu klassierenden Feinpulvers wird nach einer jeweils vorher festgelegten Sedimentationszeit zunächst an der höchsten Entnahmeöffnung (4) eine Suspensionsfraktion entnommen, aus der dann das darin enthaltene Feinpulver gewonnen wird, dessen mittlere Korngröße erheblich kleiner ist als die des Ausgangspulvers. Anschließend wird nach Ablauf einer weiteren, jeweils vorher festgelegten Sedimentationszeit, über die in der Höhe weiter unten liegenden Auslässe nacheinander die entsprechenden Suspensionsfraktionen entnommen und entsprechend gröbere Feinpulver gewonnen.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrich­tung zum Trennen von Feststoff-Feinpulvern in Korngrößen­fraktionen.
  • Zur herstellung von sogenannten "Modern Ceramics" werden zur Zeit Mikrokörnungen aus Siliciumcarbid und Elektro­korund im Bereich von 0 µm bis 1 µm verwendet. Die Gewin­nung solcher Kornklassen durch Absiebung oder die Zen­trifugalkraft nutzende Prozesse ist äußerst aufwendig. Außerdem ist eine solche Korngrößenverteilung für die ge­wünschten Zwecke noch nicht optimal, denn man braucht innerhalb dieses Bereichs nochmals unterteilte Kornklas­sen, beispielsweise mit Korngrößen von 0 µm bis 0,5 µm und 0,5 µm bis 1 µm.
  • Die der Erfindung zugrundeliegende Aufgabe besteht des­halb darin, ein Verfahren und eine Vorrichtung zu schaf­fen, mit denen sich in wirtschaftlicher Weise große Men­gen von nach Kornklassen getrenntem Sub-Mikrokorn aus pulverförmigen Feststoff-Feinpulvern herstellen lassen.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Feinpulver in einer Flüssigkeit suspendiert wird, die Suspension in einer Suspensionssäule sedimentieren gelassen wird, Suspensionsfraktionen nacheinander von oben nach unten auf bestimmten Höhen der Suspensions­säule nach bestimmten Sedimentationszeiten abgezogen und das in jeder Suspensionsfraktion enthaltene Feinpulver gewonnen wird.
  • Dieses Verfahren wird mit einer Vorrichtung durchgeführt, die einen säulenförmigen Suspensionsbehälter aufweist, der auf seiner Oberseite einen Anschluß für die Suspen­sionszuführung und in der Höhe gestaffelt von Schiebern verschließbare Entnahmeöffnungen für die jeweilige Sus­pensionfraktion aufweist.
  • Zur Bestimmung der Teilchengröße disperser Teilchen im Größenbereich von etwa 1 bis 100 µm ist es zwar bereits bekannt, in einem geeigneten Dispersionsmittel eine gleichmäßige Aufschlämmung einer kleinen Menge des zu untersuchenden Pulvers herzustellen und diese dann sedi­mentieren zu lassen. Da nach dem Stokes'schen Gesetz ein eindeutiger Zusammenhang zwischen Größe und Dichte von kugelförmig gedachten Teilchen und ihrer Sinkgeschwin­digkeit besteht, wird aus dem zeitlichen Verlauf der Se­dimentation auf die prozentuale Verteilung der Korngrö­ßen geschlossen (Römpp's Chemielexikon, 7. Auflage, Seiten 3151 und 3152). Mit dieser sogenannten Sedimen­tationsanalyse lassen sich zwar die Korngrößen von Pul­vern mit Hilfe der Sedimentation bestimmen, die Gewin­nung von Korngrößenfraktionen nach der Erfindung ist da­raus jedoch nicht in naheliegender Weise herleitbar.
  • Erfindungsgemäß kann in wirtschaftlicher Weise nach Kornklassenfraktionen getrenntes Sub-Mikrokorn aus pul­verförmigen keramischen Feinpulvern mit vertretbarem Aufwand in großen Mengen gewonnen werden. So lassen sich beispielsweise Mikropulver aus Siliciumcarbid, Edelkorund und Tetranatriumdiphosphat mit einer Korngrö­ßenverteilung von 0 bis 1,5 µm in Korngrößenfraktionen von 0 bis 0,5 µm, 0,5 bis 1,0 µm und 1,0 bis 1,5 µm tren­nen.
  • Anhand von Zeichnungen werden Ausführungsbeispiele der Erfindung näher erläutert. Es zeigt:
    • Fig. 1 eine Vorrichtung zur Durchführung des Ver­fahrens und
    • Fig. 2 im Fließschema die Gewinnung von Korngrößen­fraktionen aus Edelkorund-Feinstaub.
  • Der in Fig. 1 gezeigte säulenförmige Sedimentationsbehäl­ter 1 hat in der Höhe H auf seiner Oberseite einen Zu­lauf 2, auf seiner Unterseite einen Ablauf 3, auf der Höhe H₁ einen durch einen Schieber 5 verschließbaren Ab­lauf 4 und auf der Höhe H₂ einen durch einen Schieber 7 abschließbaren Ablauf 6.
  • Der säulenförmige Sedimentationsbehälter 1 wird über den Zulauf 2 über seiner gesamten Höhe H mit einer Suspension gefüllt, die aus einer Flüssigkeit und einem Feststoff-­Feinpulver oder -Feinpulvergemisch bekannter Korngrößen­verteilung, beispielsweise in dem Bereich von 0 bis 1,5 µm hergestellt worden ist.
  • Nach einer für das jeweilige Pulvergemisch in einem Vor­versuch ermittelten Sedimentationszeit t₁ wird der Schie­ber 5 am Ablauf 4 auf der Höhe H₁ geöffnet und die sich auf der Höhe H - H₁ befindliche Suspensionsfraktion ab­laufen gelassen. Das aus dieser Suspensionsfraktion ge­wonnene Sub-Mikrokorn entält im wesentlichen Körner mit einer Größe von 0 bis 0,5 µm.
  • Nach Ablauf einer Gesamtsedimentationszeit t₁ + t₂, die ebenfalls im Vorversuch bestimmt worden ist, wird die über dem Ablauf 6 befindliche Suspensionssäule mit der Höhe H₁ - H₂ durch Öffnen des Schiebers 7 ablaufen gelas­sen und weiterbehandelt. Man gewinnt ein Feinpulver mit einer Körnung im Größenbereich von 0,5 bis 1,0 µm. Die sich im Sedimentationsbereich unter dem Ablauf 6 über der Höhe H₂ befindliche Suspension, die die Grobanteile der Körner enthält, wird durch den Auslaß 3 abgezogen.
  • In Fig. 2 ist schematisch die Trennung von Edelkorund-­Feinststaub in Korngrößenfraktionen gezeigt. Der in ei­nem Behälter 10 gespeicherte Edelkorund-Feinststaub wird in einem Hochgeschwindigkeitsmischer 12 mit einer Suspensionsflüssigkeit emulgiert, die aus einem Behäl ter 11 zugeführt wird und aus Wasser mit Zusätzen be­stehen kann. Solche Zusätze sind beispielsweise 0,5 % eines Emulgators in Form eines Natriumsalzes einer Po­lyalkylnaphthalinsulfonsäure und 0,2 % eines Sequestrie­rungsmittels. Die aus dem Mischer 12 abgegebenen Emulsion bzw. Suspension gelangt über den Zulauf 2 in den säulen­förmigen Sedimentationsbehälter 1. Nach einer Sedimen­tationszeit t₁ wird über den Ablauf 4 die Suspensions­säule H - H₁ von Fig. 1 in eine Zentrifuge 16 abgeführt, der noch Wasser und Trocknungsmittel von einem Behälter 13 zugeführt werden können. Das beim Zentrifugieren ab­gehende Filtrat gelangt in einen Behälter 14 und wird für das Recycling über eine Leitung 15 in den Behälter 11 zurückgeführt. Der in der Zentrifuge 16 angefallene Teilchenschlamm wird in einem Ofen 17 getrocknet und zerfällt dort in ein körniges Pulver, das in der Sta­tion 18 unter Beachtung der Sicherheitsvorschriften für inerte Stäube in geeignete Gebinde abgepackt wird.
  • Die nach der Sedimentationszeit t₁ + t₂ am Ablauf 6 durch Öffnen des Schiebers 7 abgeführte Suspensionsfrak­tion mit der Flüssigkeitshöhe H₁ - H₂ wird dann in der gleichen Weise in der Zentrifuge 16 behandelt und der gewonnene Teilchenschlamm im Ofen 17 getrocknet und an Stelle einer Station 18 nach Bestimmen der Korngrößen­verteilung abgepackt. Das aus dem Ablauf 3 abgezogene Überkorn gelangt in einen Behälter 13 zur Weiterverar­beitung.
  • Bei der Herstellung der Suspension aus Flüssigkeit und Feinpulver sowie bei der Pulvergewinnung nach dem Trock­nen kann erforderlichenfalls Ultraschall eingesetzt wer­den.
  • Anhand des nachstehenden Beispiels wird die Erfindung näher erläutert.
  • Es soll Edelkorung-Feinststaub in Korngrößenfraktionen getrennt werden, der aus 40 % mit einer Korngröße von 0,1 bis 0,5 µm, 35 % von 0,5 bis 1 µm, 20 % von 1 bis 2 µm, 3 % von 2 bis 3 µm und 2 % von über 3 µm aufweist. Verwendet wird ein säulenförmiger Sedimentationsbehälter 1 mit einer Höhe H von 3 m. Der Ablauf 4 befindet sich auf einer Höhe H₁ von 92 cm, der Ablauf 6 auf einer Hö­he H₂ von 33 cm. Die Suspensionssäule H - H₁ wird nach einer Sedimentationszeit von 30 Minuten durch Öffnen des Schiebers 5 wirbelfrei ablaufen gelassen. Das gemäß der Behandlung von Fig. 2 gewonnene Feinpulver aus Edelkorund enthält 75 % Teilchen mit einer Größe von 0,1 bis 0,5 µm, 15 % mit einer Größe von 0,5 bis 1 µm, 9 % mit einer Größe von 1 bis 2 µm, 1 % mit einer Größe von 2 bis 3 µm und kein Teilchen mit einer Größe über 3 µm. Der Schieber 7 des Auslasses 6 bleibt geschlossen. Nach einer weiteren Se­dimentationszeit von 10 Minuten wird am Auslaß 3 diese Sedimentatiosazeit mit der Höhe H₁ entnomen, die 5 % Teilchen mit einer Korngröße von 0,1 bis 0,5 µm, 15 % mit einer Größe von 0,5 bis 1 µm, 40 % mit einer Größe von 1 bis 2 µm, 30 % mit einer Größe von 2 bis 3 µm und 10 % mit einer Größe über 3 µm enthält, wobei die Prozentangaben die jeweilige Häufigkeit betreffen.

Claims (2)

1. Verfahren zum Trennen von Feststoff-Feinpulvern in Korngrößenfraktionen, dadurch gekennzeich­net, daß das Feinpulver in einer Flüssigkeit sus­pendiert wird, die Suspension in einer Suspensionssäu­le sedimentieren gelassen wird, Suspensionsfraktionen nacheinander von oben nach unten auf bestimmten Höhen der Suspensionssäule nach bestimmten Sedimentations­zeiten abgezogen und das in jeder Suspensionsfrak­tion enthaltene Feinpulver gewonnen wird.
2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, gekennzeichnet durch einen säulenförmigen Suspensiosnbehälter (1), der auf sei­ner Oberseite einen Anschluß (2) für die Suspensions­zuführung und in der Höhe gestaffelt von Schiebern (5, 7) verschließbare Entnahmeöffnungen (4, 6) für die jeweilige Suspensionfraktion aufweist.
EP87106418A 1986-05-14 1987-05-04 Verfahren und Vorrichtung zum Trennen von Feststoff-Feinpulvern in Korngrössenfraktionen Withdrawn EP0245744A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863616300 DE3616300A1 (de) 1986-05-14 1986-05-14 Vorrichtung zum trennen von feststoff-feinpulvern in korngroessenfraktionen
DE3616300 1986-05-14

Publications (2)

Publication Number Publication Date
EP0245744A2 true EP0245744A2 (de) 1987-11-19
EP0245744A3 EP0245744A3 (de) 1989-07-05

Family

ID=6300853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87106418A Withdrawn EP0245744A3 (de) 1986-05-14 1987-05-04 Verfahren und Vorrichtung zum Trennen von Feststoff-Feinpulvern in Korngrössenfraktionen

Country Status (2)

Country Link
EP (1) EP0245744A3 (de)
DE (1) DE3616300A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645771A1 (fr) * 1989-04-17 1990-10-19 Air Liquide Procede de restructuration d'un ensemble de poudres fines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869903A (en) * 1972-07-19 1975-03-11 Permutit Co Settling rate tester
US4077874A (en) * 1975-06-19 1978-03-07 Conley Robert F Method removing radioactivity from kaolin
AT371375B (de) * 1980-01-04 1983-06-27 Ruthner Othmar Verfahren und einrichtung zur verarbeitung von muell
JPS58124505A (ja) * 1982-01-19 1983-07-25 Mitsubishi Heavy Ind Ltd 廃インキからの顔料回収方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869903A (en) * 1972-07-19 1975-03-11 Permutit Co Settling rate tester
US4077874A (en) * 1975-06-19 1978-03-07 Conley Robert F Method removing radioactivity from kaolin
AT371375B (de) * 1980-01-04 1983-06-27 Ruthner Othmar Verfahren und einrichtung zur verarbeitung von muell
JPS58124505A (ja) * 1982-01-19 1983-07-25 Mitsubishi Heavy Ind Ltd 廃インキからの顔料回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 232 (C-190)[1377], 14. Oktober 1983; & JP-A-58 124 505 (MITSUBISHI JUKOGYO K.K.) 25-07-1983 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645771A1 (fr) * 1989-04-17 1990-10-19 Air Liquide Procede de restructuration d'un ensemble de poudres fines
EP0394091A1 (de) * 1989-04-17 1990-10-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren zur Umstrukturierung einer Masse von Feinpartikeln
US5030278A (en) * 1989-04-17 1991-07-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Process of restructuring a group of finely divided particles

Also Published As

Publication number Publication date
EP0245744A3 (de) 1989-07-05
DE3616300C2 (de) 1988-02-18
DE3616300A1 (de) 1987-11-19

Similar Documents

Publication Publication Date Title
DE3840447A1 (de) Verfahren und vorrichtung zum trennen von fest-fluessig-zusammensetzungen
EP0245744A2 (de) Verfahren und Vorrichtung zum Trennen von Feststoff-Feinpulvern in Korngrössenfraktionen
DE1642879B2 (de) Zweistufige trennvorrichtung zur fluessigkeitsreinigung
DE3238676A1 (de) Verfahren zur dynamischen trennung mittels eines dicken mediums von material-gemischen, wie mineralien, die unterschiedliche spezifische gewichte aufweisen, und eine anlage zur durchfuehrung des verfahrens
EP0584092B1 (de) Verfahren und vorrichtung zur reinigung körniger materialien von fettigen substanzen, insbesondere öl
DE2133802A1 (de) Verfahren zur aufbereitung von mineralischen korngemengen nach der dichte und vorrichtung zur durchfuehrung des verfahrens
DE1182161B (de) Zentrifugalflotationszelle
DE3842851A1 (de) Verfahren und vorrichtung zur aufbereitung von flugaschen durch flotation
DE19844006A1 (de) Sandwäsche
DE802690C (de) Aufbereitung von Mineralien mittels Schwertrueben und unter Verwendung von Zyklonscheidern
DE19718668C2 (de) Verfahren zum Trennen und kontinuierlichen Austragen von schwer dispergierbaren Bestandteilen
DE4405903A1 (de) Verfahren und Vorrichtung zur Trennung von Mischgütern mit Kunststoffbestandteilchen
DE970071C (de) Verfahren zur Schwerfluessigkeitsaufbereitung fester Stoffe
EP0049787B1 (de) Verfahren zum Herstellen von wässrigen Kunstharzdispersionen
DE4407826A1 (de) Verfahren und Vorrichtung zum Aufspalten und Abtrennen von Stoffen mittels Ultraschall
EP0611275B1 (de) Verfahren und Vorrichtung zum Absondern von kleinen Werkstücken
DE617977C (de) Verfahren und Vorrichtung zum Filtrieren von sich schnell absetzenden Schlammfluessigkeiten
DE3347098A1 (de) Verfahren und vorrichtung zur abtrennung von verunreinigungen an materialien, insbesondere an zinnerz
DE912682C (de) Schwimm- und Sinkverfahren mittels Zyklonen
CH682460A5 (de) Vorrichtung zum Lösen von Feststoff-Schüttgut in einer Flüssigkeit.
DE2620080A1 (de) Verfahren zur voranreicherung heterogener mineralmischungen
DE875783C (de) Verfahren zur Aufbereitung von Kohle nach dem Schwimm-Sink-Verfahren
DE4314939C1 (de) Verfahren zur Trennung von spezifisch schweren Feststoff-Feinpartikeln aus Emulsionen sowie Vorrichtung zur Durchführung des Verfahrens
DD244705A1 (de) Verfahren und wirbelgefaess zur trennung eines partikelgemisches
DE807261C (de) Verfahren und Vorrichtung zum Klassieren der zum Schleifen von Glas, Marmor und anderen Stoffen dienenden Sande und Schlaemme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890926

17Q First examination report despatched

Effective date: 19901015

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19911026

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MECHAU, ENRIQUE

Inventor name: VOLZ, OTTO

Inventor name: LOHFINK, WERNER