EP0240837A2 - Horizontalstranggiessvorrichtung - Google Patents

Horizontalstranggiessvorrichtung Download PDF

Info

Publication number
EP0240837A2
EP0240837A2 EP87104362A EP87104362A EP0240837A2 EP 0240837 A2 EP0240837 A2 EP 0240837A2 EP 87104362 A EP87104362 A EP 87104362A EP 87104362 A EP87104362 A EP 87104362A EP 0240837 A2 EP0240837 A2 EP 0240837A2
Authority
EP
European Patent Office
Prior art keywords
continuous casting
mold
guide tube
horizontal continuous
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP87104362A
Other languages
English (en)
French (fr)
Other versions
EP0240837A3 (de
Inventor
Franz Keutgen
Achim Kubon
Dieter Perings
Peter Dr.-Ing. Stadler
Peter Dr.-Ing. Voss-Spilker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0240837A2 publication Critical patent/EP0240837A2/de
Publication of EP0240837A3 publication Critical patent/EP0240837A3/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting

Definitions

  • the invention relates to a horizontal continuous casting device with a storage vessel to which the horizontal continuous casting mold is interchangeably attached by means of a sealing nozzle block, the horizontal continuous casting mold adjacent to the nozzle block having a length section of a mold tube made of a heat-conducting material, to which a mold tube length section made of the less heat-conducting material is connected , which is arranged in a guide tube made of steel, which is surrounded by coolant on the outside.
  • Such a horizontal continuous casting device is known from DE-OS 20 25 764.
  • the guide tube has the task of keeping the insert from the heat less highly conductive material, to secure it and to enable the heat transfer from the cast strand surface through the material to the cooling water.
  • the less heat-conducting material mostly consists of graphite.
  • the heat is therefore removed from the cast strand through the graphite and through the guide tube to the coolant, such as cooling water.
  • Graphite which is in contact with a cast strand made of metal, in particular steel, is used because of the "self-lubrication" and other advantageous properties. These characteristic values are particularly important for a steel guide tube.
  • the mold tube length section following the nozzle block and upstream of the guide tube usually consists of copper and is referred to as a copper module.
  • the cast strand shell is formed with every drawing process and intermittently welded to the cast strand.
  • strong cooling as guaranteed by copper, must initially be achieved.
  • the growing cast strand shell forms in itself an increasing resistance to the heat transfer, so that viewed in the casting direction, a material with a lower thermal conductivity, such as graphite, is sufficient for cooling.
  • Such a graphite tube is now pressed into the guide tube in order to provide sufficient stability and cooling options.
  • the guide tube is cooled with water from the outside.
  • the guide tube was made from copper or from structural steel (unalloyed or low-alloy structural steel). However, problems arise with both copper and structural steel.
  • Copper is disadvantageous because of the high thermal conductivity with low material properties and the high elasticity.
  • the high thermal conductivity means that structural steel is cooled very abruptly, which can lead to stresses in the thin cast shell and thus to internal cracks.
  • the high elasticity and the low strength of the material copper is disadvantageous because a guide tube made of it deforms, which also causes qualitative disadvantages for the cast strand.
  • the material price for copper is very high.
  • Structural steel is usually used in thinner wall thicknesses than copper in order to compensate for the low thermal conductivity.
  • the stability of the guide tube suffers if the wall thickness is too small.
  • a major disadvantage of structural steel guide tubes is the corrosion resistance of the material. As a result, the properties relating to cooling can change locally.
  • Corrosion also causes sealing problems, since wear of the guide tube also occurs at the sealing points. Such signs of wear can require a replacement of the guide tube within a short time, so that due to the considerably shorter service life there are hardly any cost advantages compared to a guide tube made of copper.
  • the low strength of the material, like copper, can also lead to disadvantageous deformations of the guide tube.
  • the invention is therefore based on the object of improving the properties of the guide tube with respect to shape, durability, economy with sufficient thermal conductivity.
  • the stated object is achieved according to the invention at the outset by virtue of the fact that the length of the mold tube made of less heat-conducting material is arranged within such a guide tube which is made of corrosion-resistant, heat-resistant steel with a thermal conductivity of 20 to 40 W / mK.
  • the correspondingly more expensive production compared to a guide tube made of structural steel is more than offset by the significantly increased durability, which is included in the total costs, as has been shown by extensive tests.
  • the wall thickness of the guide tube is 5 to 20 mm.
  • the horizontal continuous casting device has a storage vessel (1) with an outlet (2).
  • the outlet (2) is essentially formed by a nozzle block (3).
  • the horizontal continuous casting mold (5) adjoining the nozzle block (3) in the continuous casting direction (4) is connected in a sealed manner to the outlet (2) via the nozzle block (3).
  • the horizontal continuous casting mold (5) has a mold tube (6) which consists of a heat-conducting first mold tube length section (7) (e.g. made of copper) and a heat-less conductive second mold tube length section (8) (e.g. made of graphite).
  • the length of the mold tube sections (7 and 8) are sealed together at their joint (9).
  • the mold tube length section (8) (e.g. made of graphite) is pressed into a guide tube (10).
  • Cooling channels (12 and 13) are formed between the housing (11) and the guide tube (10), so that the coolant flow from the coolant inlet (14) around a sleeve (15) is circulated through a coolant outlet (16), whereby the coolant flows are separated by an annular wall (17).
  • the guide tube (10) is resiliently held in the axial direction by means of a housing cover (18). Here the guide tube (10) against a collar (7a) of the mold tube length section (7), which itself is connected to the housing (11).
  • the guide tube (10) consists of corrosion-resistant steel, so that the cooling water does no damage from the outside.
  • the heat-resistant property of the guide tube (10) makes it possible to absorb a significant temperature jump from the cast strand shell temperature (approx. 1300 to 1500 degrees C) to the coolant temperature. With a thickness of 5 to 20 mm, a thermal conductivity of 20 to 40 W / m.K is favorable. Given the given values, it is advantageously possible to reduce the length of the horizontal continuous casting mold (9) to approximately 700 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Eine Horizontalstranggießvorrichtung weist ein Vorratsgefäß (1) auf, an das die Horizontalstranggießkokille (5) mittels eines abdichtenden Düsensteins (3) auswechselbar angesetzt ist, wobei die Horizontal­stranggießkokille (5) an den Düsenstein (3) angrenzend einen Längen­abschnitt (7) eines Kokillenrohres (6) aus einem Wärme hochleitenden Werkstoff besitzt, auf den ein Kokillenrohrlängenabschnitt (8) aus die Wärme weniger hochleitendem Werkstoff anschließt, der in einem Führungsrohr (10) aus Stahl angeordnet ist, das außen von Kühlmittel umströmt ist.
Um die Eigenschaften des Führungsrohres bezüglich Formtreue, Halt­barkeit und Wirtschaftlichkeit bei ausreichender Wärmeleitfähigkeit zu verbessern, wird vorgeschlagen, daß der Kokillenrohrlängenab­schnitt (8) aus die Wärme weniger hochleitendem Werkstoff innerhalb eines solchen Führungsrohres (10) angeordnet ist, das aus korro­sionsbeständigem, warmfestem Stahl mit einer Wärmeleitfähigkeit von 20 bis 40 W/m.K hergestellt ist.

Description

  • Die Erfindung betrifft eine Horizontalstranggießvorrichtung mit einem Vorratsgefäß, an das die Horizontalstranggießkokille mittels eines abdichtenden Düsensteins auswechselbar angesetzt ist, wobei die Horizontalstranggießkokille an den Düsenstein angrenzend einen Längenabschnitt eines Kokillenrohrs aus einem Wärme hochleitenden Werkstoff aufweist, auf den ein Kokillenrohrlängenabschnitt aus die Wärme weniger hochleitendem Werkstoff anschließt, der in einem Füh­rungsrohr aus Stahl angeordnet ist, das außen von Kühlmittel umströmt ist.
  • Eine derartige Horizontalstranggießvorrichtung ist aus der DE-OS 20 25 764 bekannt.
  • In der Horizontalstranggießvorrichtung bzw. in der Horizontalstrang­gießkokille hat das Führungsrohr die Aufgabe, den Einsatz aus die Wärme weniger hochleitendem Werkstoff zu halten, zu sichern und die Wärmeabfuhr von der Gußstrangoberfläche durch den Werkstoff an das Kühlwasser zu ermöglichen. Der die Wärme weniger hochleitende Werk­stoff besteht meistens aus Graphit. Die Wärmeabfuhr erfolgt daher von dem Gußstrang durch den Graphit und durch das Führungsrohr hindurch an das Kühlmittel, wie z.B. Kühlwasser. Graphit, der im Kontakt mit einem Gußstrang aus Metall, insbesondere aus Stahl, steht, wird wegen der "Selbstschmierung" und anderer vorteilhafter Eigenschaften ver­wendet. Diese Kennwerte sind bei einem Führungsrohr aus Stahl beson­ders wichtig. Der dem Düsenstein nachfolgende, dem Führungsrohr vorgeordnete Kokillenrohrlängenabschnitt besteht meist aus Kupfer und wird als Kupfermodul bezeichnet. In diesem Kupfermodul wird die Guß­strangschale bei jedem Ziehvorgang gebildet und intermittierend mit dem Gußstrang verschweißt. Zur Stabilität der Strangschale muß an­fangs eine starke Kühlung, wie sie Kupfer gewährleistet, erreicht werden. Die wachsende Gußstrangschale bildet in sich selbst einen größerwerdenden Widerstand gegen den Wärmedurchgang, so daß in Gieß­richtung gesehen zur Kühlung ein Werkstoff mit geringerer Wärmeleit­fähigkeit, wie z.B. Graphit, ausreicht. Ein solches Graphitrohr ist nunmehr in das Führungsrohr eingepreßt, um eine ausreichende Stabi­lität und Kühlungsmöglichkeit zu schaffen. Außerdem wird das Füh­rungsrohr von außen mit Wasser gekühlt. In der Vergangenheit wurde das Führungsrohr aus Kupfer oder auch aus Baustahl (unlegierter oder niedriglegierter Baustahl) hergestellt. Sowohl bei dem Werkstoff Kupfer als auch bei dem Werkstoff Baustahl treten jedoch Probleme auf. Kupfer ist nachteilig wegen der hohen Wärmeleitfähigkeit bei niedrigen Materialkennwerten und der hohen Elastizität. Durch die hohe Wärmeleitfähigkeit wird hingegen Baustahl sehr schroff gekühlt, was zu Spannungen in der dünnen Gußstrangschale und damit zu Innen­rissen führen kann. Die hohe Elastizität sowie die geringe Festigkeit des Werkstoffes Kupfer ist nachteilig, weil sich ein daraus gefer­tigtes Führungsrohr verformt, was ebenfalls qualitative Nachteile für den Gußstrang bewirkt. Außerdem liegt der Materialpreis bei Kupfer sehr hoch. Baustahl wird üblicherweise zwar in dünneren Wandstärken als Kupfer eingesetzt, um die geringe Wärmeleitfähigkeit zu kompen­sieren. Jedoch leidet die Stabilität des Führungsrohres bei zu ge­ringen Wandstärken. Ein wesentlicher Nachteil von Baustahl-Führungs­rohren ist jedoch die Korrosionsfähigkeit des Werkstoffes. Dadurch können sich örtlich die Eigenschaften in bezug auf die Kühlung ver­ändern. Ferner treten durch Korrosion auch Abdichtprobleme auf, da der Verschleiß des Führungsrohres auch an den Dichtstellen auftritt. Derartige Verschleißerscheinungen können innerhalb kurzer Zeit eine Auswechslung des Führungsrohres bedingen, so daß aufgrund der erheb­lich kürzeren Lebensdauer kaum noch Kostenvorteile gegenüber einem Führungsrohr aus Kupfer auftreten.
  • Bei dünnen Wanddicken des Führungsrohres aus Baustahl kann es über­dies durch die geringe Festigkeit des Werkstoffes ebenfalls wie bei Kupfer zu nachteiligen Verformungen des Führungsrohres kommen.
  • Der Erfindung liegt daher die Aufgabe zugrunde, die Eigenschaften des Führungsrohres bezüglich Formtreue, Haltbarkeit, Wirtschaftlichkeit bei ausreichender Wärmeleitfähigkeit zu verbessern.
  • Die gestellte Aufgabe wird bei der eingangs bezeichneten Gattung erfindungsgemäß dadurch gelöst, daß der Kokillenrohrlängenabschnitt aus die Wärme weniger hochleitendem Werkstoff innerhalb eines solchen Führungsrohres angeordnet ist, das aus korrosionsbeständigem, warm­festem Stahl mit einer Wärmeleitfähigkeit von 20 bis 40 W/m.K herge­stellt ist. Die entsprechend teurere Herstellung gegenüber einem Führungsrohr aus Baustahl wird durch die in die Gesamtkosten einge­hende wesentlich erhöhte Haltbarkeit mehr als aufgefangen, wie sich durch eingehende Versuche gezeigt hat. Außerdem bestehen folgende Vorteile:
    - höhere Warmfestigkeit (gleichmäßige Strangkühlung durch erhöhte Kokillenform-Stabilität),
    - keine Korrosion an der Wasserseite (und damit Gewährleistung einer gesteuerten Kühlleistung über die gesamte Standzeit),
    - höhere Kontakttemperatur des die Wärme weniger hochleitenden Werkstoffes - Graphit - und damit erhöhte Durchschnittstemperatur (keine übermäßige Strangschalenkühlung),
    - Vergleichmäßigung der Strangoberflächenkühlung bzw. -temperaturen (weniger Spannungen und Fehler, wie z.B. Innenrisse),
    - kein "Strangatmen",
    - leichterer Wechsel des Graphiteinsatzes durch formstabiles und glatteres Führungsrohr,
    - und qualitätsgerechte Verminderung der Kokillenbereichskühlung (geringere Wärmeleitfähigkeit des Führungsrohres).
  • Von Vorteil ist außerdem, daß die Wanddicke des Führungsrohres 5 bis 20 mm beträgt.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung darge­stellt und wird im folgenden näher beschrieben.
  • Die einzige Figur der Zeichnung zeigt einen Längsschnitt durch das Vorratsgefäß mit in Stranglaufrichtung folgender Horizontalstrang­gießkokille.
  • Die Horizontalstranggießvorrichtung weist ein Vorratsgefäß (1) auf, mit einem Auslaß (2). Der Auslaß (2) wird im wesentlichen duch einen Düsenstein (3) gebildet. Die an den Düsenstein (3) in Stranggieß­richtung (4) anschließende Horizontalstranggießkokille (5) ist über den Düsenstein (3) abgedichtet an den Auslaß (2) angeschlossen.
  • Die Horizontalstranggießkokille (5) weist ein Kokillenrohr (6) auf, das aus einem die Wärme hochleitenden ersten Kokillenrohrlängen­abschnitt (7) (z.B. aus Kupfer hergestellt) und aus einem die Wärme weniger hochleitenden zweiten Kokillenrohrlängenabschnitt (8) (z.B. aus Graphit hergestellt) besteht. Die Kokillenrohrlängenabschnitte (7 und 8) sind an ihrer Stoßstelle (9) dichtend aneinandergesetzt. Der Kokillenrohrlängenabschnitt (8) (z.B. aus Graphit) ist in ein Füh­rungsrohr (10) eingepreßt. Zwischen dem Gehäuse (11) und dem Füh­rungsrohr (10) sind Kühlkanäle (12 bzw. 13) gebildet, so daß die Kühlmittelströmung vom Kühlmitteleintritt (14) um eine Hülse (15) herum durch einen Kühlmittelaustritt (16) im Kreislauf geführt wird, wobei die Kühlmittelströmungen durch eine Ringwand (17) getrennt sind.
  • Das Führungsrohr (10) ist in axialer Richtung mittels eines Gehäuse­deckels (18) federnd gehalten. Hierbei liegt das Führungsrohr (10) gegen einen Bund (7a) des Kokillenrohrlängenabschnittes (7) an, der selbst mit dem Gehäuse (11) verbunden ist.
  • Das Führungsrohr (10) besteht aus korrosionsbeständigem Stahl, so daß das Kühlwasser von außen keinen Schaden anrichtet. Das Auswechseln des Graphiteinsatzes, d.h. des Kokillenrohrlängenabschnittes (8), wird außerdem nicht durch korrodierte Oberflächen behindert. Die Warmfesteigenschaft des Führungsrohres (10) gestattet, einen erheblichen Temperatursprung von der Gußstrangschalentemperatur (ca. 1300 bis 1500 Grad C) bis zur Kühlmitteltemperatur aufzufangen. Bei einer Dicke von 5 bis 20 mm ist eine Wärmeleitfähigkeit von 20 bis 40 W/m.K günstig. Bei den gegebenen Werten ist es vorteilhafterweise möglich, die Länge der Horizontalstranggießkokille (9) bis auf ca. 700 mm zu vermindern.

Claims (2)

1. Horizontalstranggießvorrichtung mit einem Vorratsgefäß, an das die Horizontalstranggießkokille mittels eines abdichtenden Düsensteins auswechselbar angesetzt ist, wobei die Horizontal­stranggießkokille an den Düsenstein angrenzend einen Längen­abschnitt eines Kokillenrohres aus einem Wärme hochleitenden Werkstoff aufweist, auf den ein Kokillenrohrlängenabschnitt aus die Wärme weniger hochleitendem Werkstoff anschließt, der in einem Führungsrohr aus Stahl angeordnet ist, das außen von Kühl­mittel umströmt ist,
dadurch gekennzeichnet,
daß der Kokillenrohrlängenabschnitt (8) aus die Wärme weniger hochleitendem Werkstoff innerhalb eines solchen Führungsrohres (10) angeordnet ist, das aus korrosionsbeständigem, warmfestem Stahl mit einer Wärmeleitfähigkeit von 20 bis 40 W/m.K herge­stellt ist.
2. Horizontalstranggießvorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß die Wanddicke des Führungsrohres (10) 5 bis 20 mm beträgt.
EP87104362A 1986-04-04 1987-03-24 Horizontalstranggiessvorrichtung Ceased EP0240837A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3611363 1986-04-04
DE19863611363 DE3611363A1 (de) 1986-04-04 1986-04-04 Horizontalstranggiessvorrichtung

Publications (2)

Publication Number Publication Date
EP0240837A2 true EP0240837A2 (de) 1987-10-14
EP0240837A3 EP0240837A3 (de) 1988-01-20

Family

ID=6297957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87104362A Ceased EP0240837A3 (de) 1986-04-04 1987-03-24 Horizontalstranggiessvorrichtung

Country Status (4)

Country Link
EP (1) EP0240837A3 (de)
JP (1) JPH0120048Y2 (de)
BR (1) BR8701545A (de)
DE (1) DE3611363A1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1307424A (en) * 1969-05-26 1973-02-21 Gen Motors Corp Apparatus for continuous casting
US3642058A (en) * 1970-02-16 1972-02-15 Gen Motors Corp Mold apparatus for continuous casting
AT301073B (de) * 1970-03-24 1972-07-15 Adamec A Mehrteilige stranggieszkokille
DE2520091A1 (de) * 1975-05-06 1976-11-18 Davy Loewy Ltd Kokille fuer strangguss

Also Published As

Publication number Publication date
DE3611363A1 (de) 1987-10-15
JPH0120048Y2 (de) 1989-06-12
JPS62179150U (de) 1987-11-13
EP0240837A3 (de) 1988-01-20
BR8701545A (pt) 1988-01-26
DE3611363C2 (de) 1988-11-10

Similar Documents

Publication Publication Date Title
DE3006332C2 (de) Kolbenkompressor, insbesondere zum Verdichten von Sauerstoff
EP0042028B1 (de) Vorrichtung zum Wärmetausch zwischen einen Ammoniak-Konverter verlassendem Kreislaufgas und Kühlwasser
CH618257A5 (de)
DE2127448B2 (de) Kühlelement, insbesondere Plattenkühler, für Hochöfen
DE3416843A1 (de) Aktiv gekuehlter hitzeschild
DE10328846B4 (de) Wärmetauscher
DE2315024A1 (de) Kokskuehler
DE3828902A1 (de) Waermeschutzschild
LU85119A1 (de) Fluessigkeitsgekuehlte metallische abstichrinne
DE2144348A1 (de) Durchflussvorrichtung für Flüssigkeiten
DE2313320A1 (de) Durch umgiessen eines oder mehrerer rohre, insbesondere kuehlrohr, geformtes gussteil
DE1932027A1 (de) Waermetauscher
DE3611363C2 (de)
DE3020289A1 (de) Waermekuperatoranordnung
DE3313998C2 (de) Kühlplatte für metallurgische Öfen, insbesondere Hochöfen sowie Verfahren zu ihrer Herstellung
DE3212150C2 (de) Rohr mit einer schützenden und formbeständigen Innenauskleidung
EP0144578B1 (de) Plattenkühler für metallurgische Öfen, insbesondere Hochöfen
DE3726027A1 (de) Waermebeaufschlagtes bauteil
EP0077513B1 (de) Verfahren zur Verhinderung des Abbrands an einer stromleitenden Elektrode für metallurgische Oefen und Elektrode
DE2715731C2 (de)
EP4071431A1 (de) Wärmeübertrager
DE3240115A1 (de) Duese zum stranggiessen von metallen, insbesondere von kupferlegierungen
EP0542101A1 (de) Sonnenkollektor
DE2241081A1 (de) Vorrichtung zur verhuetung von erosionskorrosion in stroemungsraeumen
DE2750968B1 (de) Hochtemperatur-Gasaustritt in Rohrbuendelform aus einem vorgespannten Druckbehaelter in Guss- oder Betonbauweise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT ES FR GB IT SE

17P Request for examination filed

Effective date: 19880716

17Q First examination report despatched

Effective date: 19881222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19901124

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PERINGS, DIETER

Inventor name: VOSS-SPILKER, PETER, DR.-ING.

Inventor name: KUBON, ACHIM

Inventor name: KEUTGEN, FRANZ

Inventor name: STADLER, PETER, DR.-ING.