EP0245390B1 - Systeme de filage - Google Patents

Systeme de filage Download PDF

Info

Publication number
EP0245390B1
EP0245390B1 EP86906770A EP86906770A EP0245390B1 EP 0245390 B1 EP0245390 B1 EP 0245390B1 EP 86906770 A EP86906770 A EP 86906770A EP 86906770 A EP86906770 A EP 86906770A EP 0245390 B1 EP0245390 B1 EP 0245390B1
Authority
EP
European Patent Office
Prior art keywords
spinning
channel
polymer
spinning system
strainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86906770A
Other languages
German (de)
English (en)
Other versions
EP0245390A1 (fr
Inventor
Heinz Reinbold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reinbold Heinz
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86906770T priority Critical patent/ATE50804T1/de
Publication of EP0245390A1 publication Critical patent/EP0245390A1/fr
Application granted granted Critical
Publication of EP0245390B1 publication Critical patent/EP0245390B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/08Supporting spinnerettes or other parts of spinnerette packs

Definitions

  • the invention is based on a spinning system for the production of monofilament threads, in which a spinning tool has a polymer channel section for a polymer melt, the width of which widens in a channel part of the spinning tool into a flow channel designed as a flat bracket channel, which is followed by a nozzle block.
  • a spinning tool is known from DE-PS 33 34 870.
  • Such spinning systems are used to spin high quality threads from polymer melts, which due to their use, e.g. B. for filter cloth, tension belts, fishing lines and. Like., Must have constant material properties in a narrow tolerance range.
  • the production of a high-pressure, fine-mesh filter fabric requires threads with a constant diameter on the one hand and, on the other hand, high tensile strength.
  • a dust bar is provided for the uniform exit quantity of a polymer melt along a flat channel, the different distance from a wall of the flat channel regulating the amount of passage of the polymer melt.
  • the dust bar must therefore be flexible in itself or consist of several individual elements so that its length can form a different distance from the wall.
  • the polymer melt is dammed up in the flat channel by the dust bar, and according to its set distance, a certain amount of polymer melt can pass through a set gap per unit of time.
  • the dust bar Due to the high product and housing temperatures that occur during the production of monofilament threads, the dust bar must be sealed particularly carefully. This is particularly complex at temperatures of around 300 ° C. In addition, sealing elements of moving machine parts are known to be more prone to failure at elevated temperatures. If different material expansions occur, the distance of the dust bar / wall must be readjusted during operation. This requires a complex monitoring unit for the gap between the wall and the dust bar.
  • the invention is therefore based on the object of developing the spinning system of the type mentioned in such a way that the polymer melt is distributed steadily and uniformly in the entire free space of the flat bar channel in the case of laminar flow and without stall, so that the nozzle block has a constant polymer mass flow over its entire width at the greatest Production security is fed.
  • This object is achieved in that a cross-sectional area of the flow channel perpendicular to its width increases at least in the upper region from the polymer channel section and that the flow channel is free of internals.
  • the spinning system according to the invention therefore has the essential advantage that the shape of the flow channel distributes the polymer mass flow evenly over the entire flow channel.
  • the three-dimensional spatial contour of the flow channel is designed as a function of the viscosity and the flow curve of a raw material to be processed so that the polymer melt has a constant flow velocity over the entire outlet cross section of the flow channel.
  • the flow channel also has the advantage that it is free of internals and thus has no leading edges which could disrupt or change the flow profile of the polymer melt in the flow channel. This constructive solution guarantees a maximum of operational safety and ease of maintenance, since the flow channel does not contain any adjustable installation parts and the resulting sealing problems can be excluded.
  • the cross-sectional area tapers in the direction of the nozzle block and opens into an opening which has a constant width over the entire width.
  • This embodiment of the flow channel ensures that rectangular plates with linearly arranged bores or nozzle openings can be easily coupled to the outlet cross section of the flow channel.
  • the width of the tapered opening results from the performance of the spinning tool.
  • the flow channel is preferably formed by joining together a first and a second channel part, a three-dimensional spatial contour of the flow channel being formed on at least one of the inner sides of the channel parts.
  • the river channel consists of a two-shell construction enables a very simple and exact production of the three-dimensional spatial contour of the river channel.
  • the spatial contour for certain product properties can be calculated numerically, and a numerically controlled machine tool then mills the calculated spatial contour into at least one of the duct parts designed as metal blocks.
  • a double-shell construction it is possible to further process or close the surfaces of the river channel chrome-plated so that particularly smooth surfaces are created. If the polymer melt is allowed to solidify in the spinning tool, then when the channel parts are dismantled, a solidified polymer body can be removed which reflects the perfect shape of the channel flowed through. This enables the distribution of the polymer melt to be checked particularly simply when a plurality of melts are processed with a single flow channel space shape.
  • the nozzle block is part of a nozzle package which has a lower nozzle insert part which receives the nozzle block, a perforated plate, a sieve and an upper nozzle insert part.
  • the element-like structure of the nozzle package enables individual replacement of the individual components.
  • Nozzle blocks with different nozzle shapes can be used.
  • a perforated plate matched to the nozzle block distributes the polymer melt and feeds it to the individual nozzles.
  • sieves of different pore sizes based on metal fleece are arranged above the perforated plate and filter out dirt particles from the polymer melt.
  • the holes in the upper part of the nozzle insert pre-distribute the polymer melt in the nozzle package.
  • the interaction of the individual components in the nozzle package results in a further homogenization of the polymer flow with a simultaneous increase in the nozzle service life and spinning reliability during production.
  • the spinning tool is enclosed on two sides by clamping plates, which enclose the nozzle block on a third side perpendicular to the two sides and press against the channel part.
  • the clamping plates and the lower part of the nozzle insert ensure on the broad side of the nozzle block that the losses of heat radiation in the region of the nozzle block are as small as possible. Temperature gradients are therefore negligibly small across the entire width of the nozzle block.
  • the clamping plates for guiding the nozzle packet have jaws at their ends comprising the nozzle packet perpendicular to the plane of the screen.
  • the jaws are designed as dovetail connections that interact with the lower part of the nozzle insert.
  • the duct parts which can be heated and regulated via known devices, are protected by the clamping plates covering them, and their heat radiation is inhibited.
  • the type of connection between the lower part of the nozzle insert and the jaws of the clamping plates creates a line pressure between the nozzle block and the adjacent parts, which, in contrast to punctiform pressing with through screws, presses the nozzle block evenly against the duct parts.
  • the heat transfer from the heated duct parts to the nozzle block and to the parts surrounding them is therefore particularly good.
  • the nozzle block is guided particularly safely and evenly by the type of connection.
  • the clamping plates for releasing the nozzle block can be displaced vertically from the channel parts to the channel parts, and the jaws open laterally beyond the clamping plates into guide rails in which the nozzle block can be guided to outside the spinning tool.
  • the channel part is detachably connected to a carrier which is fastened to a vertically displaceable holder which runs in a fixed and horizontal rail.
  • the spinning tool can thus be adjusted in height in the vertical direction and horizontally displaced with respect to a fixed point in space via a rail. This opens up the possibility of easily adjusting the heavy spinning tool compared to connectable systems.
  • the end faces of the carrier have clamping devices which engage in the clamping plates.
  • An eccentric clamp connection has proven to be particularly expedient, by means of which the clamping plates can be displaced in the vertical direction.
  • eccentrics has the advantage that when the new nozzle package is re-clamped, its connection is self-locking, so that the nozzle block does not become detached from the channel parts even if the switching elements actuating the eccentric fail.
  • the spinning tool is constructed so that two or more nozzle blocks, flow channels and polymer channel sections are contained in the spinning tool.
  • the use of a second nozzle package enables the use of different nozzle shapes in one spinning tool. In this way, monofilament threads of different quality requirements can be produced at the same time with a single Soinn tool.
  • a dosing unit with its output can be coupled to the spinning tool on the input side and conveys the polymer melt into the spinning tool.
  • the spinning tool is adjusted to the position of the dosing unit. This enables a quick and exact connection of the two systems.
  • the spinning tool or the dosing unit can be exchanged as a complete unit.
  • the distribution or delivery characteristics of a polymer melt can be changed easily.
  • the dosing unit consists in a preferred version staltung of the invention from a divisible housing block that receives a spinning pump flowing through in the flow direction of the polymer melt, wherein a static mixer can be integrated into the outlet of the spinning pump.
  • the spinning pump with the static mixer is used in the polymer flow direction in recesses in the housing block so that the separable housing parts ensure the exact positioning of the spinning pump.
  • a quick, simple replacement of the spinning pump with the static mixer is also possible when the spinning system is hot, since the polymer melt is conveyed in the spinning pump in the direction of mass flow and no additional fastening screws between the housing block and the spinning pump are necessary.
  • the spinning pump picks up the polymer melt without deflection within the pump and conveys it in precisely metered quantities through the integrated static mixer to the flow channel of the spinning tool.
  • the static mixer compensates for even the smallest temperature fluctuations in the polymer melt due to its high mixing capacity and ensures that the polymer melt flows into the flow channel of the spinning tool at a uniform temperature.
  • the divisible housing block can be heated and regulated by known means, such as, for. B. via a controlled resistance heater. This has the advantage that the spinning pump with the integrated static mixer has a uniform temperature.
  • the spinning pump with the static mixer can be used as a self-contained unit in the housing block.
  • a spinning pump with a continuously adjustable spinning pump drive supplies the respective polymer channel sections of the spinning tool with the polymer melt.
  • the metering unit is arranged fixed in space, this has the advantage that when the spinning system is at a standstill, the spinning tool can be quickly and easily separated from the metering unit via its horizontal 1 'sliding options. This ensures short inspection and changeover times on the spinning system.
  • the metering unit forms the connection of the polymer channel section between the inlet of the spinning tool and an outlet of a polymer distributor.
  • the polymer distributor consists of a first distributor piece and a second distributor piece, which are interchangeable, through which the polymer stream can be split into several side channels.
  • the polymer melt By splitting the polymer channel into several side channels, the polymer melt can flow into several separate metering units, which in turn convey the polymer melt in different amounts into different flow channels of a spinning tool or into different spinning tools with different flow channels.
  • the throughput performance of a spinning system can be reduced or increased simply by changing the distributor pieces and the nozzle packs or their individual components. If the production of monofilament threads increases, additional spinning systems can be connected to two existing spinning systems.
  • the inlet of the polymer distributor is connected to an outlet of a central melt filter, and the melt filter is provided with sieve packs which can be replaced during operation, as is known per se.
  • the use of a melt filter in front of the polymer distributor, the dosing unit and the spinning tool significantly increases the production reliability of a spinning system. Soiling of the polymer melt is largely retained in the melt filter, and the strainer in the nozzle package is largely relieved, so that the service life of a nozzle package is increased significantly.
  • the metal fleece-based sieve in the nozzle package can be selected with a more fine pore filtering of the polymer melt and thereby improves the quality of the polymer melt, which is spun into monofilament threads. By replacing dirty sieve packs during operation, the utilization of such a spinning system is increased considerably.
  • the melt filter in a sieve housing has a piston which can be displaced at an angle to the polymer channel and which is provided with a first sieve recess and a second sieve recess which are equipped with the sieve packets.
  • This embodiment enables the piston to be displaced without disturbing the mass flow of the polymer melt in the spinning system.
  • the melt filter preferably has inlet channels in the sieve housing, which are closed in a first and third position of the piston and in a second position of the piston connect the polymer channel continuously to the sieve cutouts on the inlet side.
  • one of the two sieve recesses in the second position of the piston, one of the two sieve recesses is continuously connected to the polymer channel on the inlet and outlet side, the other sieve recess has a continuous connection to the polymer channel only on the inlet side, this sieve recess additionally having inlet and outlet sides Vent channels in the housing is connected continuously.
  • the piston can be moved into a position that connects one of the two sieve recesses on the inlet and outlet side to the polymer channel, the other of the two sieve recesses has only one inlet-side passage to the polymer channel and is only connected to the outlet-side ventilation channel.
  • the respective screen cutout and its screen pack can be vented step by step during the flooding. While in the second position of the piston the part of the screen cutout on the inlet side is preferably vented and through which polymer melt flows, in the position of the piston described the polymer melt flows through the entire screen cutout. The relevant screen cutout and the polymer melt are completely vented and are free of gas inclusions.
  • the spinning tool, the metering unit, the polymer distributor and the melt filter are designed as individual components and can be detached from one another. This enables existing systems to be modernized easily, since individual components can be integrated into them independently of one another.
  • a connecting pipe 3 with a polymer channel 4 connects the spinning system 1 on the input side to a dynamic mixer (not shown) and an extruder, which feed the liquid polymer melt 2 to the spinning system 1.
  • a melt filter 5 is coupled to the connecting pipe 3 and consists of a housing 6 and a piston 7 which is displaceable in the housing 6.
  • the piston 7 contains screen cutouts 8 which are equipped with screen packs 10.
  • the polymer melt 2 flows through the melt filter 5, which filters out contaminants in the polymer melt 2.
  • a dirty sieve packet 10 can be replaced when the spinning system 1 is in operation.
  • the mass flow of the polymer melt 2 is not interrupted. 2a to 2c, various operating states of the melt filter 5 are still explained.
  • the polymer melt 2 flows from the melt filter 5 into a polymer distributor 20, which is detachably connected to the melt filter 5 via a first flange connection 21.
  • the polymer distributor 20 divides the polymer channel 4 into side channels 24, only one of which is shown in FIG. 1.
  • the polymer melt 2 can be homogeneously and evenly distributed over the side channels 24.
  • 3a and 3b two exemplary embodiments of the polymer distributor 20 are explained by way of example.
  • the polymer melt 2 flows from the side channels 24 into metering units 30, of which FIG. 1 shows only one, each of which is connected on the output side to second flange connections 26 of the side channels 24 of the polymer distributor 20.
  • the metering units 30 receive in their divisible housing blocks 31 a spinning pump 32 which is equipped with a continuously variable spinning pump drive 33.
  • a static mixer 34 can be integrated into the outlet of the spinning pump 32.
  • the metering units 30 are set up in a spatially fixed manner via fastening brackets 35.
  • the polymer melt 2 flows in each individual metering unit 30 into the static mixer 34 in precisely metered amounts without deflection.
  • the static mixer 34 is equal to inhomogeneities and temperature rature gradients in the polymer melt 2.
  • the spinning system 1 is designed such that a temperature 36 and a pressure 37 of the polymer melt 2 are measured on the input side of the metering unit 30. This makes it possible to keep the pressure 37 of the polymer melt 2 constant immediately upstream of the spinning pump 32, regardless of the degree of contamination of the sieve packs 10 in the melt filter 5 or any further pressure losses.
  • the pressure 37 of the polymer melt 2 is checked at the spinning pump inlet and a signal feedback to upstream devices, such as. B. to the extruder, is processed as a control variable so that the pressure 37 of the polymer melt 2 at the spinning pump inlet is constant.
  • a comparable control device is provided for the temperature 36 of the polymer melt 2 at this point in the spinning system 1.
  • the spinning pump 32 with the integrated mixer 34 is inserted into the divisible housing block 31 of the metering unit 30 in the preheated state. No additional fixation or adjustment is necessary for the operation of the spinning pump 32. Thus, the spinning pump 32 for e.g. B. Maintenance purposes can be replaced quickly and easily.
  • the polymer melt 2 flows from the metering unit 30 into a polymer channel section 4 'of a spinning tool 40 connected to the metering unit 30.
  • the spinning tool 40 contains a first channel part 41 with one or more polymer channel sections 4'.
  • the polymer channel section 4 ′ widens in the first channel part 41 and / or in a second channel part 42 into a flow channel 43.
  • the second channel part 42 can be separated from the first channel part 41.
  • the flow channel 43 is formed as a flat bracket channel.
  • the flow channel 43 distributes the polymer melt 2 evenly over its width.
  • the flow channel 43 is designed along its width with a changing spatial contour. This is explained further below in relation to FIG. 4 by way of example for the first channel part 41 according to section IV-IV of FIG. 1, just as FIGS. 5a to 5c still show exemplary embodiments of how cross-sectional areas 44, 44 ', 44 "can be formed , which result from the joining of the two channel parts 41, 42.
  • the polymer melt 2 in FIG. 1 flows homogeneously and evenly distributed over the entire width of the flow channel 43 to an opening 45 at the lower end of the flow channel 43, which has a constant width over its entire width.
  • a nozzle packet 50 is pressed onto the opening 45 via a first and a second clamping plate 52, 53.
  • the clamping plates 52, 53 include the channel parts 41, 42 on their broad side and are slidably in contact on these sides.
  • the clamping plates 52, 53 are formed at the ends comprising the nozzle packet 50 as jaws 54, 55 which grip the nozzle packet 50 perpendicularly to the sides of the clamping plates 52, 53 and press it against the channel parts 41, 42.
  • the polymer melt 2 is divided evenly into threads, which then leave the spinning tool 40 and are fed to downstream devices. 6, the distribution of the polymer melt 2 is explained in more detail with reference to a sectional illustration of the nozzle package 50.
  • the spinning tool 40 is detachably connected in FIG. 1 via a carrier 65 to a vertically adjustable holder 75 which is horizontally displaceable in a rail 76 held in a fixed position.
  • the melt filter 5 is shown in different operating positions.
  • the melt filter 5 consists of the sieve housing 6, the piston 7, 7 ', 7 ", the first sieve recess 8, a second sieve recess 9, the sieve packs 10, 11, receiving channels 12, 12' and ventilation ducts 13, 13 on the inlet and outlet side ', 14, 14'.
  • the polymer melt 2 flows according to an operating position of the melt filter 5 in FIG. 2a through an opening of the screen housing 6.
  • the screen housing 6 is heated in a controllable manner, so that the piston 7, the screen recesses 8, 9 and the screen packs 10, 11 have the same temperature as the polymer melt 2 have.
  • a temperature 15, 16, 17 of the polymer melt 2 is measured in the mass flow, when it enters the melt filter 5, in the melt filter 5 and when it exits the melt filter 5. These temperature measuring points serve to heat the screen housing 6 as a controlled variable.
  • the opening of the screen housing 6 on the inlet side of the polymer melt 2 widens on the inside towards the piston 7 and merges into the receiving channels 12, 12 '.
  • the receiving channels 12, 12 ' are closed in the operating position of the piston 7 by its surface, and the polymer melt 2 can only flow through a breakthrough in the piston 7 into the sieve recess 8 with the exchangeable sieve packet 10.
  • the polymer melt 2 is cleaned of dirt particles as it flows through the sieve packet 10.
  • the polymer melt 2 can emerge from the melt filter 5, the sieve recess 9 is partially vented. Subsequently, the piston 7 'moves into a position in which the piston surface closes the ventilation channel 13 on the inlet side, but the ventilation channel 14 on the outlet side, with the same recess 9 connects.
  • the polymer melt 2 flows with an uninterrupted mass flow in the sieve recess 8 now also through the entire sieve packet 11 of the sieve recess 9 and completely vented the sieve recess 9. If the screen recess 9 is filled with the polymer melt 2, it flows through the outlet-side ventilation channel 14 from the melt filter 5.
  • the piston 7 'then moves into the operating position of the piston 7 "according to FIG. 2c, and the switching process from the dirty sieve packet 10 to a new, uncontaminated sieve packet 11 is completed.
  • the dirty sieve packet 10 can be pressed out of the sieve recess 8 for cleaning. Is that Sieve pack 10 cleaned and preheated, it can be reinserted into the sieve recess 8.
  • the screen recess 8 is filled via the inlet channel 12 ', via the inlet-side ventilation channel 13' and then via the outlet-side ventilation channel 14 ', before the melt filter 5 returns to the operating position piston 7 according to FIG. 2a.
  • the polymer distributor 20 is composed of a first distributor piece 22 with the polymer channel 4 and a second distributor piece 23 with the side channels 24, 25.
  • the polymer melt 2 is divided into two partial flows, which flow in the side channels 24, 25.
  • the partial flows are fed to one or two separate spinning tools 40 via two metering units 30. If the partial flows of the side channels 24, 25 are fed to a spinning tool 40, this spinning tool 40 is equipped with two polymer channel sections 4 'and two separate flow channels 43 which supply two separate nozzle packs 50, 50'.
  • 3b shows a polymer distributor 20 which is equipped with the first distributor piece 22 and a second distributor piece 23 '.
  • the polymer melt 2 from the polymer channel 4 of the distributor piece 22 is split into four partial streams which flow in the side channels 24', 24 ", 25 ', 25". These partial flows are fed to the spinning tools 40 via four metering units 30.
  • the partial streams can be processed in two so-called “double spinning tools” or in four spinning tools 40.
  • the polymer distributor 20 consists of a divisible housing which can be heated in a controllable manner.
  • the distributor pieces 22, 23, 23 'which can be inserted into the polymer distributor 20 can consist of polymer channels 4 and side channels 24, 24', 24 ", 25, 25 ', 25" of different diameters. This may be necessary if the spinning system 1 is to be operated with different powers.
  • the polymer channel section 4 'in the channel part 41 opens at 90 ° into the flow channel 43, which has the shape of a flat bracket channel.
  • the closed three-dimensional spatial contour of the flow channel 43 results from the joining together of the channel parts 41, 42.
  • the shape of the flow channel 43 is calculated from the flow curve of the polymer melt 2 to be processed and from its product properties.
  • the three-dimensional spatial contour is numerically determined with the objective that in the flow channel 43 the polymer melt 2 is distributed uniformly over the width of the flow channel 43 at a constant flow rate and flows into the opening 45 of the flow channel 43 at a constant flow rate.
  • the different spatial geometry of the flow channel 43 is shown in the section of the channel parts 41, 42 depending on its width according to the positions 5a to 5c shown in FIG. 4.
  • the cross-sectional areas 44, 44 ', 44 "open into an opening 45 with a constant width. It is also possible that the three-dimensional spatial contour of the flow channel 43 is formed only in one of the channel parts 41, 42 and the other half of the channel parts 41, 42 Completes the room contour with a smooth, flat surface.
  • FIG. 6 the nozzle packet 50 according to FIG. 1 is shown enlarged in section. It is laterally delimited by the clamping plates 52, 53 and the jaws 54, 55, which engage in a leading edge of the lower part 60 of the nozzle insert.
  • the nozzle package 50 is composed of the lower nozzle insert part 60, the nozzle block 59, the perforated plate 58, the sieve 57 and the upper nozzle insert part 56, which adjoins the undersides of the channel parts 41, 42 in the spinning tool 40.
  • the connection between the jaws 54, 55 and the nozzle insert lower part 60 can be designed differently, such as, for. B. as a dovetail connection.
  • a line pressure is created between the nozzle packet 50 and the undersides of the channel parts 41, 42.
  • the nozzle block 59 is designed as a rectangular nozzle, in which the nozzle openings are arranged on one or more parallel lines. If there are several lines, the nozzles are more appropriate point to gap.
  • the polymer melt 2 is fed to the die block 59 via the perforated plate 58.
  • the holes in the perforated plate 58 distribute the polymer melt 2 evenly over the rectangular nozzle.
  • the narrow-pored sieve 57 is made of z. B. metal fleece. From the polymer melt 2, 57 dirt particles are filtered with this sieve. Together with the pre-filtering of the polymer melt 2 in the melt filter 5, a high-quality product is achieved which has particularly good properties when spinning to monofilament threads.
  • the service life of the nozzle package 50 is significantly increased, since the sieve 57 only filters very fine contaminants from the polymer melt 2.
  • the polymer melt 2 enters the nozzle pack 50 via bores in the upper part 56 of the nozzle insert.
  • FIG. 7a and 7b show front views of the closed and open spinning tool 40.
  • FIG. 7a shows the front view of the spinning tool 40 in the closed state of the first clamping plate 52 on the front and the second clamping plate 53, not shown, on the rear of the spinning tool 40.
  • the nozzle pack 50 is attached to the clamping plates 52 by means of the eccentric clamping connection shown as an example , 53 pressed against the undersides of the channel parts 41, 42.
  • the opposing tension levers 70, 70 'and a pneumatic cylinder 71 are also shown as examples of switching elements for the vertical displacement.
  • a nozzle pack 50 ' is inserted into the guide rail 72 and, if necessary, can be inserted into the spinning tool 40 with an open clamping plate 52, 53 via an insertion device 74 in exchange for a defective or soiled nozzle pack 50.
  • FIG. 7b shows the open spinning tool 40.
  • the clamping levers 70, 70 ' are moved in opposite directions via the extendable pneumatic cylinder 71.
  • Eccentrics 66, 66 'on the front and eccentrics 67, 67', not shown, on the rear of the spinning tool 40 rotate and the clamping plates 52, 53 move downward.
  • the nozzle pack 50 ′ provided in FIG. 7 a can be pushed into the spinning tool 40 in the guide rail 72.
  • the nozzle pack 50 is pressed out of the spinning tool 40 into the guide rail 73. If the pneumatic cylinder 71 is now closed again, the spinning tool 40 with the newly inserted nozzle pack 50 'is ready for operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Un système de filage utilisé pour produire des fils à monofilament comprend un outil à filer (40) et une section de canal (4') pour un polymère fondu (2). La section de canal (4') s'élargit dans une partie de canal (41, 42) de l'outil à filer (40) et débouche dans un canal d'écoulement (43) ayant la forme d'un étrier aplati raccordé à un bloc d'ajutages (59). L'aire (44; 44'; 44'') du canal d'écoulement (43) augmente ainsi perpendiculairement à sa largeur au moins dans la zone supérieure de la section de canal (4') du polymère et le canal d'écoulement (43) reste libre d'incrustations.

Claims (31)

1. Système de filage pour la fabrication de monofilaments, dans lequel un outil de filage (40) présente une section de canal à polymère (4') pour un polymère en fusion (2), section qui s'élargit dans une partie du canal (41, 42) de l'outil de filage (40) dans la largeur en canal de coulée (43) exécuté en tant que canal en arceau aplati, auquel se raccorde un bloc de filière (59), caractérisé en ce qu'une superficie (44 ; 44' ; 44") du canal de coulée (43), perpendiculaire à sa largeur, s'agrandit au moins dans la zone supérieure de la section de canal à polymère (4'), et en ce que le canal de coulée (43) est exempt de chicanes.
2. Système de filage selon la revendication 1, caractérisé en ce que, dans la direction du bloc de filière (59), la superficie (44 ; 44' ; 44") se rétrécit et débouche dans une ouverture (45) qui présente une dimension constante sur toute sa largeur.
3. Système de filage selon la revendication 1 ou 2, caractérisé en ce que le canal de coulée (43) est constitué du regroupement d'une première et d'une seconde partie du canal (41, 42), un profil tridimensionnel du canal de coulée (43) étant constitué au moins sur l'une des faces internes des parties du canal (41, 42).
4. Système de filage selon l'une des revendications 1 à 3, caractérisé en ce que le bloc de filière (59) est une partie d'un ensemble de filières (50, 50') qui présente une partie inférieure du montage des filières (60) qui reçoit le bloc de filière (59), une plaque perforée (58), un tamis (57) et une partie supérieure du montage des filières (56).
5. Système de filage selon l'une des revendications 1 à 4, caractérisé en ce que l'outil de filage (40) sur sa largeur est enserré sur deux côtés par des plaques de serrage (52, 53), qui tiennent le bloc de filière (59) contre un troisième côté perpendiculaire aux deux côtés et l'appuient contre la partie du canal (41, 42).
6. Système de filage selon la revendication 5, caractérisé en ce que les plaques de serrage (52, 53) présentent pour le guidage de l'ensemble de filières (50, 50'), à leurs extrémités tenant l'ensemble de filières (50, 50') des mâchoires (54, 55) perpendiculaires au plan du tamis (57).
7. Système de filage selon la revendication 6, caractérisé en ce que les mâchoires (54, 55) sont exécutées avec des assemblages en queue d'aronde qui coopèrent avec la partie inférieure du montage des filières (60).
8. Système de filage selon l'une des revendications 5 à 7, caractérisé en ce que les plaques de serrage (52, 53) peuvent coulisser pour dégager le bloc de filière (59) de la partie du canal (4i, 42).
9. Système de filage selon l'une des revendications 6 à 8, caractérisé en ce que les plaques de serrage (52, 53) peuvent coulisser verticalement.
10. Système de filage selon l'une des revendications 5 à 9, caractérisé en ce que les mâchoires (54, 55) débouchent latéralement au-delà des plaques de serrage (52, 53) en direction du troisième côté dans des rails de guidage (72, 73), dans lesquels le bloc de filière (59) peut être guidé jusqu'à l'extérieur de l'outil de filage (40).
11. Système de filage selon l'une des revendications 1 à 10, caractérisé en ce que la partie du canal (41, 42) est reliée de manière séparable à un support (65) qui est relié à une fixation (75) pouvant coulisser verticalement, laquelle se déplace dans un rail (76) horizontal fixe dans l'espace.
12. Système de filage selon la revendication 11, caractérisé en ce que les faces du support (65) présentent des dispositifs de blocage qui se fixent dans les plaques de serrage (52, 53).
13. Système de filage selon la revendication 12, caractérisé en ce que les dispositifs de blocage sur le support (65) sont des excentriques (66, 66', 67, 67') qui se fixent dans des trous (68, 68', 69, 69') des plaques de serrage (52, 53).
14. Système de filage selon la revendication 13, caractérisé en ce que les plaques de serrage (52, 53) peuvent coulisser dans le sens vertical au moyen des excentriques (66, 66', 67, 67').
15. Système de filage selon l'une des revendications 13 ou 14, caractérisé en ce que les excentriques (66, 66', 67, 67') sont actionnés par des organes de commande.
16. Système de filage selon la revendication 15, caractérisé en ce que les organes de commande des excentriques (66, 66', 67, 67') se composent d'un organe de réglage mécanique, en particulier de vérin pneumatique (71), vérin hydraulique ou similaire et de leviers de serrage (70, 70') agissant en sens contraire.
17. Système de filage selon l'une des revendications 1 à 16, caractérisé en ce que, dans l'outil de filage (40), sont contenus deux, ou plus, blocs de filière (59), canaux de coulée (43) et sections de canal à polymère (4').
18. Système de filage selon l'une des revendications 1 à 17, caractérisé en ce que, à l'outil de filage (40), du côté entrée, un dispositif de dosage (30) peut être associé par sa sortie, dispositif qui fait progresser le polymère en fusion (2) dans l'outil de filage (40).
19. Système de filage selon la revendication 18, caractérisé en ce que le dispositif de dosage (30) consiste en un bloc carter fractionnable (31) qui reçoit une pompe à filage (32) parcourue dans le sens de coulée par le polymère en fusion (2), un mélangeur statique (34) pouvant s'intégrer à la sortie de la pompe à filage (32).
20. Système de filage selon la revendication 19, caractérisé en ce que la pompe à filage (32) peut s'installer avec le mélangeur statique en tant qu'ensemble complet dans le bloc carter (31).
21. Système de filage selon la revendication 17 &t une des revendications 19 ou 20, caractérisé en ce que chaque fois une pompe à filage (32) alimente en polymère en fusion (2), grâce à un entraînement de pompe à filage (33) réglable en continu, les sections respectives du canal à polymère (4') de l'outil de filage (40).
22. Système de filage selon l'une des revendications 18 à 21, caractérisé en ce que le dispositif de dosage (30) est fixe dans l'espace.
23. Système de filage selon l'une des revendications 18 à 22, caractérisé en ce que le dispositif de dosage (30) constitue la liaison de la section du canal à polymère (4') entre l'entrée de l'outil de filage (40) et une sortie d'un distributeur de polymère (20).
24. Système de filage selon la revendication 23, caractérisé en ce que le distributeur de polymère (20) consiste en une première pièce de distributeur (22) et en une deuxième pièce de distributeur (23, 23') qui peuvent être interchangées, grâce auxquelles un canal à polymère (4) peut être divisé en plusieurs canaux latéraux (24, 25 ; 24', 24", 25', 25").
25. Système de filage selon la revendication 23 ou 24, caractérisé en ce que l'entrée du distributeur de polymère (20) est relié à une sortie d'un filtre de masse en fusion central (5).
26. Système de filage selon la revendication 25, caractérisé en ce que le filtre de masse en fusion (5) est muni d'ensembles de tamis (10, 11) interchangeables en fonctionnement.
27. Système de filage selon la revendication 25 ou 26, caractérisé en ce que le filtre de masse en fusion (5) présente dans un carter de tamis (6) un piston (7 ; 7' ; 7") coulissant perpendiculairement au canal à polymère (4) qui est muni d'une première fenêtre de tamis (8) et d'une deuxième fenêtre de tamis (9) lesquelles sont garnies d'ensembles de tamis (10, 11).
28. Système de filage selon la revendication 27, caractérisé en ce que le filtre de masse en fusion (5) présente dans le carter de tamis (6) des canaux de régularisation de débit (12, 12') qui sont obturés dans une première et une troisième position du piston (7, 7") et qui, dans une deuxième position du piston (7'), mettent en communication le canal à polymère du côté entrée et les fenêtres de tamis (8, 9).
29. Système de filage selon la revendication 28, caractérisé en ce que, dans une deuxième position du piston (7'), une des deux fenêtres de tamis (8, 9) du côté entrée et du côté sortie est reliée d'une façon qui communique au canal à polymère (4), l'autre fenêtre de tamis (8, 9) ne présente que du côté entrée une liaison d'une façon qui communique avec le canal à polymère (4), cette fenêtre de tamis (8, 9) étant en plus reliée de manière communiquante à des canaux d'évent (13, 14 ; 13', 14') du côté entrée et du côté sortie dans le carter de tamis (6).
30. Système de filage selon la revendication 28 ou 29, caractérisé en ce que le piston (7 ; 7' ; 7") peut coulisser en une position qui relie l'une des deux fenêtres de tamis (8, 9) du côté entrée et du côté sortie de manière communiquante au canal à polymère (4), l'autre fenêtre de tamis (8, 9) ne présentant qu'un accès du côté entrée au canal à polymère (4) et est reliée uniquement à un canal d'évent (14; 14') du côté sortie.
31. Système de filage selon l'une des revendications 1 à 30, caractérisé en ce que l'outil de filage (40) et/ou un dispositif de dosage (30), et/ou un distributeur de polymère (20), et/ou un filtre de masse en fusion (5) sont réalisés en modules séparés et peuvent être détachés les uns des autres.
EP86906770A 1985-11-16 1986-11-14 Systeme de filage Expired - Lifetime EP0245390B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86906770T ATE50804T1 (de) 1985-11-16 1986-11-14 Spinnsystem.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853540757 DE3540757A1 (de) 1985-11-16 1985-11-16 Spinnsystem
DE3540757 1985-11-16

Publications (2)

Publication Number Publication Date
EP0245390A1 EP0245390A1 (fr) 1987-11-19
EP0245390B1 true EP0245390B1 (fr) 1990-03-07

Family

ID=6286211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86906770A Expired - Lifetime EP0245390B1 (fr) 1985-11-16 1986-11-14 Systeme de filage

Country Status (4)

Country Link
US (1) US4875846A (fr)
EP (1) EP0245390B1 (fr)
DE (2) DE3540757A1 (fr)
WO (1) WO1987003017A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226963A (en) * 1988-08-19 1993-07-13 Fuji Photo Film Co., Ltd. Coating method and apparatus of an extrusion-type coating head having a filtering element therefor
FR2681001A1 (fr) * 1991-09-10 1993-03-12 Vetrotex France Sa Tete d'extrusion pour la production de fils a partir d'une matiere rendue pateuse par chauffage.
US6060636A (en) * 1996-09-04 2000-05-09 Kimberly-Clark Worldwide, Inc. Treatment of materials to improve handling of viscoelastic fluids
US5910104A (en) 1996-12-26 1999-06-08 Cryogen, Inc. Cryosurgical probe with disposable sheath
US5866050A (en) * 1997-02-06 1999-02-02 E. I. Du Pont De Nemours And Company Method and spinning apparatus having a multiple-temperature control arrangement therein
US6033609A (en) * 1997-10-28 2000-03-07 Basf Corporation Device and method to prevent spinneret hole contamination
US10688706B2 (en) * 2016-08-09 2020-06-23 Ngk Insulators, Ltd. Honeycomb structure forming die
JP6507143B2 (ja) * 2016-08-09 2019-04-24 日本碍子株式会社 ハニカム構造体成形用口金
DE102016119866A1 (de) * 2016-10-18 2018-04-19 Reifenhäuser GmbH & Co. KG Maschinenfabrik Verfahren und Anlage zur Erzeugung eines Vlieses aus Fasern
US20220403556A1 (en) * 2021-06-21 2022-12-22 Fratelli Ceccato Milano S.R.L. Multi-row coaxial melt-blown system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE203336C (fr) *
US1905733A (en) * 1932-03-18 1933-04-25 Texas Co Flow divider
US2803851A (en) * 1953-03-13 1957-08-27 American Viscose Corp Spinneret assembly
NL269122A (fr) * 1961-05-11 1900-01-01
NL300775A (fr) * 1963-11-20 1965-09-10
CH445840A (de) * 1966-04-09 1967-10-31 Barmag Barmer Maschf Vorrichtung an einer Strangpresse zum Abdichten der Anschlussstelle zwischen einem Zuführorgan und einem Werkzeug oder Werkzeugfutter
FR1520059A (fr) * 1966-04-28 1968-04-05 Algemene Kunstzijde Unie Nv Garniture de filage pour fabriquer des fils synthétiques
NL6605678A (fr) * 1966-04-28 1967-10-30
US3416190A (en) * 1966-06-28 1968-12-17 Mehnert Gottfried Diehead
US3707341A (en) * 1966-09-08 1972-12-26 Akzona Inc Apparatus for making multifilament yarns
DE1966565C3 (de) * 1969-02-19 1979-01-18 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Beheizbarer Spinnbalken zum Erzeugen von Endlosfäden aus synthetischen Polymeren
US3762854A (en) * 1970-04-08 1973-10-02 Akzona Inc Melt spinning apparatus
US3804758A (en) * 1972-03-29 1974-04-16 Cosham Eng Design Ltd Screen changer
DE2248756B2 (de) * 1972-10-05 1976-06-10 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal Spinnkopf zum spinnen plastischer massen
IT1017448B (it) * 1973-08-02 1977-07-20 Scheer & Cie C F Dsipositivo per la filtrazione di materia plstica fusa nonche per l estrusione di cordoni di materia plastica
US3970417A (en) * 1974-04-24 1976-07-20 Beloit Corporation Twin triple chambered gas distribution system for melt blown microfiber production
US3938925A (en) * 1974-09-11 1976-02-17 Allied Chemical Corporation Spin pack assembly
NL7507443A (nl) * 1975-06-23 1976-12-27 Akzo Nv Smeltspingarnituur.
US4025434A (en) * 1975-10-06 1977-05-24 Bolton-Emerson, Inc. Screen changer with pre-fill screen blocks
DE3334870C1 (de) * 1983-09-27 1985-03-21 Reifenhäuser GmbH & Co. Maschinenfabrik, 5210 Troisdorf Düsenkopf für die gleichzeitige Herstellung einer Vielzahl von Fäden aus thermoplastischem Kunststoff
JPS60199907A (ja) * 1984-03-23 1985-10-09 Toyobo Co Ltd 溶融紡糸用口金パツク
US4652410A (en) * 1985-08-08 1987-03-24 Bridgestone Corporation Method of exchanging a die holder

Also Published As

Publication number Publication date
DE3669330D1 (de) 1990-04-12
DE3540757A1 (de) 1987-05-21
EP0245390A1 (fr) 1987-11-19
WO1987003017A1 (fr) 1987-05-21
US4875846A (en) 1989-10-24
DE3540757C2 (fr) 1987-11-05

Similar Documents

Publication Publication Date Title
DE3905963C2 (de) Polymer-Filtervorrichtung
EP0052359B1 (fr) Presse fonctionnant en continu
EP0245390B1 (fr) Systeme de filage
EP2576180B1 (fr) Dispositif de filtration pour matériau visqueux
WO2004026432A1 (fr) Dispositif pour filtrer un fluide, notamment dans des installations de transformation de matieres plastiques
DE3013038A1 (de) Siebwechselvorrichtung fuer extruder
DE1729136A1 (de) Siebauswechselvorrichtung
DE2554645B2 (de) Siebeinrichtung für Extruder
DE3336179A1 (de) Einrichtung zum herstellen von aufgeschaeumten thermoplastischen kunststoffen, wie polystyrol, polyaethylen oder dergleichen
DE2836847A1 (de) Volumenarme mehrwellenschneckenmaschinenaustrittsvorrichtung mit siebwechselvorrichtung
DE19636067A1 (de) Filtervorrichtung zur Filtration von Kunststoffschmelze
EP0585213A1 (fr) Dispositif pour délivrer de manière dosée des masses fluides
EP0536359B1 (fr) Module de changement de tamis
EP1729900A1 (fr) Dispositif pour refroidir des toles et des feuillards
DE3309505C1 (de) Kassettenfilter für schmelzflüssige Kunststoffe
DE1511218B2 (de) Papierbrei-aufgabevorrichtung fuer papiermaschinen
DE19916539A1 (de) Reinigungsvorrichtung für viskose Materialien
DE3048133C2 (de) Beschichtungsvorrichtung mit Luftdüsenanordnung
DE3546536C2 (fr)
EP1489224A1 (fr) Caisse de tête
DE3546535C2 (fr)
DE4402278C2 (de) Vorrichtung zum Aufbringen von Dampf
DE3613071C2 (fr)
DE4215472C1 (en) Welt filter for cleaning plastic melts - having sieve plate cut=out along the side which can hold filters in the form of ring members
EP3287254B1 (fr) Structure de mélangeur pour un outil pour film et outil pour film

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19871105

17Q First examination report despatched

Effective date: 19890425

DIN1 Information on inventor provided before grant (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REINBOLD, HEINZ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REINBOLD, HEINZ

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900307

Ref country code: NL

Effective date: 19900307

Ref country code: GB

Effective date: 19900307

REF Corresponds to:

Ref document number: 50804

Country of ref document: AT

Date of ref document: 19900315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3669330

Country of ref document: DE

Date of ref document: 19900412

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961123

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HEINZ REINBOLD TRANSFER- SML-LENZING MASCHINENGESE

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980406

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114