EP0245390B1 - Spinning system - Google Patents

Spinning system Download PDF

Info

Publication number
EP0245390B1
EP0245390B1 EP86906770A EP86906770A EP0245390B1 EP 0245390 B1 EP0245390 B1 EP 0245390B1 EP 86906770 A EP86906770 A EP 86906770A EP 86906770 A EP86906770 A EP 86906770A EP 0245390 B1 EP0245390 B1 EP 0245390B1
Authority
EP
European Patent Office
Prior art keywords
spinning
channel
polymer
spinning system
strainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86906770A
Other languages
German (de)
French (fr)
Other versions
EP0245390A1 (en
Inventor
Heinz Reinbold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reinbold Heinz
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86906770T priority Critical patent/ATE50804T1/en
Publication of EP0245390A1 publication Critical patent/EP0245390A1/en
Application granted granted Critical
Publication of EP0245390B1 publication Critical patent/EP0245390B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/08Supporting spinnerettes or other parts of spinnerette packs

Definitions

  • the invention is based on a spinning system for the production of monofilament threads, in which a spinning tool has a polymer channel section for a polymer melt, the width of which widens in a channel part of the spinning tool into a flow channel designed as a flat bracket channel, which is followed by a nozzle block.
  • a spinning tool is known from DE-PS 33 34 870.
  • Such spinning systems are used to spin high quality threads from polymer melts, which due to their use, e.g. B. for filter cloth, tension belts, fishing lines and. Like., Must have constant material properties in a narrow tolerance range.
  • the production of a high-pressure, fine-mesh filter fabric requires threads with a constant diameter on the one hand and, on the other hand, high tensile strength.
  • a dust bar is provided for the uniform exit quantity of a polymer melt along a flat channel, the different distance from a wall of the flat channel regulating the amount of passage of the polymer melt.
  • the dust bar must therefore be flexible in itself or consist of several individual elements so that its length can form a different distance from the wall.
  • the polymer melt is dammed up in the flat channel by the dust bar, and according to its set distance, a certain amount of polymer melt can pass through a set gap per unit of time.
  • the dust bar Due to the high product and housing temperatures that occur during the production of monofilament threads, the dust bar must be sealed particularly carefully. This is particularly complex at temperatures of around 300 ° C. In addition, sealing elements of moving machine parts are known to be more prone to failure at elevated temperatures. If different material expansions occur, the distance of the dust bar / wall must be readjusted during operation. This requires a complex monitoring unit for the gap between the wall and the dust bar.
  • the invention is therefore based on the object of developing the spinning system of the type mentioned in such a way that the polymer melt is distributed steadily and uniformly in the entire free space of the flat bar channel in the case of laminar flow and without stall, so that the nozzle block has a constant polymer mass flow over its entire width at the greatest Production security is fed.
  • This object is achieved in that a cross-sectional area of the flow channel perpendicular to its width increases at least in the upper region from the polymer channel section and that the flow channel is free of internals.
  • the spinning system according to the invention therefore has the essential advantage that the shape of the flow channel distributes the polymer mass flow evenly over the entire flow channel.
  • the three-dimensional spatial contour of the flow channel is designed as a function of the viscosity and the flow curve of a raw material to be processed so that the polymer melt has a constant flow velocity over the entire outlet cross section of the flow channel.
  • the flow channel also has the advantage that it is free of internals and thus has no leading edges which could disrupt or change the flow profile of the polymer melt in the flow channel. This constructive solution guarantees a maximum of operational safety and ease of maintenance, since the flow channel does not contain any adjustable installation parts and the resulting sealing problems can be excluded.
  • the cross-sectional area tapers in the direction of the nozzle block and opens into an opening which has a constant width over the entire width.
  • This embodiment of the flow channel ensures that rectangular plates with linearly arranged bores or nozzle openings can be easily coupled to the outlet cross section of the flow channel.
  • the width of the tapered opening results from the performance of the spinning tool.
  • the flow channel is preferably formed by joining together a first and a second channel part, a three-dimensional spatial contour of the flow channel being formed on at least one of the inner sides of the channel parts.
  • the river channel consists of a two-shell construction enables a very simple and exact production of the three-dimensional spatial contour of the river channel.
  • the spatial contour for certain product properties can be calculated numerically, and a numerically controlled machine tool then mills the calculated spatial contour into at least one of the duct parts designed as metal blocks.
  • a double-shell construction it is possible to further process or close the surfaces of the river channel chrome-plated so that particularly smooth surfaces are created. If the polymer melt is allowed to solidify in the spinning tool, then when the channel parts are dismantled, a solidified polymer body can be removed which reflects the perfect shape of the channel flowed through. This enables the distribution of the polymer melt to be checked particularly simply when a plurality of melts are processed with a single flow channel space shape.
  • the nozzle block is part of a nozzle package which has a lower nozzle insert part which receives the nozzle block, a perforated plate, a sieve and an upper nozzle insert part.
  • the element-like structure of the nozzle package enables individual replacement of the individual components.
  • Nozzle blocks with different nozzle shapes can be used.
  • a perforated plate matched to the nozzle block distributes the polymer melt and feeds it to the individual nozzles.
  • sieves of different pore sizes based on metal fleece are arranged above the perforated plate and filter out dirt particles from the polymer melt.
  • the holes in the upper part of the nozzle insert pre-distribute the polymer melt in the nozzle package.
  • the interaction of the individual components in the nozzle package results in a further homogenization of the polymer flow with a simultaneous increase in the nozzle service life and spinning reliability during production.
  • the spinning tool is enclosed on two sides by clamping plates, which enclose the nozzle block on a third side perpendicular to the two sides and press against the channel part.
  • the clamping plates and the lower part of the nozzle insert ensure on the broad side of the nozzle block that the losses of heat radiation in the region of the nozzle block are as small as possible. Temperature gradients are therefore negligibly small across the entire width of the nozzle block.
  • the clamping plates for guiding the nozzle packet have jaws at their ends comprising the nozzle packet perpendicular to the plane of the screen.
  • the jaws are designed as dovetail connections that interact with the lower part of the nozzle insert.
  • the duct parts which can be heated and regulated via known devices, are protected by the clamping plates covering them, and their heat radiation is inhibited.
  • the type of connection between the lower part of the nozzle insert and the jaws of the clamping plates creates a line pressure between the nozzle block and the adjacent parts, which, in contrast to punctiform pressing with through screws, presses the nozzle block evenly against the duct parts.
  • the heat transfer from the heated duct parts to the nozzle block and to the parts surrounding them is therefore particularly good.
  • the nozzle block is guided particularly safely and evenly by the type of connection.
  • the clamping plates for releasing the nozzle block can be displaced vertically from the channel parts to the channel parts, and the jaws open laterally beyond the clamping plates into guide rails in which the nozzle block can be guided to outside the spinning tool.
  • the channel part is detachably connected to a carrier which is fastened to a vertically displaceable holder which runs in a fixed and horizontal rail.
  • the spinning tool can thus be adjusted in height in the vertical direction and horizontally displaced with respect to a fixed point in space via a rail. This opens up the possibility of easily adjusting the heavy spinning tool compared to connectable systems.
  • the end faces of the carrier have clamping devices which engage in the clamping plates.
  • An eccentric clamp connection has proven to be particularly expedient, by means of which the clamping plates can be displaced in the vertical direction.
  • eccentrics has the advantage that when the new nozzle package is re-clamped, its connection is self-locking, so that the nozzle block does not become detached from the channel parts even if the switching elements actuating the eccentric fail.
  • the spinning tool is constructed so that two or more nozzle blocks, flow channels and polymer channel sections are contained in the spinning tool.
  • the use of a second nozzle package enables the use of different nozzle shapes in one spinning tool. In this way, monofilament threads of different quality requirements can be produced at the same time with a single Soinn tool.
  • a dosing unit with its output can be coupled to the spinning tool on the input side and conveys the polymer melt into the spinning tool.
  • the spinning tool is adjusted to the position of the dosing unit. This enables a quick and exact connection of the two systems.
  • the spinning tool or the dosing unit can be exchanged as a complete unit.
  • the distribution or delivery characteristics of a polymer melt can be changed easily.
  • the dosing unit consists in a preferred version staltung of the invention from a divisible housing block that receives a spinning pump flowing through in the flow direction of the polymer melt, wherein a static mixer can be integrated into the outlet of the spinning pump.
  • the spinning pump with the static mixer is used in the polymer flow direction in recesses in the housing block so that the separable housing parts ensure the exact positioning of the spinning pump.
  • a quick, simple replacement of the spinning pump with the static mixer is also possible when the spinning system is hot, since the polymer melt is conveyed in the spinning pump in the direction of mass flow and no additional fastening screws between the housing block and the spinning pump are necessary.
  • the spinning pump picks up the polymer melt without deflection within the pump and conveys it in precisely metered quantities through the integrated static mixer to the flow channel of the spinning tool.
  • the static mixer compensates for even the smallest temperature fluctuations in the polymer melt due to its high mixing capacity and ensures that the polymer melt flows into the flow channel of the spinning tool at a uniform temperature.
  • the divisible housing block can be heated and regulated by known means, such as, for. B. via a controlled resistance heater. This has the advantage that the spinning pump with the integrated static mixer has a uniform temperature.
  • the spinning pump with the static mixer can be used as a self-contained unit in the housing block.
  • a spinning pump with a continuously adjustable spinning pump drive supplies the respective polymer channel sections of the spinning tool with the polymer melt.
  • the metering unit is arranged fixed in space, this has the advantage that when the spinning system is at a standstill, the spinning tool can be quickly and easily separated from the metering unit via its horizontal 1 'sliding options. This ensures short inspection and changeover times on the spinning system.
  • the metering unit forms the connection of the polymer channel section between the inlet of the spinning tool and an outlet of a polymer distributor.
  • the polymer distributor consists of a first distributor piece and a second distributor piece, which are interchangeable, through which the polymer stream can be split into several side channels.
  • the polymer melt By splitting the polymer channel into several side channels, the polymer melt can flow into several separate metering units, which in turn convey the polymer melt in different amounts into different flow channels of a spinning tool or into different spinning tools with different flow channels.
  • the throughput performance of a spinning system can be reduced or increased simply by changing the distributor pieces and the nozzle packs or their individual components. If the production of monofilament threads increases, additional spinning systems can be connected to two existing spinning systems.
  • the inlet of the polymer distributor is connected to an outlet of a central melt filter, and the melt filter is provided with sieve packs which can be replaced during operation, as is known per se.
  • the use of a melt filter in front of the polymer distributor, the dosing unit and the spinning tool significantly increases the production reliability of a spinning system. Soiling of the polymer melt is largely retained in the melt filter, and the strainer in the nozzle package is largely relieved, so that the service life of a nozzle package is increased significantly.
  • the metal fleece-based sieve in the nozzle package can be selected with a more fine pore filtering of the polymer melt and thereby improves the quality of the polymer melt, which is spun into monofilament threads. By replacing dirty sieve packs during operation, the utilization of such a spinning system is increased considerably.
  • the melt filter in a sieve housing has a piston which can be displaced at an angle to the polymer channel and which is provided with a first sieve recess and a second sieve recess which are equipped with the sieve packets.
  • This embodiment enables the piston to be displaced without disturbing the mass flow of the polymer melt in the spinning system.
  • the melt filter preferably has inlet channels in the sieve housing, which are closed in a first and third position of the piston and in a second position of the piston connect the polymer channel continuously to the sieve cutouts on the inlet side.
  • one of the two sieve recesses in the second position of the piston, one of the two sieve recesses is continuously connected to the polymer channel on the inlet and outlet side, the other sieve recess has a continuous connection to the polymer channel only on the inlet side, this sieve recess additionally having inlet and outlet sides Vent channels in the housing is connected continuously.
  • the piston can be moved into a position that connects one of the two sieve recesses on the inlet and outlet side to the polymer channel, the other of the two sieve recesses has only one inlet-side passage to the polymer channel and is only connected to the outlet-side ventilation channel.
  • the respective screen cutout and its screen pack can be vented step by step during the flooding. While in the second position of the piston the part of the screen cutout on the inlet side is preferably vented and through which polymer melt flows, in the position of the piston described the polymer melt flows through the entire screen cutout. The relevant screen cutout and the polymer melt are completely vented and are free of gas inclusions.
  • the spinning tool, the metering unit, the polymer distributor and the melt filter are designed as individual components and can be detached from one another. This enables existing systems to be modernized easily, since individual components can be integrated into them independently of one another.
  • a connecting pipe 3 with a polymer channel 4 connects the spinning system 1 on the input side to a dynamic mixer (not shown) and an extruder, which feed the liquid polymer melt 2 to the spinning system 1.
  • a melt filter 5 is coupled to the connecting pipe 3 and consists of a housing 6 and a piston 7 which is displaceable in the housing 6.
  • the piston 7 contains screen cutouts 8 which are equipped with screen packs 10.
  • the polymer melt 2 flows through the melt filter 5, which filters out contaminants in the polymer melt 2.
  • a dirty sieve packet 10 can be replaced when the spinning system 1 is in operation.
  • the mass flow of the polymer melt 2 is not interrupted. 2a to 2c, various operating states of the melt filter 5 are still explained.
  • the polymer melt 2 flows from the melt filter 5 into a polymer distributor 20, which is detachably connected to the melt filter 5 via a first flange connection 21.
  • the polymer distributor 20 divides the polymer channel 4 into side channels 24, only one of which is shown in FIG. 1.
  • the polymer melt 2 can be homogeneously and evenly distributed over the side channels 24.
  • 3a and 3b two exemplary embodiments of the polymer distributor 20 are explained by way of example.
  • the polymer melt 2 flows from the side channels 24 into metering units 30, of which FIG. 1 shows only one, each of which is connected on the output side to second flange connections 26 of the side channels 24 of the polymer distributor 20.
  • the metering units 30 receive in their divisible housing blocks 31 a spinning pump 32 which is equipped with a continuously variable spinning pump drive 33.
  • a static mixer 34 can be integrated into the outlet of the spinning pump 32.
  • the metering units 30 are set up in a spatially fixed manner via fastening brackets 35.
  • the polymer melt 2 flows in each individual metering unit 30 into the static mixer 34 in precisely metered amounts without deflection.
  • the static mixer 34 is equal to inhomogeneities and temperature rature gradients in the polymer melt 2.
  • the spinning system 1 is designed such that a temperature 36 and a pressure 37 of the polymer melt 2 are measured on the input side of the metering unit 30. This makes it possible to keep the pressure 37 of the polymer melt 2 constant immediately upstream of the spinning pump 32, regardless of the degree of contamination of the sieve packs 10 in the melt filter 5 or any further pressure losses.
  • the pressure 37 of the polymer melt 2 is checked at the spinning pump inlet and a signal feedback to upstream devices, such as. B. to the extruder, is processed as a control variable so that the pressure 37 of the polymer melt 2 at the spinning pump inlet is constant.
  • a comparable control device is provided for the temperature 36 of the polymer melt 2 at this point in the spinning system 1.
  • the spinning pump 32 with the integrated mixer 34 is inserted into the divisible housing block 31 of the metering unit 30 in the preheated state. No additional fixation or adjustment is necessary for the operation of the spinning pump 32. Thus, the spinning pump 32 for e.g. B. Maintenance purposes can be replaced quickly and easily.
  • the polymer melt 2 flows from the metering unit 30 into a polymer channel section 4 'of a spinning tool 40 connected to the metering unit 30.
  • the spinning tool 40 contains a first channel part 41 with one or more polymer channel sections 4'.
  • the polymer channel section 4 ′ widens in the first channel part 41 and / or in a second channel part 42 into a flow channel 43.
  • the second channel part 42 can be separated from the first channel part 41.
  • the flow channel 43 is formed as a flat bracket channel.
  • the flow channel 43 distributes the polymer melt 2 evenly over its width.
  • the flow channel 43 is designed along its width with a changing spatial contour. This is explained further below in relation to FIG. 4 by way of example for the first channel part 41 according to section IV-IV of FIG. 1, just as FIGS. 5a to 5c still show exemplary embodiments of how cross-sectional areas 44, 44 ', 44 "can be formed , which result from the joining of the two channel parts 41, 42.
  • the polymer melt 2 in FIG. 1 flows homogeneously and evenly distributed over the entire width of the flow channel 43 to an opening 45 at the lower end of the flow channel 43, which has a constant width over its entire width.
  • a nozzle packet 50 is pressed onto the opening 45 via a first and a second clamping plate 52, 53.
  • the clamping plates 52, 53 include the channel parts 41, 42 on their broad side and are slidably in contact on these sides.
  • the clamping plates 52, 53 are formed at the ends comprising the nozzle packet 50 as jaws 54, 55 which grip the nozzle packet 50 perpendicularly to the sides of the clamping plates 52, 53 and press it against the channel parts 41, 42.
  • the polymer melt 2 is divided evenly into threads, which then leave the spinning tool 40 and are fed to downstream devices. 6, the distribution of the polymer melt 2 is explained in more detail with reference to a sectional illustration of the nozzle package 50.
  • the spinning tool 40 is detachably connected in FIG. 1 via a carrier 65 to a vertically adjustable holder 75 which is horizontally displaceable in a rail 76 held in a fixed position.
  • the melt filter 5 is shown in different operating positions.
  • the melt filter 5 consists of the sieve housing 6, the piston 7, 7 ', 7 ", the first sieve recess 8, a second sieve recess 9, the sieve packs 10, 11, receiving channels 12, 12' and ventilation ducts 13, 13 on the inlet and outlet side ', 14, 14'.
  • the polymer melt 2 flows according to an operating position of the melt filter 5 in FIG. 2a through an opening of the screen housing 6.
  • the screen housing 6 is heated in a controllable manner, so that the piston 7, the screen recesses 8, 9 and the screen packs 10, 11 have the same temperature as the polymer melt 2 have.
  • a temperature 15, 16, 17 of the polymer melt 2 is measured in the mass flow, when it enters the melt filter 5, in the melt filter 5 and when it exits the melt filter 5. These temperature measuring points serve to heat the screen housing 6 as a controlled variable.
  • the opening of the screen housing 6 on the inlet side of the polymer melt 2 widens on the inside towards the piston 7 and merges into the receiving channels 12, 12 '.
  • the receiving channels 12, 12 ' are closed in the operating position of the piston 7 by its surface, and the polymer melt 2 can only flow through a breakthrough in the piston 7 into the sieve recess 8 with the exchangeable sieve packet 10.
  • the polymer melt 2 is cleaned of dirt particles as it flows through the sieve packet 10.
  • the polymer melt 2 can emerge from the melt filter 5, the sieve recess 9 is partially vented. Subsequently, the piston 7 'moves into a position in which the piston surface closes the ventilation channel 13 on the inlet side, but the ventilation channel 14 on the outlet side, with the same recess 9 connects.
  • the polymer melt 2 flows with an uninterrupted mass flow in the sieve recess 8 now also through the entire sieve packet 11 of the sieve recess 9 and completely vented the sieve recess 9. If the screen recess 9 is filled with the polymer melt 2, it flows through the outlet-side ventilation channel 14 from the melt filter 5.
  • the piston 7 'then moves into the operating position of the piston 7 "according to FIG. 2c, and the switching process from the dirty sieve packet 10 to a new, uncontaminated sieve packet 11 is completed.
  • the dirty sieve packet 10 can be pressed out of the sieve recess 8 for cleaning. Is that Sieve pack 10 cleaned and preheated, it can be reinserted into the sieve recess 8.
  • the screen recess 8 is filled via the inlet channel 12 ', via the inlet-side ventilation channel 13' and then via the outlet-side ventilation channel 14 ', before the melt filter 5 returns to the operating position piston 7 according to FIG. 2a.
  • the polymer distributor 20 is composed of a first distributor piece 22 with the polymer channel 4 and a second distributor piece 23 with the side channels 24, 25.
  • the polymer melt 2 is divided into two partial flows, which flow in the side channels 24, 25.
  • the partial flows are fed to one or two separate spinning tools 40 via two metering units 30. If the partial flows of the side channels 24, 25 are fed to a spinning tool 40, this spinning tool 40 is equipped with two polymer channel sections 4 'and two separate flow channels 43 which supply two separate nozzle packs 50, 50'.
  • 3b shows a polymer distributor 20 which is equipped with the first distributor piece 22 and a second distributor piece 23 '.
  • the polymer melt 2 from the polymer channel 4 of the distributor piece 22 is split into four partial streams which flow in the side channels 24', 24 ", 25 ', 25". These partial flows are fed to the spinning tools 40 via four metering units 30.
  • the partial streams can be processed in two so-called “double spinning tools” or in four spinning tools 40.
  • the polymer distributor 20 consists of a divisible housing which can be heated in a controllable manner.
  • the distributor pieces 22, 23, 23 'which can be inserted into the polymer distributor 20 can consist of polymer channels 4 and side channels 24, 24', 24 ", 25, 25 ', 25" of different diameters. This may be necessary if the spinning system 1 is to be operated with different powers.
  • the polymer channel section 4 'in the channel part 41 opens at 90 ° into the flow channel 43, which has the shape of a flat bracket channel.
  • the closed three-dimensional spatial contour of the flow channel 43 results from the joining together of the channel parts 41, 42.
  • the shape of the flow channel 43 is calculated from the flow curve of the polymer melt 2 to be processed and from its product properties.
  • the three-dimensional spatial contour is numerically determined with the objective that in the flow channel 43 the polymer melt 2 is distributed uniformly over the width of the flow channel 43 at a constant flow rate and flows into the opening 45 of the flow channel 43 at a constant flow rate.
  • the different spatial geometry of the flow channel 43 is shown in the section of the channel parts 41, 42 depending on its width according to the positions 5a to 5c shown in FIG. 4.
  • the cross-sectional areas 44, 44 ', 44 "open into an opening 45 with a constant width. It is also possible that the three-dimensional spatial contour of the flow channel 43 is formed only in one of the channel parts 41, 42 and the other half of the channel parts 41, 42 Completes the room contour with a smooth, flat surface.
  • FIG. 6 the nozzle packet 50 according to FIG. 1 is shown enlarged in section. It is laterally delimited by the clamping plates 52, 53 and the jaws 54, 55, which engage in a leading edge of the lower part 60 of the nozzle insert.
  • the nozzle package 50 is composed of the lower nozzle insert part 60, the nozzle block 59, the perforated plate 58, the sieve 57 and the upper nozzle insert part 56, which adjoins the undersides of the channel parts 41, 42 in the spinning tool 40.
  • the connection between the jaws 54, 55 and the nozzle insert lower part 60 can be designed differently, such as, for. B. as a dovetail connection.
  • a line pressure is created between the nozzle packet 50 and the undersides of the channel parts 41, 42.
  • the nozzle block 59 is designed as a rectangular nozzle, in which the nozzle openings are arranged on one or more parallel lines. If there are several lines, the nozzles are more appropriate point to gap.
  • the polymer melt 2 is fed to the die block 59 via the perforated plate 58.
  • the holes in the perforated plate 58 distribute the polymer melt 2 evenly over the rectangular nozzle.
  • the narrow-pored sieve 57 is made of z. B. metal fleece. From the polymer melt 2, 57 dirt particles are filtered with this sieve. Together with the pre-filtering of the polymer melt 2 in the melt filter 5, a high-quality product is achieved which has particularly good properties when spinning to monofilament threads.
  • the service life of the nozzle package 50 is significantly increased, since the sieve 57 only filters very fine contaminants from the polymer melt 2.
  • the polymer melt 2 enters the nozzle pack 50 via bores in the upper part 56 of the nozzle insert.
  • FIG. 7a and 7b show front views of the closed and open spinning tool 40.
  • FIG. 7a shows the front view of the spinning tool 40 in the closed state of the first clamping plate 52 on the front and the second clamping plate 53, not shown, on the rear of the spinning tool 40.
  • the nozzle pack 50 is attached to the clamping plates 52 by means of the eccentric clamping connection shown as an example , 53 pressed against the undersides of the channel parts 41, 42.
  • the opposing tension levers 70, 70 'and a pneumatic cylinder 71 are also shown as examples of switching elements for the vertical displacement.
  • a nozzle pack 50 ' is inserted into the guide rail 72 and, if necessary, can be inserted into the spinning tool 40 with an open clamping plate 52, 53 via an insertion device 74 in exchange for a defective or soiled nozzle pack 50.
  • FIG. 7b shows the open spinning tool 40.
  • the clamping levers 70, 70 ' are moved in opposite directions via the extendable pneumatic cylinder 71.
  • Eccentrics 66, 66 'on the front and eccentrics 67, 67', not shown, on the rear of the spinning tool 40 rotate and the clamping plates 52, 53 move downward.
  • the nozzle pack 50 ′ provided in FIG. 7 a can be pushed into the spinning tool 40 in the guide rail 72.
  • the nozzle pack 50 is pressed out of the spinning tool 40 into the guide rail 73. If the pneumatic cylinder 71 is now closed again, the spinning tool 40 with the newly inserted nozzle pack 50 'is ready for operation.

Abstract

A spinning system for the production of monofilament yarn comprises a spinning tool (40) and a channel section (4') for a polymer melt (2). The channel section (4') expands widthwise into a channel portion (41, 42) of the spinning tool (40) and opens into a flow channel (43) with the shape of a flattened U and connected to a group of nozzles (59). The area of the cross section (44; 44'; 44'') of the flow channel (43) is thus increased normal to its width at least in the upper part of the channel section (4') for the polymer and the flow channel (43) is kept free from incrustations.

Description

Die Erfindung geht aus von einem Spinnsystem für die Herstellung von Monofilfäden, bei dem ein Spinnwerkzeug einen Polymerkanalabschnitt für eine Polymerschmelze aufweist, der sich in einem Kanalteil des Spinnwerkzeuges in der Breite in einen als Flachbügelkanal ausgeführten Flußkanal weitet, an den sich ein Düsenblock anschließt. Ein derartiges Spinnwerkzeug ist durch die DE-PS 33 34 870 bekannt geworden.The invention is based on a spinning system for the production of monofilament threads, in which a spinning tool has a polymer channel section for a polymer melt, the width of which widens in a channel part of the spinning tool into a flow channel designed as a flat bracket channel, which is followed by a nozzle block. Such a spinning tool is known from DE-PS 33 34 870.

Derartige Spinnsysteme werden dazu verwendet, aus Polymerschmelzen qualitativ hochwertige Fäden zu spinnen, die aufgrund ihrer Verwendung, z. B. für Filtergewebe, Zuggurte, Angelschnüre u. dgl., konstante Materialeigenschaften in einem engen Toleranzbereich aufweisen müssen. Die Herstellung eines hochdruckgeeigneten, engmaschigen Filtergewebes setzt einerseits Fäden mit konstantem Durchmesser und andererseits mit einer hohen Reißfestigkeit voraus.Such spinning systems are used to spin high quality threads from polymer melts, which due to their use, e.g. B. for filter cloth, tension belts, fishing lines and. Like., Must have constant material properties in a narrow tolerance range. The production of a high-pressure, fine-mesh filter fabric requires threads with a constant diameter on the one hand and, on the other hand, high tensile strength.

Bei dem bekannten Spinnsystem, wie es in der eingangs genannten Patentschrift beschrieben ist, ist für die gleichmäßige Austrittsmenge einer Polymerschmelze längs eines flächigen Kanals ein Staubalken vorgesehen, dessen unterschiedlicher Abstand von einer Wandung des flächigen Kanals die Durchtrittsmenge der Polymerschmelze reguliert. Der Staubalken muß demnach in sich flexibel sein oder aus mehreren Einzelelementen bestehen, damit er seiner Länge nach einen unterschiedlichen Abstand mit der Wandung bilden kann. Die Polymerschmelze wird in dem flächigen Kanal durch den Staubalken angestaut, und gemäß seines eingestellten Abstandes kann eine bestimmte Polymerschmelzenmenge pro Zeiteinheit durch einen eingestellten Spalt hindurchtreten.In the known spinning system, as described in the patent mentioned at the outset, a dust bar is provided for the uniform exit quantity of a polymer melt along a flat channel, the different distance from a wall of the flat channel regulating the amount of passage of the polymer melt. The dust bar must therefore be flexible in itself or consist of several individual elements so that its length can form a different distance from the wall. The polymer melt is dammed up in the flat channel by the dust bar, and according to its set distance, a certain amount of polymer melt can pass through a set gap per unit of time.

Durch die bei der Herstellung von Monofilfäden auftretenden hohen Produkt- und Gehäusetemperaturen muß der Staubalken besonders sorgfältig abgedichtet werden. Dies ist bei Temperaturen um ca. 300 °C besonders aufwendig. Hinzu kommt, daß Dichtungselemente von bewegten Maschinenteilen bekannterweise bei erhöhten Temperaturen auch störungsanfälliger sind. Treten unterschiedliche Materialausdehnungen auf, so muß der Abstand Staubalken/Wandung während des Betriebs nachjustiert werden. Dies erfordert eine aufwendige Überwachungseinheit für die Spaltweite zwischen Wandung und Staubalken.Due to the high product and housing temperatures that occur during the production of monofilament threads, the dust bar must be sealed particularly carefully. This is particularly complex at temperatures of around 300 ° C. In addition, sealing elements of moving machine parts are known to be more prone to failure at elevated temperatures. If different material expansions occur, the distance of the dust bar / wall must be readjusted during operation. This requires a complex monitoring unit for the gap between the wall and the dust bar.

Der Erfindung liegt daher die Aufgabe zugrunde, das Spinnsystem der eingangs genannten Art dahingehend weiterzubilden, daß sich die Polymerschmelze bei laminarer Strömung und ohne Strömungsabriß stetig und gleichmäßig im gesamten Freiraum des Flachbügelkanals verteilt, so daß dem Düsenblock über seine gesamte Breite ein konstanter Polymermassenstrom bei größter Produktionssicherheit zugeführt wird.The invention is therefore based on the object of developing the spinning system of the type mentioned in such a way that the polymer melt is distributed steadily and uniformly in the entire free space of the flat bar channel in the case of laminar flow and without stall, so that the nozzle block has a constant polymer mass flow over its entire width at the greatest Production security is fed.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß sich eine Querschnittsfläche des Flußkanals senkrecht zu dessen Breite mindestens im oberen Bereich von dem Polymerkanalabschnitt fort vergrößert und daß der Flußkanal frei von Einbauten ist.This object is achieved in that a cross-sectional area of the flow channel perpendicular to its width increases at least in the upper region from the polymer channel section and that the flow channel is free of internals.

Das erfindungsgemäße Spinnsystem hat damit den wesentlichen Vorteil., daß durch eine Formgebung des Flußkanals die Verteilung des Polymermassenstromes gleichmäßig über den gesamten Flußkanal erfolgt. Die dreidimensionale Raumkontur des Flußkanals ist in Abhängigkeit von der Viskosität und der Fließkurve eines zu verarbeitenden Rohstoffes so ausgestaltet, daß die Polymerschmelze über den gesamten Austrittsquerschnitt des Flußkanals eine konstante Strömungsgeschwindigkeit aufweist.The spinning system according to the invention therefore has the essential advantage that the shape of the flow channel distributes the polymer mass flow evenly over the entire flow channel. The three-dimensional spatial contour of the flow channel is designed as a function of the viscosity and the flow curve of a raw material to be processed so that the polymer melt has a constant flow velocity over the entire outlet cross section of the flow channel.

Der Flußkanal hat ferner den Vorteil, daß er frei von Einbauten ist und somit keine Anlaufkanten aufweist, die das Strömungsprofil der Polymerschmelze im Flußkanal stören oder verändern könnten. Bei dieser konstruktiven Lösung ist ein Höchstmaß an Betriebssicherheit und Wartungsfreundlichkeit gewährleistet, da der Flußkanal keine verstellbaren Einbauteile beinhaltet und daraus resultierende Dichtungsprobleme ausgeschlossen werden können.The flow channel also has the advantage that it is free of internals and thus has no leading edges which could disrupt or change the flow profile of the polymer melt in the flow channel. This constructive solution guarantees a maximum of operational safety and ease of maintenance, since the flow channel does not contain any adjustable installation parts and the resulting sealing problems can be excluded.

Es ist ebenfalls möglich, die dreidimensionale Raumkontur des Flußkanals für verschiedene Materialien mit unterschiedlichen Viskositäten und Fließkurven zu entwickeln. Werden jedoch Polymerschmelzen mit sehr unterschiedlichen Produkteigenschaften im Spinnwerkzeug verarbeitet, so ist der Flußkanal entsprechend den Produkteigenschaften des Rohstoffs auszutauschen.It is also possible to develop the three-dimensional spatial contour of the flow channel for different materials with different viscosities and flow curves. However, if polymer melts with very different product properties are processed in the spinning tool, the flow channel must be replaced in accordance with the product properties of the raw material.

In weiterer Ausgestaltung der Erfindung verjüngt sich die Querschnittsfläche in Richtung auf den Düsenblock hin und mündet in eine Öffnung, die über die gesamte Breite eine konstante Weite aufweist.In a further embodiment of the invention, the cross-sectional area tapers in the direction of the nozzle block and opens into an opening which has a constant width over the entire width.

Diese Ausführungsform des Flußkanals gewährleistet, daß rechteckige Platten mit linear angeordneten Bohrungen oder Düsenöffnungen einfach an den Austrittsquerschnitt des Flußkanals anzukoppeln sind. Die Weite der sich verjüngenden Öffnung ergibt sich aus der Leistung des Spinnwerkzeugs.This embodiment of the flow channel ensures that rectangular plates with linearly arranged bores or nozzle openings can be easily coupled to the outlet cross section of the flow channel. The width of the tapered opening results from the performance of the spinning tool.

Weiterhin wird der Flußkanal bevorzugt durch das Zusammenfügen eines ersten und eines zweiten Kanalteils gebildet, wobei auf mindestens einer der Innenseiten der Kanalteile eine dreidimensionale Raumkontur des Flußkanals ausgebildet ist.Furthermore, the flow channel is preferably formed by joining together a first and a second channel part, a three-dimensional spatial contour of the flow channel being formed on at least one of the inner sides of the channel parts.

Die Tatsache, daß der Flußkanal aus einer zweischaligen Bauweise besteht, ermöglicht eine sehr einfache und exakte Herstellung der dreidimensionalen Raumkontur des Flußkanals. So kann die Raumkontur für bestimmte Produkteigenschaften numerisch berechnet werden, und eine numerisch gesteuerte Werkzeugmaschine fräst anschließend die berechnete Raumkontur in mindestens einen der als Metallblöcke ausgebildeten Kanalteile. Außerdem ist es bei einer zweischaligen Bauweise möglich, die Oberflächen des Flußkanals weiter zu bearbeiten oder zu verchromen, so daß besonders glatte Oberflächen entstehen. Läßt man die Polymerschmelze im Spinnwerkzeug erstarren, so kann man beim Demontieren der Kanalteile aus dem Flußkanal einen erstarrten Polymerkörper entnehmen, der die vollkommene Form des durchströmten Kanals wiedergibt. Dies ermöglicht die Überprüfung der Verteilung der Polymerschmelze besonders einfach dann, wenn mehrere Schmelzen mit einer einzigen Flußkanalraumform verarbeitet werden.The fact that the river channel consists of a two-shell construction enables a very simple and exact production of the three-dimensional spatial contour of the river channel. For example, the spatial contour for certain product properties can be calculated numerically, and a numerically controlled machine tool then mills the calculated spatial contour into at least one of the duct parts designed as metal blocks. In addition, with a double-shell construction, it is possible to further process or close the surfaces of the river channel chrome-plated so that particularly smooth surfaces are created. If the polymer melt is allowed to solidify in the spinning tool, then when the channel parts are dismantled, a solidified polymer body can be removed which reflects the perfect shape of the channel flowed through. This enables the distribution of the polymer melt to be checked particularly simply when a plurality of melts are processed with a single flow channel space shape.

Bei einer Weiterbildung der Erfindung ist der Düsenblock Teil eines Düsenpakets, das ein Düseneinsatz-Unterteil aufweist, das den Düsenblock, eine Lochplatte, ein Sieb und ein Düseneinsatz-Oberteil aufnimmt.In a further development of the invention, the nozzle block is part of a nozzle package which has a lower nozzle insert part which receives the nozzle block, a perforated plate, a sieve and an upper nozzle insert part.

Der elementartige Aufbau des Düsenpakets ermöglicht ein individuelles Austauschen der Einzelkomponenten. Düsenblöcke mit unterschiedlichen Düsenformen können eingesetzt werden. Je nach Anordnung der Düsen verteilt eine auf den Düsenblock abgestimmte Lochplatte die Polymerschmelze und führt sie den einzelnen Düsen zu. Über der Lochplatte werden in Abhängigkeit von der Polymerschmelze Siebe unterschiedlicher Porenweite auf Metallvliesbasis angeordnet, die Schmutzpartikel aus der Polymerschmelze ausfiltern. Die Bohrungen des Düseneinsatz-Oberteils übernehmen eine Vorverteilung der Polymerschmelze im Düsenpaket. Das Zusammenwirken der einzelnen Komponenten im Düsenpaket ergibt eine weitere Vergleichmäßigung des Polymerstroms bei gleichzeitiger Erhöhung der Düsenstandzeit und Spinnsicherheit während der Produktion.The element-like structure of the nozzle package enables individual replacement of the individual components. Nozzle blocks with different nozzle shapes can be used. Depending on the arrangement of the nozzles, a perforated plate matched to the nozzle block distributes the polymer melt and feeds it to the individual nozzles. Depending on the polymer melt, sieves of different pore sizes based on metal fleece are arranged above the perforated plate and filter out dirt particles from the polymer melt. The holes in the upper part of the nozzle insert pre-distribute the polymer melt in the nozzle package. The interaction of the individual components in the nozzle package results in a further homogenization of the polymer flow with a simultaneous increase in the nozzle service life and spinning reliability during production.

In einer Ausgestaltung der Erfindung wird das Spinnwerkzeug der Breite nach auf zwei Seiten von Spannplatten eingeschlossen, die den Düsenblock an einer zu den beiden Seiten senkrechten dritten Seite umfassen und an das Kanalteil pressen.In one embodiment of the invention, the spinning tool is enclosed on two sides by clamping plates, which enclose the nozzle block on a third side perpendicular to the two sides and press against the channel part.

Dies ermöglicht auf eine einfache Weise, das Kanalteil mit dem Düsenblock trennbar zu verbinden. Die Spannplatten und das Düseneinsatz-Unterteil gewährleisten auf der Breitseite des Düsenblocks, daß die Verluste einer Wärmeabstrahlung im Bereich des Düsenblocks möglichst klein sind. Über die gesamte Breite des Düsenblocks sind deshalb Temperaturgradienten vernachlässigbar klein.This enables the duct part to be connected to the nozzle block in a simple manner. The clamping plates and the lower part of the nozzle insert ensure on the broad side of the nozzle block that the losses of heat radiation in the region of the nozzle block are as small as possible. Temperature gradients are therefore negligibly small across the entire width of the nozzle block.

In weiterer Ausgestaltung der Erfindung weisen die Spannplatten für die Führung des Düsenpakets an ihren das Düsenpaket umfassenden Enden Backen senkrecht zur Ebene des Siebes auf. Dabei sind in einer besonderen Ausgestaltung die Backen als Schwalbenschwanzverbindungen ausgeführt, die mit dem Düseneinsatz-Unterteil zusammenwirken.In a further embodiment of the invention, the clamping plates for guiding the nozzle packet have jaws at their ends comprising the nozzle packet perpendicular to the plane of the screen. In a special embodiment, the jaws are designed as dovetail connections that interact with the lower part of the nozzle insert.

Die über bekannte Vorrichtungen beheizbaren und regelbaren Kanalteile werden durch die sie bedeckenden Spannplatten geschützt, und ihre Wärmeabstrahlung wird gehemmt. Über die Verbindungsart des Düseneinsatz-Unterteils mit den Backen der Spannplatten entsteht zwischen dem Düsenblock und den angrenzenden Teilen eine Linienpressung, die im Gegensatz zur punktförmigen Pressung über Durchgangsschrauben den Düsenblock gleichmäßig an die Kanalteile preßt. Der Wärmeübergang von den beheizten Kanalteilen auf den Düsenblock und auf die sie umgebenden Teile ist somit besonders gut. Ferner wird durch die Verbindungsart der Düsenblock besonders sicher und gleichmäßig geführt.The duct parts, which can be heated and regulated via known devices, are protected by the clamping plates covering them, and their heat radiation is inhibited. The type of connection between the lower part of the nozzle insert and the jaws of the clamping plates creates a line pressure between the nozzle block and the adjacent parts, which, in contrast to punctiform pressing with through screws, presses the nozzle block evenly against the duct parts. The heat transfer from the heated duct parts to the nozzle block and to the parts surrounding them is therefore particularly good. Furthermore, the nozzle block is guided particularly safely and evenly by the type of connection.

In bevorzugter Ausgestaltung der erfindung sind die Spannplatten zum Lösen des Düsenblocks von den Kanalteilen vertikal zu den Kanalteilen verschiebbar, und die Backen münden seitlich über die Spannplatten hinaus in Führungsschienen, in denen der Düsenblock bis außerhalb des Spinnwerkzeugs führbar ist.In a preferred embodiment of the invention, the clamping plates for releasing the nozzle block can be displaced vertically from the channel parts to the channel parts, and the jaws open laterally beyond the clamping plates into guide rails in which the nozzle block can be guided to outside the spinning tool.

Dies hat den Vorteil, daß der Düsenblock schnell ausgewechselt werden kann. Dadurch werden längere Standzeiten eines Spinnsystems vermieden und die Wirtschaftlichkeit einer Produktionsanlage erhöht.This has the advantage that the nozzle block can be replaced quickly. This avoids longer downtimes of a spinning system and increases the efficiency of a production system.

In bevorzugter Ausgestaltung der Erfindung ist das Kanalteil lösbar mit einem Träger verbunden, der an einer vertikal verschiebbaren Halterung befestigt ist, die in einer raumfesten und horizontalen Schiene läuft.In a preferred embodiment of the invention, the channel part is detachably connected to a carrier which is fastened to a vertically displaceable holder which runs in a fixed and horizontal rail.

Das Spinnwerkzeug ist somit in vertikaler Richtung höhenverstellbar und über eine Schiene gegenüber einem festen Raumpunkt horizontal verschiebbar. Dies eröffnet die Möglichkeit, das schwere Spinnwerkzeug leicht gegenüber ankoppelbaren Systemen zu justieren.The spinning tool can thus be adjusted in height in the vertical direction and horizontally displaced with respect to a fixed point in space via a rail. This opens up the possibility of easily adjusting the heavy spinning tool compared to connectable systems.

In einer weiteren Ausgestaltung der Erfindung weisen die Stirnseiten des Trägers Klemmvorrichtungen auf, die in die Spannplatten greifen.In a further embodiment of the invention, the end faces of the carrier have clamping devices which engage in the clamping plates.

Als besonders zweckmäßig hat sich dabei eine Exzenterklemmverbindung erwiesen, über die die Spannplatten in vertikaler Richtung verschiebbar sind.An eccentric clamp connection has proven to be particularly expedient, by means of which the clamping plates can be displaced in the vertical direction.

Die Verwendung von Exzentern hat den Vorteil, daß beim Wieder-Einspannen des neuen Düsenpakets dessen Verbindung selbstklemmend ist, so daß sich der Düsenblock selbst bei Ausfall der die Exzenter betätigenden Schaltglieder nicht von den Kanalteilen löst.The use of eccentrics has the advantage that when the new nozzle package is re-clamped, its connection is self-locking, so that the nozzle block does not become detached from the channel parts even if the switching elements actuating the eccentric fail.

In weiterer Ausgestaltung der Erfindung ist das Spinnwerkzeug so aufgebaut, daß im Spinnwerkzeug zwei oder mehr Düsenblöcke, Flußkanäle und Polymerkanalabschnitte enthalten sind.In a further embodiment of the invention, the spinning tool is constructed so that two or more nozzle blocks, flow channels and polymer channel sections are contained in the spinning tool.

Der Einsatz eines zweiten Düsenpakets ermöglicht die Verwendung verschiedener Düsenformen in einem Spinnwerkzeug. So können gleichzeitig Monofilfäden unterschiedlicher Qualitätsanforderung mit einem einzigen Soinnwerkzeug hergestellt werden.The use of a second nozzle package enables the use of different nozzle shapes in one spinning tool. In this way, monofilament threads of different quality requirements can be produced at the same time with a single Soinn tool.

In bevorzugter Ausgestaltung der Erfindung ist an das Spinnwerkzeug eingangsseitig eine Dosiereinheit mit ihrem Ausgang ankoppelbar, die die Polymerschmelze in das Spinnwerkzeug fördert.In a preferred embodiment of the invention, a dosing unit with its output can be coupled to the spinning tool on the input side and conveys the polymer melt into the spinning tool.

Das Spinnwerkzeug wird auf die Position der Dosiereinheit justiert. Dies erlaubt eine schnelle und exakte Verbindung der beiden Systeme. Das Spinnwerkzeug oder die Dosiereinheit kann als komplette Einheit ausgetauscht werden. Die Verteilungs- bzw. die Förderungscharakteristik einer Polymerschmelze ist einfach änderbar.The spinning tool is adjusted to the position of the dosing unit. This enables a quick and exact connection of the two systems. The spinning tool or the dosing unit can be exchanged as a complete unit. The distribution or delivery characteristics of a polymer melt can be changed easily.

Die Dosiereinheit besteht in bevorzugter Ausgestaltung der Erfindung aus einem teilbaren Gehäuseblock, der eine in Flußrichtung der Polymerschmelze durchströmte Spinnpumpe aufnimmt, wobei in den Ausgang der Spinnpumpe ein statischer Mischer integrierbar ist.The dosing unit consists in a preferred version staltung of the invention from a divisible housing block that receives a spinning pump flowing through in the flow direction of the polymer melt, wherein a static mixer can be integrated into the outlet of the spinning pump.

Die Spinnpumpe mit dem statischen Mischer wird in Polymerflußrichtung so in Aussparungen des Gehäuseblocks eingesetzt, daß die teilbaren Gehäuseteile die exakte Positionierung der Spinnpumpe gewährleisten. Ein schnelles, einfaches Auswechseln der Spinnpumpe mit dem statischen Mischer ist auch im heißen Zustand des Spinnsystems möglich, da die Förderung der Polymerschmelze in der Spinnpumpe in Massenflußrichtung erfolgt und keine zusätzlichen Befestigungsschrauben zwischen Gehäuseblock und Spinnpumpe notwendig sind.The spinning pump with the static mixer is used in the polymer flow direction in recesses in the housing block so that the separable housing parts ensure the exact positioning of the spinning pump. A quick, simple replacement of the spinning pump with the static mixer is also possible when the spinning system is hot, since the polymer melt is conveyed in the spinning pump in the direction of mass flow and no additional fastening screws between the housing block and the spinning pump are necessary.

Die Spinnpumpe nimmt die Polymerschmelze ohne Umlenkung innerhalb der Pumpe auf und fördert sie genau mengendosiert durch den in ihr integrierten statischen Mischer dem Flußkanal des Spinnwerkzeugs zu. Der statische Mischer gleicht durch eine hohe Mischleistung auch kleinste Temperaturschwankungen in der Polymerschmelze aus und gewährleistet, daß die Polymerschmelze mit einer einheitlichen Temperatur in den Flußkanal des Spinnwerkzeugs fließt.The spinning pump picks up the polymer melt without deflection within the pump and conveys it in precisely metered quantities through the integrated static mixer to the flow channel of the spinning tool. The static mixer compensates for even the smallest temperature fluctuations in the polymer melt due to its high mixing capacity and ensures that the polymer melt flows into the flow channel of the spinning tool at a uniform temperature.

Der teilbare Gehäuseblock ist über bekannte Mittel heizbar und regelbar, wie z. B. über eine gesteuerte Widerstandsheizung. Dies hat den Vorteil, daß die Spinnpumpe mit dem integrierten statischen Mischer eine einheitliche Temperatur aufweist.The divisible housing block can be heated and regulated by known means, such as, for. B. via a controlled resistance heater. This has the advantage that the spinning pump with the integrated static mixer has a uniform temperature.

In einer Ausbildung der Erfindung ist die Spinnpumpe mit dem statischen Mischer als in sich geschlossene Einheit in den Gehäuseblock einsetzbar.In one embodiment of the invention, the spinning pump with the static mixer can be used as a self-contained unit in the housing block.

Dies hat den Vorteil, daß keine Anpassung der beiden Funktionsteile aneinander im Spinnsystem erfolgen muß. Dies erleichtert besonders den Einbau dieser Spinnpumpe unter erschwerten Bedingungen, d. h. z. B. im heißen Zustand des Spinnsystems oder unter beengten Platzverhältnissen.This has the advantage that the two functional parts do not have to be matched to one another in the spinning system. This particularly facilitates the installation of this spinning pump under difficult conditions, i. H. e.g. B. in the hot state of the spinning system or in confined spaces.

In einer weiteren Ausbildung der Erfindung versorgt jeweils eine Spinnpumpe mit einem stufenlos regulierbaren Spinnpumpenantrieb die jeweiligen Polymerkanalabschnitte des Spinnwerkzeugs mit der Polymerschmelze. Mit dieser Maßnahme kann eine Schwankungsbreite in der Fördergenauigkeit einzelner Spinnpumpen ausgeglichen werden, und ein einheitlicher, konstanter Massenfluß der Polymerschmelze ist in allen Polymerkanalabschnitten gewährleistet.In a further embodiment of the invention, a spinning pump with a continuously adjustable spinning pump drive supplies the respective polymer channel sections of the spinning tool with the polymer melt. With this measure, a fluctuation range in the delivery accuracy of individual spinning pumps can be compensated for, and a uniform, constant mass flow of the polymer melt is guaranteed in all polymer channel sections.

Wird in bevorzugter Ausgestaltung der Erfindung die Dosiereinheit raumfest angeordnet, so hat dies den Vorteil, daß bei einem Stillstand des Spinnsystems das Spinnwerkzeug über seine horizontalen 1-'erschiebemöglichkeiten schnell und einfach von der Dosiereinheit getrennt werden kann. Dies sichert kurze Inspektions- und Umrüstzeiten am Spinnsystem.If, in a preferred embodiment of the invention, the metering unit is arranged fixed in space, this has the advantage that when the spinning system is at a standstill, the spinning tool can be quickly and easily separated from the metering unit via its horizontal 1 'sliding options. This ensures short inspection and changeover times on the spinning system.

In einer weiteren bevorzugten Ausgestaltung der Erfindung bildet die Dosiereinheit die Verbindung des Polymerkanalabschnitts zwischen dem Eingang des Spinnwerkzeugs und einem Ausgang eines Polymerverteilers.In a further preferred embodiment of the invention, the metering unit forms the connection of the polymer channel section between the inlet of the spinning tool and an outlet of a polymer distributor.

Der Polymerverteiler besteht dabei aus einem ersten Verteilerstück und aus einem zweiten Verteilerstück, die auswechselbar sind, durch die der Polymerstrom in mehrere Seitenkanäle aufspaltbar ist.The polymer distributor consists of a first distributor piece and a second distributor piece, which are interchangeable, through which the polymer stream can be split into several side channels.

Dies hat den Vorteil, daß die Polymerschmelze vor dem Eintritt in das Spinnwerkzeug exakt dosiert und nochmals intensiv vermischt wird.This has the advantage that the polymer melt is precisely metered and intensively mixed again before it enters the spinning tool.

Durch das Aufspalten des Polymerkanals in mehrere Seitenkanäle kann die Polymerschmelze in mehrere getrennte Dosiereinheiten strömen, die ihrerseits mengendosiert die Polymerschmelze in unterschiedliche Flußkanäle eines Spinnwerkzeugs oder in verschiedene Spinnwerkzeuge mit unterschiedlichen Flußkanälen fördern. Die Reduzierung oder Steigerung der Durchsatzleistung eines Spinnsystems kann durch das Auswechseln der Verteilerstücke und der Düsenpakete oder deren Einzelkomponenten einfach auch nachträglich erreicht werden. Bei einer Leistungssteigerung der Produktion für Monofilfäden können zusätzlich an zwei bestehende Spinnsysteme weitere Spinnsysteme angeschlossen werden.By splitting the polymer channel into several side channels, the polymer melt can flow into several separate metering units, which in turn convey the polymer melt in different amounts into different flow channels of a spinning tool or into different spinning tools with different flow channels. The throughput performance of a spinning system can be reduced or increased simply by changing the distributor pieces and the nozzle packs or their individual components. If the production of monofilament threads increases, additional spinning systems can be connected to two existing spinning systems.

In weiterer Ausgestaltung der Erfindung wird der Eingang des Polymerverteilers mit einem Ausgang eines zentralen Schmeizefilters verbunden, und das Schmeizefilter ist mit im Betrieb auswechselbaren Siebpaketen versehen, wie dies an sich bekannt ist.In a further embodiment of the invention, the inlet of the polymer distributor is connected to an outlet of a central melt filter, and the melt filter is provided with sieve packs which can be replaced during operation, as is known per se.

Der Einsatz eines Schmelzefilters vor dem Polymerverteiler, der Dosiereinheit und dem Spinnwerkzeug steigert erheblich die Produktionssicherheit eines Spinnsystems. Verschmutzungen der Polymerschmelze werden in großem Maße schon im Schmelzefilter zurückgehalten, und das Sieb im Düsenpaket wird weitgehend entlastet, so daß sich die Standzeiten eines Düsenpakets wesentlich erhöhen. Das Sieb auf Metallvliesbasis im Düsenpaket kann bei einer Vorfilterung der Polymerschmelze feinporiger ausgewählt werden und verbessert dadurch die Qualität der Polymerschmelze, die zu Monofilfäden gesponnen wird. Durch das Auswechseln verschmutzter Siebpakete während des Betriebs wird die Auslastung eines solchen Spinnsystems erheblich gesteigert.The use of a melt filter in front of the polymer distributor, the dosing unit and the spinning tool significantly increases the production reliability of a spinning system. Soiling of the polymer melt is largely retained in the melt filter, and the strainer in the nozzle package is largely relieved, so that the service life of a nozzle package is increased significantly. The metal fleece-based sieve in the nozzle package can be selected with a more fine pore filtering of the polymer melt and thereby improves the quality of the polymer melt, which is spun into monofilament threads. By replacing dirty sieve packs during operation, the utilization of such a spinning system is increased considerably.

In bevorzugter Ausgestaltung der Erfindung weist das Schmelzefilter in einem Siebgehäuse einen in einem Winkel zu dem Polymerkanal verschiebbaren Kolben auf, der mit einer ersten Siebaussparung und einer zweiten Siebaussparung versehen ist, die mit den Siebpaketen bestückt sind.In a preferred embodiment of the invention, the melt filter in a sieve housing has a piston which can be displaced at an angle to the polymer channel and which is provided with a first sieve recess and a second sieve recess which are equipped with the sieve packets.

Diese Ausführungsform ermöglicht ein Verschieben des Kolbens, ohne den Massenfluß der Polymerschmelze im Spinnsystem zu stören.This embodiment enables the piston to be displaced without disturbing the mass flow of the polymer melt in the spinning system.

Weiterhin weist das Schmelzefilter bevorzugt in dem Siebgehäuse Vorflutkanäle auf, die in einer ersten und dritten Position des Kolbens verschlossen sind und in einer zweiten Position des Kolbens den Polymerkanal eingangsseitig durchgängig mit den Siebaussparungen verbinden.Furthermore, the melt filter preferably has inlet channels in the sieve housing, which are closed in a first and third position of the piston and in a second position of the piston connect the polymer channel continuously to the sieve cutouts on the inlet side.

In der ersten und dritten Position des Kolbens befindet sich eine der beiden Siebaussparungen immer vollkommen im Massenfluß der Polymerschmelze, während die andere Siebaussparung außerhalb des Schmelzestroms liegt. Dadurch kann immer eine Siebaussparung gesäubert und ein Siebpaket ausgetauscht werden, ohne daß der Massenfluß im Spinnsystem unterbrochen wird.In the first and third positions of the piston there is one of the two screen cutouts always completely in the mass flow of the polymer melt, while the other sieve saving lies outside the melt flow. As a result, a sieve saving can always be cleaned and a sieve packet can be exchanged without interrupting the mass flow in the spinning system.

'In weiterer Ausgestaltung der Erfindung ist in der zweiten Position des Kolbens eine der beiden Siebaussparungen eingangs- und ausgangsseitig durchgängig mit dem Polymerkanal verbunden, die andere Siebaussparung weist nur eingangsseitig eine durchgängige Verbindung mit dem Polymerkanal auf, wobei diese Siebaussparung zusätzlich mit eingangs- und ausgangsseitigen Entlüftungskanälen im Gehäuse durchgängig verbunden ist. '' In a further embodiment of the invention, in the second position of the piston, one of the two sieve recesses is continuously connected to the polymer channel on the inlet and outlet side, the other sieve recess has a continuous connection to the polymer channel only on the inlet side, this sieve recess additionally having inlet and outlet sides Vent channels in the housing is connected continuously.

Dies hat den Vorteil, daß jede Siebaussparung schon bevor sie durch eine Kolbenverschiebung in den Polymerstrom geführt wird mit Polymerschmelze vollkommen gefüllt ist. Eine Vorflutung der außerhalb des Schmelzestroms befindlichen Siebaussparung gewährleistet, daß sich ein im Betrieb vorgenommener Siebpaketwechsel nicht qualitätsmindernd auf die Produktion der Monofilfäden auswirkt.This has the advantage that every screen cutout is completely filled with polymer melt before it is led through a piston displacement into the polymer stream. A flooding of the sieve saving located outside of the melt flow ensures that changing the sieve packet during operation does not reduce the quality of the production of the monofilament threads.

Bei einer Weiterbildung der Erfindung ist der Kolben in eine Position verschiebbar, die eine der beiden Siebaussparungen eingangs- und ausgangsseitig durchgängig mit dem Polymerkanal verbindet, die andere der beiden Siebaussparungen nur einen eingangsseitigen Durchgang zu dem Polymerkanal aufweist und nur mit dem ausgangsseitigen Entlüftungskanal verbunden ist.In a further development of the invention, the piston can be moved into a position that connects one of the two sieve recesses on the inlet and outlet side to the polymer channel, the other of the two sieve recesses has only one inlet-side passage to the polymer channel and is only connected to the outlet-side ventilation channel.

Dies hat den Vorteil, daß bei der Vorflutung die jeweilige Siebaussparung und ihr Siebpaket schrittweise entlüftet werden kann. Während in der zweiten Position des Kolbens bevorzugt der eingangsseitige Teil der Siebaussparung entlüftet und von Polymerschmelze durchströmt wird, durchströmt in der beschriebenen Position des Kolbens die Polymerschmelze die gesamte Siebaussparung. Die betreffende Siebaussparung und die Polymerschmelze werden vollkommen entlüftet und sind frei von Gaseinschlüssen. In einer weiteren Ausgestaltung der Erfindung sind das Spinnwerkzeug, die Dosiereinheit, der Polymerverteiler und der Schmelzefilter als Einzelbausteine ausgeführt und voneinander lösbar. Dies ermöglicht eine einfache Modernisierung schon bestehender Anlagen, da einzelne Bausteine unabhängig voneinander in sie integriert werden können.This has the advantage that the respective screen cutout and its screen pack can be vented step by step during the flooding. While in the second position of the piston the part of the screen cutout on the inlet side is preferably vented and through which polymer melt flows, in the position of the piston described the polymer melt flows through the entire screen cutout. The relevant screen cutout and the polymer melt are completely vented and are free of gas inclusions. In a further embodiment of the invention, the spinning tool, the metering unit, the polymer distributor and the melt filter are designed as individual components and can be detached from one another. This enables existing systems to be modernized easily, since individual components can be integrated into them independently of one another.

Weitere Vorteile ergeben sich aus der Beschreibung und der beigefügten Zeichnung.Further advantages result from the description and the attached drawing.

Die Erfindung ist in der Zeichnung dargestellt und wird anhand von Ausführungsbeispielen in der Zeichnung näher erläutert. Es zeigen :

  • Fig. 1 eine seitliche Prinzipdarstellung, teilweise aufgebrochen, eines Ausführungsbeispiels eines erfindungsgemäßen Spinnsystems ;
  • Fig. 2a bis 2c verschiedene Arbeitspositionen eines Schmelzefilters des Spinnsystems gemäß Fig. 1 ;
  • Fig. 3a, 3b Ausführungsbeispiele eines Polymerverteilers in einer Draufsicht im Schnitt 111-111 gemäß Fig. 1 ;
  • Fig. 4 ein Spinnwerkzeug in einer Schnittdarstellung IV-IV, in vergrößertem Maßstab, gemäß Fig. 1 ;
  • Fig. 5a bis 5c ein Flußkanalprofil gemäß den Positionen Va-Va, Vb-Vb, Vc-Vc in Fig. 4 ;
  • Fig. 6 eine Schnittdarstellung des Düsenpakets, im vergrößerten Maßstab, gemäß Fig. 1 ;
  • Fig.7a eine Vorderansicht eines geschlossenen Spinnwerkzeugs mit einem neuen Düsenpaket in einer Führungsschiene ;
  • Fig. 7b eine Vorderansicht eines geöffneten Spinnwerkzeugs mit einem verschmutzten Düsenpaket in einer Führungsschiene ;
The invention is illustrated in the drawing and is explained in more detail with reference to exemplary embodiments in the drawing. Show it :
  • Fig. 1 is a schematic side view, partially broken away, of an embodiment of a spinning system according to the invention;
  • 2a to 2c different working positions of a melt filter of the spinning system according to FIG. 1;
  • 3a, 3b embodiments of a polymer distributor in a plan view in section 111-111 of FIG. 1;
  • 4 shows a spinning tool in a sectional view IV-IV, on an enlarged scale, according to FIG. 1;
  • 5a to 5c a flow channel profile according to the positions Va-Va, Vb-Vb, Vc-Vc in Fig. 4;
  • FIG. 6 is a sectional view of the nozzle package, on an enlarged scale, according to FIG. 1;
  • 7a shows a front view of a closed spinning tool with a new nozzle package in a guide rail;
  • 7b shows a front view of an opened spinning tool with a soiled nozzle pack in a guide rail;

In Fig. 1 ist ein Spinnsystem 1 dargestellt, das von einer Polymerschmelze 2 durchströmt wird. Ein Verbindungsrohr 3 mit einem Polymerkanal 4 verbindet das Spinnsystem 1 eingangsseitig mit einem nicht dargestellten dynamischen Mischer und einem Extruder, die dem Spinnsystem 1 die flüssige Polymerschmelze 2 zuführen.1 shows a spinning system 1 through which a polymer melt 2 flows. A connecting pipe 3 with a polymer channel 4 connects the spinning system 1 on the input side to a dynamic mixer (not shown) and an extruder, which feed the liquid polymer melt 2 to the spinning system 1.

An das Verbindungsrohr 3 ist ein Schmelzefilter 5 angekoppelt, das aus einem Gehäuse 6 un einem in dem Gehäuse 6 verschiebbaren Kolben 7 besteht. Der Kolben 7 enthält Siebaussparungen 8, die mit Siebpaketen 10 bestückt sind.A melt filter 5 is coupled to the connecting pipe 3 and consists of a housing 6 and a piston 7 which is displaceable in the housing 6. The piston 7 contains screen cutouts 8 which are equipped with screen packs 10.

Die Polymerschmelze 2 strömt durch das Schmelzefilter 5, das Verschmutzungen in der Polymerschmelze 2 ausfiltert. Durch Verschieben des Kolbens 7 kann ein verschmutztes Siebpaket 10 bei Betrieb des Spinnsystems 1 ausgewechselt werden. Bei dem Wechsel des Siebpakets 10 wird der Massenfluß der Polymerschmelze 2 nicht unterbrochen. Zu Fig. 2a bis 2c werden verschiedene Betriebszustände des Schmelzefilters 5 noch erläutert.The polymer melt 2 flows through the melt filter 5, which filters out contaminants in the polymer melt 2. By moving the piston 7, a dirty sieve packet 10 can be replaced when the spinning system 1 is in operation. When changing the sieve packet 10, the mass flow of the polymer melt 2 is not interrupted. 2a to 2c, various operating states of the melt filter 5 are still explained.

Die Polymerschmelze 2 strömt aus dem Schmelzefilter 5 in einen Polymerverteiler 20, der über eine erste Flanschverbindung 21 lösbar mit dem Schmelzefilter 5 verbunden ist. Der Polymerverteiler 20 teilt den Polymerkanal 4 in Seitenkanäle 24 auf, von denen in Fig. 1 nur einer dargestellt ist. Die Polymerschmelze 2 kann homogen und gleichmäßig auf die Seitenkanäle 24 verteilt werden. Zu Fig. 3a und 3b werden beispielhaft zwei Ausführungsbeispiele des Polymerverteilers 20 noch erläutert.The polymer melt 2 flows from the melt filter 5 into a polymer distributor 20, which is detachably connected to the melt filter 5 via a first flange connection 21. The polymer distributor 20 divides the polymer channel 4 into side channels 24, only one of which is shown in FIG. 1. The polymer melt 2 can be homogeneously and evenly distributed over the side channels 24. 3a and 3b, two exemplary embodiments of the polymer distributor 20 are explained by way of example.

Von den Seitenkanälen 24 strömt die Polymerschmelze 2 in Dosiereinheiten 30, von denen Fig. 1 nur eine zeigt, die jeweils ausgangsseitig an zweite Flanschverbindungen 26 der Seitenkanäle 24 des Polymerverteilers 20 angeschlossen sind. Die Dosiereinheiten 30 nehmen in ihren teilbaren Gehäuseblöcken 31 eine Spinnpumpe 32 auf, die mit einem stufenlos regelbaren Spinnpumpenantrieb 33 ausgerüstet ist. In den Ausgang der Spinnpumpe 32 ist ein statischer Mischer 34 integrierbar. Die Dosiereinheiten 30 sind über Befestigungskonsolen 35 raumfest aufgestellt. Die Polymerschmelze 2 strömt in jeder einzelnen Dosiereinheit 30 ohne Umlenkung exakt mengendosiert in den statischen Mischer 34. Der statische Mischer 34 gleicht Inhomogenitäten und Temperaturgradienten in der Polymerschmelze 2 aus.The polymer melt 2 flows from the side channels 24 into metering units 30, of which FIG. 1 shows only one, each of which is connected on the output side to second flange connections 26 of the side channels 24 of the polymer distributor 20. The metering units 30 receive in their divisible housing blocks 31 a spinning pump 32 which is equipped with a continuously variable spinning pump drive 33. A static mixer 34 can be integrated into the outlet of the spinning pump 32. The metering units 30 are set up in a spatially fixed manner via fastening brackets 35. The polymer melt 2 flows in each individual metering unit 30 into the static mixer 34 in precisely metered amounts without deflection. The static mixer 34 is equal to inhomogeneities and temperature rature gradients in the polymer melt 2.

Das Spinnsystem 1 ist so ausgelegt, daß eingangsseitig an der Dosiereinheit 30, eine Temperatur 36 und ein Druck 37 der Polymerschmelze 2 gemessen werden. Dadurch ist es möglich, den Druck 37 der Polymerschmelze 2 unmittelbar vor der Spinnpumpe 32, unäbhängig von dem Verschmutzungsgrad der Siebpakete 10 im Schmelzefilter 5 oder eventuell weiterer Druckverluste, konstant zu halten. Der Druck 37 der Polymerschmelze 2 wird am Spinnpumpeneingang überprüft und eine Signalrückmeldung an vorangeschaltete Geräte, wie z. B. an den Extruder, wird als Regelgröße so verarbeitet, daß der Druck 37 der Polymerschmelze 2 am Spinnpumpeneingang konstant ist. Eine vergleichbare Regeleinrichtung ist für die Temperatur 36 der Polymerschmelze 2 an dieser Stelle des Spinnsystems 1 vorgesehen.The spinning system 1 is designed such that a temperature 36 and a pressure 37 of the polymer melt 2 are measured on the input side of the metering unit 30. This makes it possible to keep the pressure 37 of the polymer melt 2 constant immediately upstream of the spinning pump 32, regardless of the degree of contamination of the sieve packs 10 in the melt filter 5 or any further pressure losses. The pressure 37 of the polymer melt 2 is checked at the spinning pump inlet and a signal feedback to upstream devices, such as. B. to the extruder, is processed as a control variable so that the pressure 37 of the polymer melt 2 at the spinning pump inlet is constant. A comparable control device is provided for the temperature 36 of the polymer melt 2 at this point in the spinning system 1.

Die Spinnpumpe 32 mit dem integrierten Mischer 34 wird im vorgewärmten Zustand in den teilbaren Gehäuseblock 31 der Dosiereinheit 30 eingelegt. Für den Betrieb der Spinnpumpe 32 ist keine zusätzliche Fixierung oder Justierung notwendig. Somit kann die Spinnpumpe 32 für z. B. Wartungszwecke schnell und einfach ausgetauscht werden.The spinning pump 32 with the integrated mixer 34 is inserted into the divisible housing block 31 of the metering unit 30 in the preheated state. No additional fixation or adjustment is necessary for the operation of the spinning pump 32. Thus, the spinning pump 32 for e.g. B. Maintenance purposes can be replaced quickly and easily.

Die Polymerschmelze 2 strömt von der Dosiereinheit 30 in einen Polymerkanalabschnitt 4' eines mit der Dosiereinheit 30 verbundenen Spinnwerkzeuges 40. Das Spinnwerkzeug 40 enthält ein erstes Kanalteil 41 mit einem oder mehreren Polymerkanalabschnitten 4'. Der Polymerkanaiabschnitt 4' weitet sich im ersten Kanalteil 41 und/oder in einem zweiten Kanalteil 42 in einen Flußkanal 43. Das zweite Kanalteil 42 ist von dem ersten Kanalteil 41 trennbar. In ihren gegenseitigen Anlageflächen ist der Flußkanal 43 als Flachbügelkanal ausgeformt. Der Flußkanal 43 verteilt die Polymerschmelze 2 gleichmäßig über seine Breite. Der Flußkanal 43 ist dafür längs seiner Breite mit einer sich ändernden Raumkontur ausgebildet. Dies wird weiter unten zu Fig.4 beispielhaft für das erste Kanalteil 41 gemäß Schnitt IV-IV von Fig. 1 noch erläutert, ebenso wie Fig. 5a bis 5c noch Ausführungsbeispiele zeigen werden, wie Querschnittsflächen 44, 44', 44" ausgebildet sein können, die durch das Zusammenfügen der beiden Kanalteile 41, 42 entstehen.The polymer melt 2 flows from the metering unit 30 into a polymer channel section 4 'of a spinning tool 40 connected to the metering unit 30. The spinning tool 40 contains a first channel part 41 with one or more polymer channel sections 4'. The polymer channel section 4 ′ widens in the first channel part 41 and / or in a second channel part 42 into a flow channel 43. The second channel part 42 can be separated from the first channel part 41. In their mutual contact surfaces, the flow channel 43 is formed as a flat bracket channel. The flow channel 43 distributes the polymer melt 2 evenly over its width. The flow channel 43 is designed along its width with a changing spatial contour. This is explained further below in relation to FIG. 4 by way of example for the first channel part 41 according to section IV-IV of FIG. 1, just as FIGS. 5a to 5c still show exemplary embodiments of how cross-sectional areas 44, 44 ', 44 "can be formed , which result from the joining of the two channel parts 41, 42.

Die Polymerschmelze 2 in Fig. 1 strömt homogen und gleichmäßig verteilt über die gesamte Breite des Flußkanals 43 einer Öffnung 45 am unteren Ende des Flußkanals 43 zu, die über ihre gesamte Breite eine konstante Weite aufweist.The polymer melt 2 in FIG. 1 flows homogeneously and evenly distributed over the entire width of the flow channel 43 to an opening 45 at the lower end of the flow channel 43, which has a constant width over its entire width.

An die Öffnung 45 wird über eine erste und zweite Spannplatte 52, 53 ein Düsenpaket 50 angepreßt. Die Spannplatten 52, 53 umfassen die Kanalteile 41, 42 an deren Breitseite und liegen verschiebbar an diesen Seiten an. Die Spannpiatten 52, 53 sind an den das Düsenpaket 50 umfassenden Enden als Backen 54, 55 ausgebildet, die senkrecht zu den Seiten der Spannplatten 52, 53 das Düsenpaket 50 umgreifen und es an die Kanalteile 41, 42 pressen.A nozzle packet 50 is pressed onto the opening 45 via a first and a second clamping plate 52, 53. The clamping plates 52, 53 include the channel parts 41, 42 on their broad side and are slidably in contact on these sides. The clamping plates 52, 53 are formed at the ends comprising the nozzle packet 50 as jaws 54, 55 which grip the nozzle packet 50 perpendicularly to the sides of the clamping plates 52, 53 and press it against the channel parts 41, 42.

In dem Düsenpaket 50 wird die Polymerschmelze 2 gleichmäßig in Fäden aufgeteilt, die anschließend das Spinnwerkzeug 40 verlassen und nachgeschalteten Einrichtungen zugeführt werden. Zu Fig. 6 wird anhand einer Schnittdarstellung des Düsenpakets 50 die Verteilung der Polymerschmelze 2 noch näher erläutert.In the nozzle package 50, the polymer melt 2 is divided evenly into threads, which then leave the spinning tool 40 and are fed to downstream devices. 6, the distribution of the polymer melt 2 is explained in more detail with reference to a sectional illustration of the nozzle package 50.

Das Spinnwerkzeug 40 ist in Fig. 1 über einen Träger 65 lösbar mit einer vertikal verstellbaren Halterung 75 verbunden, die in einer raumfest gehaltenen Schiene 76 horizontal verschiebbar ist.The spinning tool 40 is detachably connected in FIG. 1 via a carrier 65 to a vertically adjustable holder 75 which is horizontally displaceable in a rail 76 held in a fixed position.

In den Fig. 2a bis 2c ist das Schmelzefilter 5 in verschiedenen Betriebsstellungen dargestellt. Das Schmelzefilter 5 besteht aus dem Siebgehäuse 6, dem Kolben 7, 7', 7", der ersten Siebaussparung 8, einer zweiten Siebaussparung 9, den Siebpaketen 10, 11, Vorflutkanälen 12, 12' und aus eingangs- und ausgangsseitigen Entlüftungskanälen 13, 13', 14, 14'.2a to 2c, the melt filter 5 is shown in different operating positions. The melt filter 5 consists of the sieve housing 6, the piston 7, 7 ', 7 ", the first sieve recess 8, a second sieve recess 9, the sieve packs 10, 11, receiving channels 12, 12' and ventilation ducts 13, 13 on the inlet and outlet side ', 14, 14'.

Die Polymerschmelze 2 strömt gemäß einer Betriebsstellung des Schmelzefilters 5 in Fig. 2a durch eine Öffnung des Siebgehäuses 6. Das Siebgehäuse 6 ist regelbar beheizt, so daß der Kolben 7, die Siebaussparungen 8, 9 und die Siebpakete 10, 11 dieselbe Temperatur wie die Polymerschmelze 2 aufweisen. Eine Temperatur 15, 16, 17 der Polymerschmelze 2 wird im Massenfluß, beim Eintritt in das Schmelzefilter 5, im Schmelzefilter 5 und beim Austritt aus dem Schmelzefilter 5 gemessen. Diese Temperaturmeßpunkte dienen der Heizung des Siebgehäuses 6 als Regelgröße. Die Öffnung des Siebgehäuses 6 auf der Eintrittsseite der Polymerschmelze 2 weitet sich auf der Innenseite zu dem Kolben 7 hin und geht über in die Vorflutkanäle 12, 12'. Die Vorflutkanäle 12, 12' werden in der Betriebsstellung des Kolbens 7 durch seine Oberfläche verschlossen, und die Polymerschmelze 2 kann nur durch einen Durchbruch im Kolben 7 in die Siebaussparung 8 mit dem auswechselbaren Siebpaket 10 einströmen. Die Polymerschmelze 2 wird beim Durchströmen des Siebpakets 10 von Schmutzpartikeln gereinigt.The polymer melt 2 flows according to an operating position of the melt filter 5 in FIG. 2a through an opening of the screen housing 6. The screen housing 6 is heated in a controllable manner, so that the piston 7, the screen recesses 8, 9 and the screen packs 10, 11 have the same temperature as the polymer melt 2 have. A temperature 15, 16, 17 of the polymer melt 2 is measured in the mass flow, when it enters the melt filter 5, in the melt filter 5 and when it exits the melt filter 5. These temperature measuring points serve to heat the screen housing 6 as a controlled variable. The opening of the screen housing 6 on the inlet side of the polymer melt 2 widens on the inside towards the piston 7 and merges into the receiving channels 12, 12 '. The receiving channels 12, 12 'are closed in the operating position of the piston 7 by its surface, and the polymer melt 2 can only flow through a breakthrough in the piston 7 into the sieve recess 8 with the exchangeable sieve packet 10. The polymer melt 2 is cleaned of dirt particles as it flows through the sieve packet 10.

Wird am Schmelzefilter 5 über eine Druckanzeige 18 mit Grenzkontakt ein kritischer Verschmutzungsgrad des Siebpakets 10 angezeigt, so wird der Kolben 7 in die Betriebsstellung Kolben 7' gemäß Fig. 5b geführt, und die Polymerschmelze 2 fließt nur noch teilweise durch die Siebaussparung 8 mit dem Siebpaket 10. Der Massenfluß der Polymerschmelze 2 wird dabei nicht unterbrochen. In der Betriebsstellung des Kolbens 7' überdecken sich der Vorflutkanal 12 und ein Segment der Siebaussparung 9. Die Polymerschmelze 2 strömt somit gleichzeitig in die erste und zweite Siebaussparung 8, 9. Über den eingangsseitigen Entlüftungskanal 13 im Siebgehäuse 6, der die Siebaussparung 9 in der Stellung des Kolbens 7' mit der Außenseite des Schmelzefilters 5 verbindet, kann die Polymerschmelze 2 aus dem Schmelzefilter 5 austreten, die Siebaussparung 9 wird dabei teilweise entlüftet. Anschließend fährt der Kolben 7' in eine Position, bei der die Kolbenoberfläche den eingangsseitigen Entlüftungskanal 13 verschließt, den ausgangsseitigen Entlüftungskanal 14 aber noch mit der Siebaussparung 9 verbindet. Die Polymerschmelze 2 strömt bei ununterbrochenem Massenfluß in der Siebaussparung 8 nun ebenfalls durch das ganze Siebpaket 11 der Siebaussparung 9 und entlüftet die Siebaussparung 9 vollkommen. Ist die Siebaussparung 9 mit der Polymerschmelze 2 gefüllt, strömt diese durch den ausgangsseitigen Entlüftungskanal 14 aus dem Schmelzefilter 5.If a critical degree of contamination of the screen pack 10 is displayed on the melt filter 5 via a pressure indicator 18 with limit contact, the piston 7 is moved into the operating position piston 7 'according to FIG. 5b, and the polymer melt 2 only flows partially through the screen recess 8 with the screen pack 10. The mass flow of the polymer melt 2 is not interrupted. In the operating position of the piston 7 ', the receiving channel 12 and a segment of the sieve recess 9 overlap. The polymer melt 2 thus flows simultaneously into the first and second sieve recesses 8, 9. Via the inlet-side ventilation duct 13 in the sieve housing 6, which separates the sieve recess 9 in the Position of the piston 7 'connects to the outside of the melt filter 5, the polymer melt 2 can emerge from the melt filter 5, the sieve recess 9 is partially vented. Subsequently, the piston 7 'moves into a position in which the piston surface closes the ventilation channel 13 on the inlet side, but the ventilation channel 14 on the outlet side, with the same recess 9 connects. The polymer melt 2 flows with an uninterrupted mass flow in the sieve recess 8 now also through the entire sieve packet 11 of the sieve recess 9 and completely vented the sieve recess 9. If the screen recess 9 is filled with the polymer melt 2, it flows through the outlet-side ventilation channel 14 from the melt filter 5.

Der Kolben 7' fährt danach in die Betriebsstellung Kolben 7" gemäß Fig. 2c, und der Umschaltvorgang von dem verschmutzten Siebpaket 10 auf ein neues unverschmutztes Siebpaket 11 ist abgeschlossen. Das verschmutzte Siebpaket 10 kann aus der Siebaussparung 8 zum Reinigen herausgedrückt werden. Ist das Siebpaket 10 gereinigt und vorgewärmt, kann es wieder in die Siebaussparung 8 eingesetzt werden.The piston 7 'then moves into the operating position of the piston 7 "according to FIG. 2c, and the switching process from the dirty sieve packet 10 to a new, uncontaminated sieve packet 11 is completed. The dirty sieve packet 10 can be pressed out of the sieve recess 8 for cleaning. Is that Sieve pack 10 cleaned and preheated, it can be reinserted into the sieve recess 8.

Bei Bedarf kann jetzt ein erneuter Siebpaketwechsel in umgekehrter Richtung durchgeführt werden. Die Siebaussparung 8 wird über den Vorflutkanal 12' gefüllt, über den eingangsseitigen Entlüftungskanal 13' und anschließend über den ausgangsseitigen Entlüftungskanal 14' entlüftet, bevor das Schmelzefilter 5 wieder die Betriebsstellung Kolben 7 gemäß Fig. 2a einnimmt.If necessary, a new screen pack change can now be carried out in the opposite direction. The screen recess 8 is filled via the inlet channel 12 ', via the inlet-side ventilation channel 13' and then via the outlet-side ventilation channel 14 ', before the melt filter 5 returns to the operating position piston 7 according to FIG. 2a.

In Fig. 3a und 3b sind beispielhaft zwei Ausführungsformen des Polymerverteilers 20 im Schnitt 111-111 gemäß Fig. 1 dargestellt.3a and 3b, two embodiments of the polymer distributor 20 are shown as an example in section 111-111 according to FIG. 1.

In Fig. 3a setzt sich der Polymerverteiler 20 aus einem ersten Verteilerstück 22 mit dem Polymerkanal 4 und aus einem zweiten Verteilerstück 23 mit den Seitenkanälen 24, 25 zusammen. Die Polymerschmelze 2 wird in zwei Teilströme aufgeteilt, die in den Seitenkanälen 24, 25 fließen. Die Teilströme werden über zwei Dosiereinheiten 30 einem oder zwei voneinander getrennten Spinnwerkzeugen 40 zugeführt. Werden die Teilströme der Seitenkanäle 24, 25 einem Spinnwerkzeug 40 zugeführt, so ist dieses Spinnwerkzeug 40 mit zwei Polymerkanalabschnitten 4' und zwei voneinander getrennten Flußkanälen 43 ausgerüstet, die zwei getrennte Düsenpakete 50, 50' versorgen.In FIG. 3a, the polymer distributor 20 is composed of a first distributor piece 22 with the polymer channel 4 and a second distributor piece 23 with the side channels 24, 25. The polymer melt 2 is divided into two partial flows, which flow in the side channels 24, 25. The partial flows are fed to one or two separate spinning tools 40 via two metering units 30. If the partial flows of the side channels 24, 25 are fed to a spinning tool 40, this spinning tool 40 is equipped with two polymer channel sections 4 'and two separate flow channels 43 which supply two separate nozzle packs 50, 50'.

In Fig. 3b ist ein Polymerverteiler 20 dargestellt, der mit dem ersten Verteilerstück 22 und einem zweiten Verteilerstück 23' ausgerüstet ist. In dem Verteilerstück 23' wird die Polymerschmelze 2 aus dem Polymerkanal 4 des Verteilerstücks 22 in vier Teilströme aufgespalten, die in den Seitenkanälen 24', 24", 25', 25" fließen. Diese Teilströme werden über vier Dosiereinheiten 30 den Spinnwerkzeugen 40 zugeführt. Die Teilströme können in zwei sogenannten « Doppelspinnwerkzeugen » oder in vier Spinnwerkzeugen 40 verarbeitet werden.3b shows a polymer distributor 20 which is equipped with the first distributor piece 22 and a second distributor piece 23 '. In the distributor piece 23 ', the polymer melt 2 from the polymer channel 4 of the distributor piece 22 is split into four partial streams which flow in the side channels 24', 24 ", 25 ', 25". These partial flows are fed to the spinning tools 40 via four metering units 30. The partial streams can be processed in two so-called “double spinning tools” or in four spinning tools 40.

Der Polymerverteiler 20 besteht aus einem teilbaren Gehäuse das regelbar beheizt werden kann. Die in die Polymerverteiler 20 einsetzbaren Verteilerstücke 22, 23, 23' können aus Polymerkanälen 4 und Seitenkanälen 24, 24', 24", 25, 25', 25" unterschiedlicher Durchmesser bestehen. Dies kann dann erforderlich sein, wenn das Spinnsystem 1 mit unterschiedlichen Leistungen betrieben werden soll.The polymer distributor 20 consists of a divisible housing which can be heated in a controllable manner. The distributor pieces 22, 23, 23 'which can be inserted into the polymer distributor 20 can consist of polymer channels 4 and side channels 24, 24', 24 ", 25, 25 ', 25" of different diameters. This may be necessary if the spinning system 1 is to be operated with different powers.

In Fig. 4 ist der Schnitt IV-IV gemäß Fig. 1 des Spinnwerkzeugs 40 dargestellt. Der Polymerkanalabschnitt 4' im Kanalteil 41 mündet unter 90° in den Flußkanal 43, der die Form eines Flachbügelkanals aufweist. Die geschlossene dreidimensionale Raumkontur des Flußkanals 43 entsteht durch das Zusammenfügen der Kanalteile 41, 42. Die Form des Flußkanals 43 errechnet sich aus der Fließkurve der zu verarbeitenden Polymerschmelze 2 und aus ihren Produkteigenschaften. Die dreidimensionale Raumkontur wird mit der Zielsetzung numerisch so ermittelt, daß sich im Flußkanal 43 die Polymerschmelze 2 bei stetiger Strömungsgeschwindigkeit gleichmäßig über die Breite des Flußkanals 43 verteilt und mit konstanter Strömungsgeschwindigkeit in die Öffnung 45 des Flußkanals 43 fließt. Für Polymerschmelzen 2 mit unterschiedlichen Fließ- und Produkteigenschaften ergeben sich unterschiedliche Raumgeometrien der Flußkanäle 43, wenn die Verteilung der unterschiedlichen Polymerschmelzen 2 gleichmäßig in den Flußkanälen 43 ist und die Polymerschmelzen 2 mit konstanter Strömungsgeschwindigkeit aus den Flußkanälen 43 ausströmen sollen. Die Raumgeometrie eines Flußkanals 43 kann auf Polymerschmelzen 2 so abgestimmt werden, daß mehrere Polymerschmelzen 2 mit ähnlichen Fließ- und Produkteigenschaften in einem einzigen Flußkanal 43 gleichmäßig verteilt werden können. Handelt es sich jedoch um die Verarbeitung von sehr unterschiedlichen Polymerschmelzen 2, müssen die Kanalteile 41, 42 mit dem Flußkanal 43 ausgewechselt werden.4 shows the section IV-IV according to FIG. 1 of the spinning tool 40. The polymer channel section 4 'in the channel part 41 opens at 90 ° into the flow channel 43, which has the shape of a flat bracket channel. The closed three-dimensional spatial contour of the flow channel 43 results from the joining together of the channel parts 41, 42. The shape of the flow channel 43 is calculated from the flow curve of the polymer melt 2 to be processed and from its product properties. The three-dimensional spatial contour is numerically determined with the objective that in the flow channel 43 the polymer melt 2 is distributed uniformly over the width of the flow channel 43 at a constant flow rate and flows into the opening 45 of the flow channel 43 at a constant flow rate. For polymer melts 2 with different flow and product properties, different spatial geometries of the flow channels 43 result if the distribution of the different polymer melts 2 is uniform in the flow channels 43 and the polymer melts 2 are to flow out of the flow channels 43 at a constant flow rate. The spatial geometry of a flow channel 43 can be matched to polymer melts 2 such that a plurality of polymer melts 2 with similar flow and product properties can be evenly distributed in a single flow channel 43. However, if the processing of very different polymer melts 2 is concerned, the channel parts 41, 42 must be replaced with the flow channel 43.

In Fig. 5a bis 5c ist beispielhaft die unterschiedliche Raumgeometrie des Flußkanals 43 im Schnitt der Kanalteile 41, 42 in Abhängigkeit von seiner Breite gemäß den angegebenen Positionen 5a bis 5c in Fig. 4 dargestellt. Die Querschnittsflächen 44, 44', 44" münden in eine Öffnung 45 mit konstanter Weite. Es ist auch möglich, daß die dreidimensionale Raumkontur des Flußkanals 43 nur in einem der Kanalteile 41, 42 ausgeformt ist und die andere Hälfte der Kanalteile 41, 42 die Raumkontur mit einer glatten, planen Fläche abschließt.5a to 5c, the different spatial geometry of the flow channel 43 is shown in the section of the channel parts 41, 42 depending on its width according to the positions 5a to 5c shown in FIG. 4. The cross-sectional areas 44, 44 ', 44 "open into an opening 45 with a constant width. It is also possible that the three-dimensional spatial contour of the flow channel 43 is formed only in one of the channel parts 41, 42 and the other half of the channel parts 41, 42 Completes the room contour with a smooth, flat surface.

In Fig. 6 ist das Düsenpaket 50 gemäß Fig. 1 im Schnitt vergrößert dargestellt. Es wird seitlich von den Spannplatten 52, 53 und den Backen 54, 55 begrenzt, die in eine Führungskante des Düseneinsatz-Unterteils 60 greifen. Das Düsenpaket 50 setzt sich aus dem Düseneinsatz-Unterteil 60, dem Düsenblock 59, der Lochplatte 58, dem Sieb 57 und aus dem Düseneinsatz-Oberteil 56 zusammen, das im Spinnwerkzeug 40 an Unterseiten der Kanalteile 41, 42 grenzt. Durch die Backen 54, 55 wird das Düsenpaket 50 längs seiner Breite beidseits linienförmig geführt. Die Verbindung zwischen den Backen 54, 55 und dem Düseneinsatz-Unterteil 60 kann unterschiedlich ausgeführt sein, wie z. B. als Schwalbenschwanzverbindung. Es entsteht eine Linienpressung zwischen dem Düsenpaket 50 und den Unterseiten der Kanalteile 41,42.In FIG. 6 the nozzle packet 50 according to FIG. 1 is shown enlarged in section. It is laterally delimited by the clamping plates 52, 53 and the jaws 54, 55, which engage in a leading edge of the lower part 60 of the nozzle insert. The nozzle package 50 is composed of the lower nozzle insert part 60, the nozzle block 59, the perforated plate 58, the sieve 57 and the upper nozzle insert part 56, which adjoins the undersides of the channel parts 41, 42 in the spinning tool 40. Through the jaws 54, 55, the nozzle packet 50 is guided linearly along its width on both sides. The connection between the jaws 54, 55 and the nozzle insert lower part 60 can be designed differently, such as, for. B. as a dovetail connection. A line pressure is created between the nozzle packet 50 and the undersides of the channel parts 41, 42.

Der Düsenblock 59 ist als Rechteckdüse ausgebildet, bei der die Düsenöffnungen auf einer oder mehreren parallelen Linien angeordnet sind. Bei mehreren Linien stehen die Düsen zweckmäßigerweise auf Lücke. Dem Düsenblock 59 wird die Polymerschmelze 2 über die Lochplatte 58 zugeführt. Die Bohrungen in der Lochplatte 58 verteilen die Polymerschmelze 2 gleichmäßig über die Rechteckdüse. Über den Bohrungen der Lochplatte 58 liegt das engporige Sieb 57 aus z. B. Metallvlies. Aus der Polymerschmelze 2 werden mit diesem Sieb 57 Fainstverschmutzungen gefiltert. Zusammen mit der Vorfilterung der Polymerschmelze 2 im Schmelzefilter 5 wird ein qualitativ hochwertiges Produkt erreicht, das besonders gute Eigenschaften beim Verspinnen zu Monofilfäden aufweist. Durch die Vorfilterung der Polymerschmelze 2 wird die Standzeit des Düsenpaketes 50 wesentlich erhöht, da das Sieb 57 nur noch Feinstverschmutzungen aus der Polymerschmelze 2 filtert. Über Bohrungen in dem Düseneinsatz-Oberteil 56 tritt die Polymerschmelze 2 in das Düsenpaket 50 ein.The nozzle block 59 is designed as a rectangular nozzle, in which the nozzle openings are arranged on one or more parallel lines. If there are several lines, the nozzles are more appropriate point to gap. The polymer melt 2 is fed to the die block 59 via the perforated plate 58. The holes in the perforated plate 58 distribute the polymer melt 2 evenly over the rectangular nozzle. Over the holes of the perforated plate 58, the narrow-pored sieve 57 is made of z. B. metal fleece. From the polymer melt 2, 57 dirt particles are filtered with this sieve. Together with the pre-filtering of the polymer melt 2 in the melt filter 5, a high-quality product is achieved which has particularly good properties when spinning to monofilament threads. By pre-filtering the polymer melt 2, the service life of the nozzle package 50 is significantly increased, since the sieve 57 only filters very fine contaminants from the polymer melt 2. The polymer melt 2 enters the nozzle pack 50 via bores in the upper part 56 of the nozzle insert.

In Fig. 7a und 7b sind Vorderansichten des geschlossenen und geöffneten Spinnwerkzeuges 40 dargestellt.7a and 7b show front views of the closed and open spinning tool 40.

Die Fig. 7a zeigt die Vorderansicht des Spinnwerkzeuges 40 in geschlossenem Zustand der ersten Spannplatte 52 auf der Vorderseite und der zweiten, nicht dargestellten Spannplatte 53 auf der Rückseite des Spinnwerkzeugs 40. Über die beispielhaft dargestellte Exzenter-Klemmverbindung wird das Düsenpaket 50 über die Spannplatten 52, 53 an die Unterseiten der Kanalteile 41, 42 gepreßt. Als Schaltglieder für die Vertikalverschiebung sind ebenfalls beispielhaft die gegenläufigen Spannhebel 70, 70' und ein Pneumatikzylinder 71 dargestellt. In die Führungsschiene 72 ist ein Düsenpaket 50' eingelegt, das im Bedarfsfall bei geöffneten Spannplatten 52, 53 über eine Einschiebevorrichtung 74 im Austausch für ein defektes oder verschmutztes Düsenpaket 50 in das Spinnwerkzeug 40 eingeschoben werden kann.7a shows the front view of the spinning tool 40 in the closed state of the first clamping plate 52 on the front and the second clamping plate 53, not shown, on the rear of the spinning tool 40. The nozzle pack 50 is attached to the clamping plates 52 by means of the eccentric clamping connection shown as an example , 53 pressed against the undersides of the channel parts 41, 42. The opposing tension levers 70, 70 'and a pneumatic cylinder 71 are also shown as examples of switching elements for the vertical displacement. A nozzle pack 50 'is inserted into the guide rail 72 and, if necessary, can be inserted into the spinning tool 40 with an open clamping plate 52, 53 via an insertion device 74 in exchange for a defective or soiled nozzle pack 50.

Die Fig. 7b zeigt das geöffnete Spinnwerkzeug 40. Über den ausfahrbaren Pneumatikzylinder 71 werden die Spannhebel 70, 70' gegenläufig bewegt. Exzenter 66, 66' auf der Vorderseite und nicht dargestellte Exzenter 67, 67' auf der Rückseite des Spinnwerkzeugs 40 drehen sich und die Spannplatten 52, 53 verschieben sich nach unten. Es entsteht ein Freiraum zwischen den Kanalteilen 41, 42 und dem Düsenpaket 50, 50'. Mit der Einschiebevorrichtung 74 kann das in Fig. 7a bereitgestellte Düsenpaket 50' in der Führungsschiene 72 in das Spinnwerkzeug 40 eingeschoben werden. Gleichzeitig wird dabei das Düsenpaket 50 aus dem Spinnwerkzeug 40 heraus in die Führungsschiene 73 gedrückt. Wird nun der Pneumatikzylinder 71 wieder geschlossen, ist das Spinnwerkzeug 40 mit dem neu eingelegten Düsenpaket 50' betriebsbereit.7b shows the open spinning tool 40. The clamping levers 70, 70 'are moved in opposite directions via the extendable pneumatic cylinder 71. Eccentrics 66, 66 'on the front and eccentrics 67, 67', not shown, on the rear of the spinning tool 40 rotate and the clamping plates 52, 53 move downward. There is a free space between the channel parts 41, 42 and the nozzle package 50, 50 '. With the insertion device 74, the nozzle pack 50 ′ provided in FIG. 7 a can be pushed into the spinning tool 40 in the guide rail 72. At the same time, the nozzle pack 50 is pressed out of the spinning tool 40 into the guide rail 73. If the pneumatic cylinder 71 is now closed again, the spinning tool 40 with the newly inserted nozzle pack 50 'is ready for operation.

Claims (31)

1. Spinning system for the production of monofilament yarn, in which a spinning tool (40) comprises a channel section (4') for a polymer melt (2), said channel section (4') expanding widthwise in a channel portion (41, 42) of the spinning tool (40) into a flow channel (43) in the form of a flattened U and connected to a group of nozzles (59), characterized in that a cross-sectional area (44 ; 44' ; 44") of the flow channel (43) is increased normal to the width of the latter at least in the upper part of the channel section (4'), and wherein the flow channel (43) is kept free from incrus- tations.
2. Spinning system as defined in claim 1, characterized in that the cross-sectional area (44 ; 44' ; 44") tapers toward the group of nozzles (59) and leads into an opening (45), said opening (45) being of constant width over its entire breadth.
3. Spinning system as defined in claim 1 or 2, characterized in that the flow channel (43) is formed by the joining-together of a first and a second channel portion (41, 42), a three-dimensional contour of the flow channel (43) being formed on at least one of the insides of the channel portions (41, 42).
4. Spinning system as defined in anyone of claims 1 to 3, characterized in that the group of nozzles (59) is part of a pack of nozzles (50, 50'), said pack of nozzles (50, 50') comprising a nozzle-insert lower part (60), said nozzle-insert lower part (60) accommodating the group of nozzles (59), a perforated plate (58), a strainer (57) and a nozzle-insert upper part (56).
5. Spinning system as defined in anyone of claims 1 to 4, characterized in that the spinning tool (40) is enclosed widthwise on two sides by clamping plates (52, 53), said clamping plate (52, 53) embracing the group of nozzles (59) on a third side normal to the two sides and pressing said group of nozzles (59) against the channel portion (41,42).
6. Spinning system as defined in claim 5, characterized in that at their ends embracing the pack of nozzles (50, 50'), the clamping plates (52, 53) for the guiding of the pack of nozzles (50, 50') comprise jaws (54, 55) normal to the plane of the strainer (57).
7. Spinning system as defined in claim 6, characterized in that the jaws (54, 55) are in the form of dovetail connections, said dovetail connections cooperating with the nozzle-insert lower part (60).
8. Spinning system as defined in anyone of claims 5 to 7, characterized in that the clamping plates (52, 53) are displaceable for releasing the group of nozzles (59) from the channel portion (41,42).
9. Spinning system as defined in anyone of claims 6 to 8, characterized in that the clamping plates (52, 53) are vertically displaceable.
10. Spinning system as defined in anyone of claims 5 to 9, characterized in that the jaws (54, 55) extend laterally beyond the clamping plates (52, 53) in the direction of the third side and join into guide rails (72, 73) the group of nozzles (59) being guidable in said guide rails (72, 73) as far as outside the spinning tool (40).
11. Spinning system as defined in anyone of claims 1 to 10, characterized in that, the channel portion (41, 42) is separably connected to a carrier (65), said carrier (65) being attached to a vertically displaceable mount (75), said mount (75) running in a spatially fixed and horizontal rail (76).
12. Spinning system as defined in claim 11, characterized in that end faces of the carrier (65) comprise clamping devices, said clamping devices engaging the clamping plates (52, 53).
13. Spinning system as defined in claim 12, characterized in that the clamping devices on the carrier (65) are eccentrics (66, 66', 67, 67'), said eccentrics (66, 66', 67, 67') engaging holes (68, 68', 69, 69') in the clamping plates (52, 53).
14. Spinning system as defined in claim 13, characterized in that the clamping plates (52, 53) are displaceable in a vertical direction through the intermediary of the eccentrics (66, 66', 67, 67').
15. Spinning system as defined in anyone of claims 13 or 14, characterized in that the eccentrics (66, 66', 67, 67') are operated by switching elements.
16. Spinning system as defined in claim 15, characterized in that, the switching elements of the eccentrics (66, 66', 67, 67') are composed of a mechanical actuator, particularly a pneumatic cylinder (71), hydraulic cylinder or similar and clamping levers (70, 71') moving in opposite directions.
17. Spinning system as defined in anyone of claims 1 to 16, characterized in that two or more groupes of nozzles (59), flow channels (43) and channel section (4') are contained in the spinning tool (40).
18. Spinning system as defined in anyone of claims 1 to 17, characterized in that a metering unit (30) is connectable with its outlet to the inlet side of the spinning tool (40), said metering unit (30) delivering the polymer melt (2) into the spinning tool (40).
19. Spinning system as defined in claim 18, characterized in that the metering unit (30) consists of a divisible housing block (31), said housing block (31) accommodating a spinning pump (32), said spinning pump (32) being subject to a throughflow in the flow direction of the polymer melt (2), a static mixer (34) being adapted to be integrated into the outlet of spinning pump (32).
20. Spinning system as defined in claim 19, characterized in that the spinning pump (32) with the static mixer (34) is adapted to be inserted as a self-contained unit into the housing block (31).
21. Spinning system as defined in claim 17 and in anyone of claims 19 or 20, characterized in that the respective channel section (4') of the spinning tool (40) are each supplied with the polymer melt (2) by a spinning pump (32) with an infinitely variable spinning pump drive (33).
22. Spinning system as defined in anyone of claims 18 or 21, characterized in that the metering unit (30) is spatially fixed.
23. Spinning system as defined in anyone of claims 18 to 22, characterized in that the metering unit (30) forms the connection of the channel section (4') between the inlet of the spinning tool (40) and an outlet of a polymer distributor (20).
24. Spinning system as defined in claim 23, characterized in that the polymer distributor (20) consists in a first distributor piece (22) and of a second distributor piece (23, 23'), said distributor pieces being replaceable, a polymer channel (4) being able to be split into several side channels (24, 25 ; 24', 24", 25', 25") by said distributor pieces.
25. Spinning system as defined in claim 23 or 24, characterized in that the inlet of the polymer distributor (20) is connected to an outlet of the central melt filter (5).
26. Spinning system as defined in claim 25, characterized in that the melt filter (5) is provided with packs of strainers (10, 11), said packs of strainers (10, 11) being replaceable during operation.
27. Spinning system as defined in claim 25 or 26, characterized in that the melt filter (5) in a strainer housing (6) comprises a piston (7 ; 7' ; 7"), said piston (7 ; 7'; 7") being displaceable at an angle to the polymer channel (4) and being provided with the first strainer recess (8) and a second strainer recess (9), said strainer recesses (8, 9) being equipped with packs of strainers (10, 11
28. Spinning system as defined in claims 27, characterized in that the melt filter (5) in the strainer housing (6) comprises preflooding channels (12, 12'), said preflooding channels (12, 12'), with the piston (7, 7") in a first and a third position, being sealed and, with the piston (7') in a second position, connecting the inlet side of the polymer channel (4) through to the strainer recesses (8, 9).
29. Spinning system as defined in claim 28, characterized in that with the piston (7') in the second position, one of the two strainer recesses (8, 9) has a through-connection on the inlet and outlet sides to the polymer channel (4), the other strainer recess (8, 9) having a through-connection to the polymer channel (4) only on the inlet side, said strainer recess (8, 9) additionally having through-connections to inlet- and outlet-side ventilation channels (13, 14; 13', 14') in the strainer housing (6).
30. Spinning system as defined in claim 28 or 29, characterized in that the piston (7 ; 7', 7") is displaceable into a position providing one of the two strainer recesses (8, 9) with a through-connection on the inlet and outlet sides to the polymer channel (4), the other of the two strainer recesses (8, 9) having a through-connection to the polymer channel (4) only on the inlet side and being connected only to an outlet-side ventilation channel (14 ; 14').
31. Spinning system as defined in anyone of claims 1 to 30, characterized in that the spinning tool (40), and/or a metering unit (30), and/or a polymer distributor (20), and/or a melt filter (5) are in the form of separate modules and are separable from one another.
EP86906770A 1985-11-16 1986-11-14 Spinning system Expired - Lifetime EP0245390B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86906770T ATE50804T1 (en) 1985-11-16 1986-11-14 SPINNING SYSTEM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853540757 DE3540757A1 (en) 1985-11-16 1985-11-16 SPIDER SYSTEM
DE3540757 1985-11-16

Publications (2)

Publication Number Publication Date
EP0245390A1 EP0245390A1 (en) 1987-11-19
EP0245390B1 true EP0245390B1 (en) 1990-03-07

Family

ID=6286211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86906770A Expired - Lifetime EP0245390B1 (en) 1985-11-16 1986-11-14 Spinning system

Country Status (4)

Country Link
US (1) US4875846A (en)
EP (1) EP0245390B1 (en)
DE (2) DE3540757A1 (en)
WO (1) WO1987003017A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226963A (en) * 1988-08-19 1993-07-13 Fuji Photo Film Co., Ltd. Coating method and apparatus of an extrusion-type coating head having a filtering element therefor
FR2681001A1 (en) * 1991-09-10 1993-03-12 Vetrotex France Sa EXTRUSION HEAD FOR THE PRODUCTION OF YARNS FROM A MATERIAL MADE PASTA BY HEATING.
US6060636A (en) * 1996-09-04 2000-05-09 Kimberly-Clark Worldwide, Inc. Treatment of materials to improve handling of viscoelastic fluids
US5910104A (en) 1996-12-26 1999-06-08 Cryogen, Inc. Cryosurgical probe with disposable sheath
US5866050A (en) * 1997-02-06 1999-02-02 E. I. Du Pont De Nemours And Company Method and spinning apparatus having a multiple-temperature control arrangement therein
US6033609A (en) * 1997-10-28 2000-03-07 Basf Corporation Device and method to prevent spinneret hole contamination
US10688706B2 (en) * 2016-08-09 2020-06-23 Ngk Insulators, Ltd. Honeycomb structure forming die
JP6507143B2 (en) * 2016-08-09 2019-04-24 日本碍子株式会社 Die for forming honeycomb structure
DE102016119866A1 (en) * 2016-10-18 2018-04-19 Reifenhäuser GmbH & Co. KG Maschinenfabrik Method and plant for producing a fleece of fibers
EP4108815A1 (en) * 2021-06-21 2022-12-28 Fratelli Ceccato Milano S.r.l. Multi-row coaxial melt-blown system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE203336C (en) *
US1905733A (en) * 1932-03-18 1933-04-25 Texas Co Flow divider
US2803851A (en) * 1953-03-13 1957-08-27 American Viscose Corp Spinneret assembly
NL269122A (en) * 1961-05-11 1900-01-01
NL300775A (en) * 1963-11-20 1965-09-10
CH445840A (en) * 1966-04-09 1967-10-31 Barmag Barmer Maschf Device on an extrusion press for sealing the connection point between a feed element and a tool or tool chuck
FR1520059A (en) * 1966-04-28 1968-04-05 Algemene Kunstzijde Unie Nv Spinning trim for making synthetic yarns
NL6605678A (en) * 1966-04-28 1967-10-30
US3416190A (en) * 1966-06-28 1968-12-17 Mehnert Gottfried Diehead
US3707341A (en) * 1966-09-08 1972-12-26 Akzona Inc Apparatus for making multifilament yarns
DE1966565C3 (en) * 1969-02-19 1979-01-18 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Heatable spinning beam for producing continuous filaments from synthetic polymers
US3762854A (en) * 1970-04-08 1973-10-02 Akzona Inc Melt spinning apparatus
US3804758A (en) * 1972-03-29 1974-04-16 Cosham Eng Design Ltd Screen changer
DE2248756B2 (en) * 1972-10-05 1976-06-10 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal SPIDER HEAD FOR SPINNING PLASTIC BULBS
IT1017448B (en) * 1973-08-02 1977-07-20 Scheer & Cie C F POSITIVE FOR THE FILTRATION OF MOLTEN PLASTIC MATERIAL AS WELL AS FOR THE EXTRUSION OF PLASTIC CORDS
US3970417A (en) * 1974-04-24 1976-07-20 Beloit Corporation Twin triple chambered gas distribution system for melt blown microfiber production
US3938925A (en) * 1974-09-11 1976-02-17 Allied Chemical Corporation Spin pack assembly
NL7507443A (en) * 1975-06-23 1976-12-27 Akzo Nv MELTING EQUIPMENT.
US4025434A (en) * 1975-10-06 1977-05-24 Bolton-Emerson, Inc. Screen changer with pre-fill screen blocks
DE3334870C1 (en) * 1983-09-27 1985-03-21 Reifenhäuser GmbH & Co. Maschinenfabrik, 5210 Troisdorf Die head for the simultaneous production of a multiplicity of filaments from thermoplastic
JPS60199907A (en) * 1984-03-23 1985-10-09 Toyobo Co Ltd Spinneret pack for melt spinning
US4652410A (en) * 1985-08-08 1987-03-24 Bridgestone Corporation Method of exchanging a die holder

Also Published As

Publication number Publication date
WO1987003017A1 (en) 1987-05-21
EP0245390A1 (en) 1987-11-19
DE3540757C2 (en) 1987-11-05
DE3669330D1 (en) 1990-04-12
DE3540757A1 (en) 1987-05-21
US4875846A (en) 1989-10-24

Similar Documents

Publication Publication Date Title
DE3905963C2 (en) Polymer filter device
EP0052359B1 (en) Continuously operating press
EP0245390B1 (en) Spinning system
EP2576180B1 (en) Filtering apparatus for highly viscous media
WO2004026432A1 (en) Device for filtering a fluid, especially for plastic-processing installations
DE3013038A1 (en) SCREEN CHANGER FOR EXTRUDER
DE1729136A1 (en) Screen exchange device
DE2554645B2 (en) Screening device for extruders
DE3336179A1 (en) DEVICE FOR PRODUCING FOAMED THERMOPLASTIC PLASTICS, LIKE POLYSTYRENE, POLYAETHYLENE OR THE LIKE
DE19636067A1 (en) Filtering of plastic melt and filtering equipment for reducing flow variation
DE2836847A1 (en) LOW-VOLUME MULTI-WAVE SCREW MACHINE OUTLET DEVICE WITH SCREEN EXCHANGE DEVICE
EP0585213A1 (en) Device for the portion-wise release of fluid masses
EP0536359B1 (en) Filter-change module
EP1729900A1 (en) Device for cooling metal sheets and strips
DE3309505C1 (en) Cassette filters for molten plastics
DE1511218B2 (en) PAPER MASH FEEDING DEVICE FOR PAPER MACHINES
DE19916539A1 (en) Filtration arrangement for molten polymer involves disposable fine wire mesh supported on recirculating coarse wire mesh
DE3048133C2 (en) Coating device with air nozzle arrangement
DE3546536C2 (en)
EP1489224A1 (en) Headbox
DE3546535C2 (en)
DE4402278C2 (en) Device for applying steam
DE3613071C2 (en)
DE4215472C1 (en) Welt filter for cleaning plastic melts - having sieve plate cut=out along the side which can hold filters in the form of ring members
EP3287254B1 (en) Mixer structure for a film producing tool and a film producing tool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19871105

17Q First examination report despatched

Effective date: 19890425

DIN1 Information on inventor provided before grant (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REINBOLD, HEINZ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REINBOLD, HEINZ

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900307

Ref country code: NL

Effective date: 19900307

Ref country code: GB

Effective date: 19900307

REF Corresponds to:

Ref document number: 50804

Country of ref document: AT

Date of ref document: 19900315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3669330

Country of ref document: DE

Date of ref document: 19900412

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961123

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HEINZ REINBOLD TRANSFER- SML-LENZING MASCHINENGESE

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980406

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114