EP0233116B1 - Procédé de reformage catalytique à travers au moins deux lits de catalyseur - Google Patents
Procédé de reformage catalytique à travers au moins deux lits de catalyseur Download PDFInfo
- Publication number
- EP0233116B1 EP0233116B1 EP87400221A EP87400221A EP0233116B1 EP 0233116 B1 EP0233116 B1 EP 0233116B1 EP 87400221 A EP87400221 A EP 87400221A EP 87400221 A EP87400221 A EP 87400221A EP 0233116 B1 EP0233116 B1 EP 0233116B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- platinum
- metal
- carrier
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 23
- 230000008569 process Effects 0.000 title claims description 19
- 238000001833 catalytic reforming Methods 0.000 title claims description 7
- 239000003054 catalyst Substances 0.000 claims description 147
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 123
- 229910052697 platinum Inorganic materials 0.000 claims description 55
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 43
- 229930195733 hydrocarbon Natural products 0.000 claims description 26
- 150000002430 hydrocarbons Chemical class 0.000 claims description 26
- 229910000510 noble metal Inorganic materials 0.000 claims description 24
- 229910052736 halogen Inorganic materials 0.000 claims description 16
- 150000002367 halogens Chemical class 0.000 claims description 16
- 229910052702 rhenium Inorganic materials 0.000 claims description 16
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 16
- 239000004215 Carbon black (E152) Substances 0.000 claims description 15
- 150000002894 organic compounds Chemical class 0.000 claims description 14
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 12
- 229910052738 indium Inorganic materials 0.000 claims description 11
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 238000002407 reforming Methods 0.000 claims description 10
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 7
- 229910052716 thallium Inorganic materials 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- -1 platinum organic compound Chemical class 0.000 claims description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 description 33
- 239000000243 solution Substances 0.000 description 22
- 239000002904 solvent Substances 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000001354 calcination Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 8
- 238000011069 regeneration method Methods 0.000 description 8
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- RLNMYVSYJAGLAD-UHFFFAOYSA-N [In].[Pt] Chemical compound [In].[Pt] RLNMYVSYJAGLAD-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- FHMDYDAXYDRBGZ-UHFFFAOYSA-N platinum tin Chemical compound [Sn].[Pt] FHMDYDAXYDRBGZ-UHFFFAOYSA-N 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- QTQUQAVHHPLNQF-UHFFFAOYSA-N [Ir].[In].[Pt] Chemical compound [Ir].[In].[Pt] QTQUQAVHHPLNQF-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 150000003058 platinum compounds Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- QSHYGLAZPRJAEZ-UHFFFAOYSA-N 4-(chloromethyl)-2-(2-methylphenyl)-1,3-thiazole Chemical compound CC1=CC=CC=C1C1=NC(CCl)=CS1 QSHYGLAZPRJAEZ-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 239000012013 faujasite Substances 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- CKSRCDNUMJATGA-UHFFFAOYSA-N germanium platinum Chemical compound [Ge].[Pt] CKSRCDNUMJATGA-UHFFFAOYSA-N 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- SKWCWFYBFZIXHE-UHFFFAOYSA-K indium acetylacetonate Chemical compound CC(=O)C=C(C)O[In](OC(C)=CC(C)=O)OC(C)=CC(C)=O SKWCWFYBFZIXHE-UHFFFAOYSA-K 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- JGLNNORWOWUYFX-UHFFFAOYSA-N lead platinum Chemical compound [Pt].[Pb] JGLNNORWOWUYFX-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- DBJYYRBULROVQT-UHFFFAOYSA-N platinum rhenium Chemical compound [Re].[Pt] DBJYYRBULROVQT-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003282 rhenium compounds Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- AFCAKJKUYFLYFK-UHFFFAOYSA-N tetrabutyltin Chemical compound CCCC[Sn](CCCC)(CCCC)CCCC AFCAKJKUYFLYFK-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- MRMOZBOQVYRSEM-UHFFFAOYSA-N tetraethyllead Chemical compound CC[Pb](CC)(CC)CC MRMOZBOQVYRSEM-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZVYYAYJIGYODSD-LNTINUHCSA-K (z)-4-bis[[(z)-4-oxopent-2-en-2-yl]oxy]gallanyloxypent-3-en-2-one Chemical compound [Ga+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O ZVYYAYJIGYODSD-LNTINUHCSA-K 0.000 description 1
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 description 1
- HFGACFLJPCQXFL-UHFFFAOYSA-N [Ge].[Ir].[Pt] Chemical compound [Ge].[Ir].[Pt] HFGACFLJPCQXFL-UHFFFAOYSA-N 0.000 description 1
- WUUANWHZBLSFJE-UHFFFAOYSA-N [In][Sn][Pt] Chemical compound [In][Sn][Pt] WUUANWHZBLSFJE-UHFFFAOYSA-N 0.000 description 1
- XAFMOXFGDTYSMB-UHFFFAOYSA-N [Pb].[Ir].[Pt] Chemical compound [Pb].[Ir].[Pt] XAFMOXFGDTYSMB-UHFFFAOYSA-N 0.000 description 1
- WOFHMKMPQOXSIA-UHFFFAOYSA-N [Sn].[Ir].[Pt] Chemical compound [Sn].[Ir].[Pt] WOFHMKMPQOXSIA-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- CVEQRUADOXXBRI-UHFFFAOYSA-N cyclopentadienylthallium Chemical compound [Tl+].C=1C=C[CH-]C=1 CVEQRUADOXXBRI-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- KYCIUIVANPKXLW-UHFFFAOYSA-N dimethyl-(2-phenoxyethyl)-(thiophen-2-ylmethyl)azanium Chemical compound C=1C=CSC=1C[N+](C)(C)CCOC1=CC=CC=C1 KYCIUIVANPKXLW-UHFFFAOYSA-N 0.000 description 1
- WNGVGKSMZIOFON-UHFFFAOYSA-N diphenylgermanium Chemical compound C=1C=CC=CC=1[Ge]C1=CC=CC=C1 WNGVGKSMZIOFON-UHFFFAOYSA-N 0.000 description 1
- KUCPUSUXIGWHFB-UHFFFAOYSA-N diphenyltin Chemical compound C=1C=CC=CC=1[Sn]C1=CC=CC=C1 KUCPUSUXIGWHFB-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- VXKWYPOMXBVZSJ-UHFFFAOYSA-N tetramethyltin Chemical compound C[Sn](C)(C)C VXKWYPOMXBVZSJ-UHFFFAOYSA-N 0.000 description 1
- WBJSMHDYLOJVKC-UHFFFAOYSA-N tetraphenyllead Chemical compound C1=CC=CC=C1[Pb](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 WBJSMHDYLOJVKC-UHFFFAOYSA-N 0.000 description 1
- XSYFWJCOPKYIQN-UHFFFAOYSA-N tetrapropylgermane Chemical compound CCC[Ge](CCC)(CCC)CCC XSYFWJCOPKYIQN-UHFFFAOYSA-N 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
- HVCAAGXCKQGSLC-UHFFFAOYSA-N triethylthallane Chemical compound CC[Tl](CC)CC HVCAAGXCKQGSLC-UHFFFAOYSA-N 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/06—Catalytic reforming characterised by the catalyst used
- C10G35/085—Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
- C10G35/09—Bimetallic catalysts in which at least one of the metals is a platinum group metal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G59/00—Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha
- C10G59/02—Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha plural serial stages only
Definitions
- alumina catalysts containing, in addition to a noble metal from group VIII (generally platinum), a promoter metal which is known rhenium (US-A-3,415,737).
- a noble metal from group VIII generally platinum
- a promoter metal which is known rhenium
- Other types of catalyst are also known based on a noble metal from group VIII (generally platinum) and containing as promoter metal, for example tin, lead, indium or thallium ( US-A-3,700,588, US-A-2,814,599).
- platinum-rhenium catalyst has excellent stability but does not allow maximum selectivity to be observed. in obtaining good quality essences.
- platinum-tin, or platinum-indium or platinum-thallium catalysts make it possible to obtain excellent selectivity, but the stability of these catalysts leaves something to be desired.
- FR-A-2 163 683 describes a reforming process in which the charge passes successively through at least two reforming zones, which process is characterized in that the catalyst of the second zone comprises a small proportion of gallium, introduced for example into the using a gallium nitrate solution.
- the catalysts can be arranged in one or more fixed beds, or in mobile beds, or in turbulent beds.
- EP-A-153-891 describes a catalytic reforming process in which the hydrocarbon charge successively passes through at least two fixed beds of catalysts.
- the catalyst of the first bed traversed by the charge contains a support based on alumina, platinum, thenium.
- the catalysts of the other beds each contain a support based on alumina, platinum, at least one promoter metal chosen from the group consisting of tin, thallium and indium. The preparation of the catalysts is not described in this document.
- FR-A-2 545 480 relates to a process for the production of hydrocarbon conversion catalysts, in particular reforming catalysts, containing a support, at least one noble metal of the platinum family, at least one additional metal chosen from tin, germanium and lead.
- the additional metal is introduced onto the support in the form of at least one organic compound, in particular in solution in a hydrocarbon solvent.
- the object of the invention is an improved process for the catalytic reforming of hydrocarbons which makes it possible to obtain quality gasolines for long periods (therefore with good stability) and with very satisfactory selectivity.
- This process consists in circulating the hydrocarbon charge under reforming conditions, in contact with a first catalyst then a second catalyst and then in collecting the reforming product; in this process said first catalyst, arranged in at least one fixed bed, comprises (a) a support, (b) at least one noble metal of the family of platinum, one.
- said second catalyst different from the first catalyst and arranged in at least one moving bed, contains (a) a support, (b ) at least one noble metal from the platinum family, at least one of these noble metals being platinum, (c) at least one additional metal M chosen from the group consisting of tin, gallium, germanium, indium, lead and thallium and (d) at least one halogen; said metal M having been introduced onto the support using a solution in an organic solvent of at least one organic compound chosen from the group consisting of hydrocarbylmetals, halohydrocarbylmetals and polyketonic complexes of said metal M and the proportion by weight said second catalyst generally being from 25 to 5% relative to the total catalytic mass.
- the charge of hydrocarbons will successively pass through at least two separate beds of said first catalyst, the catalytic mass of all of these beds of said first catalyst, representing from 45 to 75% by weight of the total mass catalytic used in all catalytic beds.
- the arrangement according to the present invention in which the first catalyst operates at low severity (research octane number (NOR) of the product obtained at the outlet of the first bed and preferably in two first beds from 85 to 95 and more particularly from 87 to 92) and in which the second catalyst is placed in a reactor with continuous regeneration of the catalyst and operates at high severity, makes it possible to obtain a final reformate having a high NOR, in general greater than 95 and in the majority of cases greater to 98.
- NOR search octane number
- All of the reactors preferably operate at low pressure so as to take advantage of the efficiency gains that can be expected when operating at low pressure.
- the pressure is generally from 0.5 to 2.5 MPa and more advantageously from 0.7 to 1.2 MPa.
- the first catalyst then represents from 45 to 75% by weight and preferably from 45 to 60% by weight relative to the total catalytic mass used in all of the catalytic beds; this first catalyst is preferably distributed in at least two separate beds, the first bed generally representing approximately 15 to 25% by weight and preferably around 15 to 20% relative to the total catalytic mass used in all of the catalytic beds and the second bed generally representing, relative to this same total mass, about 30 to 50% by weight and preferably about 30 to 40% by weight.
- the various arrangements of catalytic beds known to those skilled in the art can be envisaged; one of the essential points being that the hydrocarbon charge passes through at least one bed and preferably at least two successive beds of the first catalyst containing platinum and rhenium.
- the first bed through which the charge passes will most advantageously be a fixed bed of the first catalyst containing platinum and rhenium, and preferably the first two beds will be fixed beds.
- alumina As support for the catalysts, it is generally preferred to use alumina as support for the catalysts.
- the alumina used may be of any variety, but cubic or eta gamma alumina will generally be used or a mixture of these two varieties.
- the same support will be used for the first and for the second catalyst and preferably alumina of cubic gamma variety will be chosen.
- the second catalyst used in the context of the present invention will advantageously contain in addition to platinum, another noble metal from group VIII and preferably iridium.
- the amount of iridium will advantageously be less than 0.5% by weight relative to the support and generally from 0.005 to 0.3%.
- a second supported catalyst containing in addition to a halogen the following metal associations: platinum-tin, platinum-gallium, platinum -germanium, platinum-indium, platinum-lead, platinum-thallium, platinum-indium-tin, platinum-iridium-germanium, platinum-iridium-indium, platinum-iridium-lead, platinum-iridium-tin.
- catalysts containing the platinum-tin, platinum-indium, platinum-germanium, platinum-lead and platinum-iridium-indium associations will be used.
- the most preferred combinations are platinum-tin, platinum-indium and platinum-iridium-indium.
- the catalytic reforming catalysts employed in the present invention are generally prepared according to conventional methods consisting in impregnating the support by means of solutions of compounds of the metals which it is desired to introduce. Either a common solution of these metals is used, or separate solutions for each metal.
- intermediate drying and / or calcination can be carried out. It usually ends with a calcination, for example between about 450 and 1000 ° C., preferably in the presence of free oxygen, for example by carrying out an air sweep.
- Platinum and possibly another noble metal of the platinum family
- Platinum is generally introduced into the support in the form of chloroplatinic acid or in the form of organic platinum compounds in particular.
- organic platinum compounds in the form of polyketonic complexes of platinum, for example of platinum acetylacetonate, of halogeno polyketonic complexes of platinum, of amine complexes of platinum, of haloamino complexes of platinum and of the salts of these compounds.
- organic platinum compounds may be used to introduce this metal onto the support for the second catalyst.
- the rhenium can be incorporated into the support by impregnation of this support using an adequate aqueous solution containing a salt or a rhenium compound.
- the two preferred precursors are ammonium perrhenate and perrhenic acid.
- the halogen of the catalyst can come from one of the metal halides, if at least one of the metals is introduced by means of a halide, or can be introduced in the form of hydrohalic acid, ammonium halide, halogen gas, or halogenated organic compounds.
- the halogen will preferably be chlorine or fluorine.
- Examples of compounds which can be used to introduce halogen include hydrochloric acid, hydrofluoric acid, ammonium chloride and fluoride, chlorine gas, halogenated hydrocarbons such as carbon tetrachloride, chloroform, dihloromethane, 1,2-dichloroethane and 1,1-dichloroethane.
- the additional metal or promoter M is introduced into the support of the second catalyst by means of a solution in an organic solvent of an organic compound of this metal chosen from the group consisting of hydrocarbylmetals, hanohydrocarbylmetals and polyketonic metal complexes.
- Organohalogenated compounds of the metals M can also be used.
- tetrabutyltin tetramethyltin, diphenyltin, triethylgallium, gallium acetylacetonate, trimethylindium, indium acetylacetonate, tetrapropyl germanium, diphenylgermanium, tetraethyl lead. tetraphenyl lead, triethylthallium, cyclopentadienylthallium.
- the impregnating solvent is generally chosen from the group consisting of paraffinic, naphthenic or aromatic hydrocarbons containing from 6 to 12 carbon atoms per molecule and by halogenated hydrocarbons having from 1 to 12 atoms per molecule.
- organic solvents examples include n-heptane, methylcyclohexane, toluene and chloroform. It is also possible to use mixtures of the solvents defined above.
- the catalysts used in the context of the present invention are preferably at the end of their preparation calcined at a temperature of approximately 450 to 1000 ° C. and can advantageously undergo before their use, before their introduction into the reactors or in-situ an activation treatment under hydrogen at high temperature, for example 300 to 500 ° C.
- the procedure for this treatment under hydrogen consists, for example, of a slow rise in temperature under a stream of hydrogen up to the maximum reduction temperature chosen, for example between 300 and approximately 500 ° C. and preferably approximately 350 to 480 ° C, followed by holding for about 1 to about 6 hours at this temperature.
- the reforming operations are started by adjusting, under the operational conditions, the hydrogen and supply flow rates as well as the temperature and the pressure.
- the general conditions of reforming are well known to those skilled in the art, generally the catalytic reforming is carried out at a temperature of 400 to 600 ° C., under an absolute pressure of 0.1 to 3.5 MPa, with an hourly speed (VVH) of 0.1 to 10 volumes of feed per volume of catalyst and per hour, and a ratio molar hydrogen / hydrocarbons (H 2 / HC) of 1. 1 to 20: 1.
- the preferred conditions are: temperature 460 to 580 ° C, pressure 0.5 to 2.5 MPa and more advantageously 0.7 to 1.2 MPa, VVH from 1 to 10 and more advantageously from 1 to 6 and H a / HC from 2: 1 to 10: 1.
- the hydrocarbon charge is generally a naphtha distilling between about 60 ° C and about 220 ° C, in particular a direct distillation naphtha.
- the charge flows successively through 3 reactors in series.
- the first two reactors each containing a fixed bed of catalyst A and the third reactor with continuous regeneration of the catalyst contains a movable bed of type B catalyst.
- Catalyst A represents 50% by weight of the total quantities of catalyst used in the three reactors (catalyst B therefore representing 50% by weight of the total catalytic mass).
- B 1 comparative catalyst not according to the invention
- B 2 tin is introduced in accordance with the invention from tetrabutyltin in solution in n-heptane.
- the operation is carried out for 300 hours for the arrangement of catalyst A - catalyst B 1 .
- Catalyst A does not undergo any regeneration.
- the catalyst B 1 used in the form of a moving bed, is withdrawn continuously from the reactor which contains it with a speed calculated so as to be completely withdrawn, regenerated and reintroduced continuously in the third reactor in 300 hours.
- the association of catalysts AB 1 has for 300 hours a relative stability equal to 1 and a regeneration frequency equal to 1.
- the stability criterion adopted is the time after which the yield of C 5 + expressed in% by weight relative to the charge decreased by 2% compared to its initial value.
- Example 1 is repeated (combination of catalyst A and catalyst B 2 ) but catalyst A represents only 20% by weight of the total quantities of catalyst used in the three reactors (catalyst B 2 therefore representing 80% by weight of the total catalytic mass).
- Catalyst A is loaded into a fixed bed in the first reactor and catalyst B 2 is distributed in the following two reactors operating with continuous regeneration of the catalyst, each reactor containing a moving bed of catalyst B 2 .
- Example 1 is repeated (combination of catalyst A and B 2 ) but the third reactor is loaded in a fixed bed with catalyst B 2 ). The test is continued as long as the loss of yield in C 5 + does not exceed 2% relative to its initial value, which causes the test to stop after 180 hours of operation.
- Example 1 is repeated, replacing the catalysts B 1 and B 2 respectively with the catalysts Ci and. C 2 and by the catalysts D 1 and D 2 containing the same support and the compositions of which are specified in Table 2 below.
- Example 1 shows a slight superiority of the process when the catalyst of the third reactor contains platinum and tin compared to the case where it contains platinum. and germanium and platinum and lead.
- the catalyst E 1 is prepared from indium nitrate and the catalyst E 2 from indium acetylacetonate.
- the use in the third reactor of a catalyst into which indium has been introduced using an organometallic compound therefore makes it possible to obtain an activity and a selectivity higher than those obtained when used in the third reactor.
- a catalyst into which indium has been introduced using a mineral compound therefore makes it possible to obtain an activity and a selectivity higher than those obtained when used in the third reactor.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8601551 | 1986-02-03 | ||
FR8601551A FR2593824B1 (fr) | 1986-02-03 | 1986-02-03 | Procede de reformage catalytique a travers au moins trois lits de catalyseur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0233116A1 EP0233116A1 (fr) | 1987-08-19 |
EP0233116B1 true EP0233116B1 (fr) | 1989-08-09 |
Family
ID=9331814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87400221A Expired EP0233116B1 (fr) | 1986-02-03 | 1987-01-30 | Procédé de reformage catalytique à travers au moins deux lits de catalyseur |
Country Status (8)
Country | Link |
---|---|
US (1) | US4737262A (el) |
EP (1) | EP0233116B1 (el) |
JP (1) | JP2544917B2 (el) |
CA (1) | CA1293467C (el) |
DE (1) | DE3760424D1 (el) |
ES (1) | ES2011050B3 (el) |
FR (1) | FR2593824B1 (el) |
GR (1) | GR3000138T3 (el) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989004818A1 (en) * | 1987-11-17 | 1989-06-01 | Mobil Oil Corporation | A dehydrogenation and dehydrocyclization catalyst, its synthesis and use |
US4935566A (en) * | 1987-11-17 | 1990-06-19 | Mobil Oil Corporation | Dehydrocyclization and reforming process |
US4985132A (en) * | 1989-02-06 | 1991-01-15 | Uop | Multizone catalytic reforming process |
US4929333A (en) * | 1989-02-06 | 1990-05-29 | Uop | Multizone catalytic reforming process |
US4929332A (en) * | 1989-02-06 | 1990-05-29 | Uop | Multizone catalytic reforming process |
US5221465A (en) * | 1990-12-14 | 1993-06-22 | Exxon Research And Engineering Company | High activity, high yield tin modified platinum-iridium catalysts, and reforming process utilizing such catalysts |
US5106809A (en) * | 1990-12-14 | 1992-04-21 | Exxon Research And Engineering Company | High activity, high yield tin modified platinum-iridium catalysts, and reforming process utilizing such catalysts |
US5269907A (en) * | 1990-12-14 | 1993-12-14 | Exxon Research And Engineering Co. | Process for reforming at low severities with high-activity, high-yield, tin modified platinum-iridium catalysts |
CA2055929A1 (en) * | 1990-12-14 | 1992-06-15 | William C. Baird, Jr. | Process for reforming at low severities with high activity, high yield tin modified platinum-iridium catalysts |
US5203988A (en) * | 1991-08-19 | 1993-04-20 | Exxon Research & Engineering Company | Multistage reforming with ultra-low pressure cyclic second stage |
US5196110A (en) * | 1991-12-09 | 1993-03-23 | Exxon Research And Engineering Company | Hydrogen recycle between stages of two stage fixed-bed/moving-bed unit |
US5211838A (en) * | 1991-12-09 | 1993-05-18 | Exxon Research & Engineering Company | Fixed-bed/moving-bed two stage catalytic reforming with interstage aromatics removal |
US5354451A (en) * | 1991-12-09 | 1994-10-11 | Exxon Research And Engineering Company | Fixed-bed/moving-bed two stage catalytic reforming |
WO1993012202A1 (en) * | 1991-12-09 | 1993-06-24 | Exxon Research And Engineering Company | Reforming with two fixed-bed units, each having a moving-bed tail reactor sharing a common regenerator |
US5190638A (en) * | 1991-12-09 | 1993-03-02 | Exxon Research And Engineering Company | Moving bed/fixed bed two stage catalytic reforming |
US5190639A (en) * | 1991-12-09 | 1993-03-02 | Exxon Research And Engineering Company | Multiple fixed-bed reforming units sharing common moving bed reactor |
FR2704864B1 (fr) | 1993-05-06 | 1995-11-17 | Inst Francais Du Petrole | Procede d'hydroreformage catalytique. |
FR2735487B1 (fr) * | 1995-06-16 | 1997-08-22 | Inst Francais Du Petrole | Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur contenant des metaux alcalins ou alcalino-terreux |
US5858205A (en) * | 1997-05-13 | 1999-01-12 | Uop Llc | Multizone catalytic reforming process |
FR2770521B1 (fr) * | 1997-10-31 | 1999-12-10 | Inst Francais Du Petrole | Procede de deshydrogenation d'hydrocarbures aliphatiques satures en hydrocarbures olefiniques |
FR2770535B1 (fr) * | 1997-10-31 | 1999-12-10 | Inst Francais Du Petrole | Procede d'hydroreformage catalytique |
FR2770520B1 (fr) * | 1997-10-31 | 1999-12-10 | Inst Francais Du Petrole | Procede d'hydrogenation selective des composes insatures |
FR2770421B1 (fr) * | 1997-10-31 | 1999-12-10 | Inst Francais Du Petrole | Procede de preparation de catalyseurs utilisables dans les reactions de transformation de composes organiques |
US6190534B1 (en) * | 1999-03-15 | 2001-02-20 | Uop Llc | Naphtha upgrading by combined olefin forming and aromatization |
US6406614B1 (en) | 1999-12-22 | 2002-06-18 | Phillips Petroleum Company | Method for zeolite platinization |
US7267987B2 (en) * | 2003-01-06 | 2007-09-11 | Uop Llc | Process and assembly for simultaneously evaluating a plurality of catalysts |
US7811447B2 (en) * | 2007-08-01 | 2010-10-12 | Uop Llc | Method of transferring particles from one pressure zone to another pressure zone |
US7803326B2 (en) * | 2007-08-01 | 2010-09-28 | Uop Llc | Hydrocarbon conversion unit including a reaction zone receiving transferred catalyst |
US7799729B2 (en) * | 2009-02-23 | 2010-09-21 | Uop Llc | Reforming catalyst |
EP2725094A1 (en) | 2012-10-29 | 2014-04-30 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Epithelial tissue model |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2814599A (en) * | 1953-04-17 | 1957-11-26 | Kellogg M W Co | Group iii metal compound promoted platinum or palladium catalyst |
US3415737A (en) * | 1966-06-24 | 1968-12-10 | Chevron Res | Reforming a sulfur-free naphtha with a platinum-rhenium catalyst |
FR2031984A5 (el) * | 1969-02-14 | 1970-11-20 | Raffinage Cie Francaise | |
US3702294A (en) * | 1971-05-10 | 1972-11-07 | Universal Oil Prod Co | Trimetallic hydrocarbon conversion catalyst and uses thereof |
US3772183A (en) * | 1971-12-17 | 1973-11-13 | Standard Oil Co | Reforming petroleum hydrocarbons with gallium-promoted catalysts |
FR2206124B1 (el) * | 1972-11-10 | 1976-08-20 | Inst Francais Du Petrole | |
SE365375B (el) * | 1972-12-18 | 1974-03-18 | Ericsson Telefon Ab L M | |
US4507401A (en) * | 1983-04-01 | 1985-03-26 | At&T Bell Laboratories | Intermetallic catalyst preparation |
FR2545380B1 (fr) * | 1983-05-05 | 1988-04-08 | Catalyse Soc Prod Francais | Procede de fabrication de catalyseurs de conversion d'hydrocarbures |
FR2560205B1 (fr) * | 1984-02-23 | 1988-07-15 | Inst Francais Du Petrole | Procede de reformage catalytique |
-
1986
- 1986-02-03 FR FR8601551A patent/FR2593824B1/fr not_active Expired
-
1987
- 1987-01-30 DE DE8787400221T patent/DE3760424D1/de not_active Expired
- 1987-01-30 EP EP87400221A patent/EP0233116B1/fr not_active Expired
- 1987-01-30 ES ES87400221T patent/ES2011050B3/es not_active Expired
- 1987-02-03 CA CA000528881A patent/CA1293467C/fr not_active Expired - Lifetime
- 1987-02-03 US US07/010,596 patent/US4737262A/en not_active Expired - Lifetime
- 1987-02-03 JP JP62023404A patent/JP2544917B2/ja not_active Expired - Fee Related
-
1989
- 1989-08-28 GR GR89400071T patent/GR3000138T3/el unknown
Also Published As
Publication number | Publication date |
---|---|
FR2593824B1 (fr) | 1988-11-04 |
GR3000138T3 (en) | 1990-11-29 |
US4737262A (en) | 1988-04-12 |
FR2593824A1 (fr) | 1987-08-07 |
JPS62192488A (ja) | 1987-08-24 |
CA1293467C (fr) | 1991-12-24 |
ES2011050B3 (es) | 1989-12-16 |
JP2544917B2 (ja) | 1996-10-16 |
EP0233116A1 (fr) | 1987-08-19 |
DE3760424D1 (en) | 1989-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0233116B1 (fr) | Procédé de reformage catalytique à travers au moins deux lits de catalyseur | |
EP0458674B1 (fr) | Catalyseur zéolitique et son utilisation dans l'aromatisation d'hydrocarbures contenant 2 à 4 atomes de carbone | |
FR2666249A1 (fr) | Catalyseur et procede d'aromatisation des hydrocarbures contenant 2 a 4 atomes de carbone par molecule. | |
EP0242260B1 (fr) | Procédé de réformage catalytique | |
EP0831966B1 (fr) | Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant du silicium | |
FR2735489A1 (fr) | Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur contenant du titane, zirconium, hafnium, cobalt, nickel et/ou zinc | |
EP0832167B1 (fr) | Procede de reformage avec un catalyseur contenant des metaux alcalins ou alcalino-terreux | |
FR2600668A1 (fr) | Procede de reformage catalytique a travers au moins deux lits de catalyseur | |
EP0612563B1 (fr) | Catalyseur composite contenant un halogène, un metal noble et au moins un métal additionnel, et son utilisation en aromatisation d'hydrocarbures C2-C12 | |
EP0542625B1 (fr) | Catalyseur de type aluminosilicate et son utilisation en aromatisation d'hydrocarbures comportant 2 à 12 atomes de carbone | |
FR2704774A1 (fr) | Procédé de préparation de catalyseurs applicables à la déshydrogénation. | |
FR2483254A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
EP0471599B1 (fr) | Procédé d'aromatisation des hydrocarbures contenant de 5 à 9 atomes de carbone par molécule | |
EP0542613A1 (fr) | Catalyseur à structure MFI et son utilisation en aromatisation d'hydrocarbures comportant 2 à 12 atomes de carbone | |
FR2695648A1 (fr) | Utilisation d'un catalyseur pour la diminution de la teneur en benzène d'une charge hydrocarbonée. | |
FR2481612A1 (en) | Hydrocarbon conversion catalysts - contg. platinum-and iron gp. metals and technetium | |
FR2462194A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
FR2464095A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
FR2481144A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
FR2468406A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
FR2483253A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
FR2509629A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
FR2475932A1 (fr) | Nouveaux catalyseurs de conversion d'hydrocarbures | |
FR2735393A1 (fr) | Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant du silicium et des metaux alcalins ou alcalino-terreux | |
FR2735395A1 (fr) | Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant des metaux alcalins et alcalino-terreux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB GR IT NL |
|
17P | Request for examination filed |
Effective date: 19870904 |
|
17Q | First examination report despatched |
Effective date: 19880823 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB GR IT NL |
|
REF | Corresponds to: |
Ref document number: 3760424 Country of ref document: DE Date of ref document: 19890914 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3000138 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20021220 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021224 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030120 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030205 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040131 |
|
BERE | Be: lapsed |
Owner name: *INSTITUT FRANCAIS DU PETROLE Effective date: 20040131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040804 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060110 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060124 Year of fee payment: 20 Ref country code: ES Payment date: 20060124 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060131 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070131 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20070130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070131 |