EP0230543A1 - Verfahren zur Aufarbeitung von Altöl - Google Patents

Verfahren zur Aufarbeitung von Altöl Download PDF

Info

Publication number
EP0230543A1
EP0230543A1 EP86116200A EP86116200A EP0230543A1 EP 0230543 A1 EP0230543 A1 EP 0230543A1 EP 86116200 A EP86116200 A EP 86116200A EP 86116200 A EP86116200 A EP 86116200A EP 0230543 A1 EP0230543 A1 EP 0230543A1
Authority
EP
European Patent Office
Prior art keywords
solvent
oil
extraction
waste oil
extraction residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86116200A
Other languages
English (en)
French (fr)
Other versions
EP0230543B1 (de
Inventor
Rolf Dr. Dipl.-Ing. Wetzel
Hubert Dr. Dipl.-Ing. Coenen
Winfried Dipl.-Ing. Kreuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Priority to AT86116200T priority Critical patent/ATE41029T1/de
Publication of EP0230543A1 publication Critical patent/EP0230543A1/de
Application granted granted Critical
Publication of EP0230543B1 publication Critical patent/EP0230543B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/02Working-up used lubricants to recover useful products ; Cleaning mineral-oil based

Definitions

  • the invention relates to a process for working up waste oil, in which the previously dewatered waste oil is subjected to extraction under supercritical conditions using a solvent which is gaseous under normal conditions and the extracted components are then separated from the separated supercritical gas phase by reducing the pressure and / or changing the temperature.
  • lubricating oils used technically occur as contaminated waste oils and, as long as they are accessible to a collection, can be used again. This can be done either by incineration for the purpose of energy production or by refining the used oil for the purpose of re-use as a lubricant.
  • the used oil to be processed contains impurities of all kinds, such as metal compounds serving as additives, wear and aging residues and impurities that result from improper storage of the used oil.
  • these contaminants of various types require special measures to protect the environment when burning waste oil and, on the other hand, must be completely separated from the product to be reused when refining the waste oil.
  • the sulfuric acid / bleaching earth process has so far been used to a particularly large extent for refining used oils.
  • the advantages of a simple technique are offset by low yields, insufficient selectivity and larger amounts of problematic waste materials, mainly acid resins and bleaching earth residues.
  • this process does not guarantee the harmless disposal of particularly problematic pollutants such as polychlorinated biphenyls, polychlorinated phenyls, haloalkanes and polycondensed Aromatics.
  • waste oil refining processes are: - the IFP process (replacement of sulfuric acid refining by subcritical propane extraction), - The BERC process (solvent extraction, vacuum fractionation and bleaching earth or H2 aftertreatment), - the CTI process (vacuum thin-film distillation as a purification stage), - The PROP process (application of ammonium phosphates for cleaning and H2 treatment) and - the Recyclon process (separation of the contaminated oil by sodium).
  • IFP process replacement of sulfuric acid refining by subcritical propane extraction
  • the BERC process solvent extraction, vacuum fractionation and bleaching earth or H2 aftertreatment
  • CTI process vacuum thin-film distillation as a purification stage
  • PROP process application of ammonium phosphates for cleaning and H2 treatment
  • Recyclon process separation of the contaminated oil by sodium
  • the CTI process with a thin-film evaporator as a physical cleaning stage was used on an industrial scale.
  • the problems of thin-layer evaporation consist in fouling the heat exchanger surfaces and in the comparatively low selectivity of the process.
  • the invention is therefore based on the object of further developing the method for processing waste oil using supercritical extraction in such a way that the above-described disposal problem is solved in a surprising manner, so that the processing of the waste oil without the occurrence of residues or unacceptably polluting the environment By-products can be carried out.
  • the method according to the invention basically provides two options for the disposal of the resulting solvent-free extraction residue. If conditions permit, efforts will be made to dispose of the extraction residue by storage in a landfill for cost reasons. However, if this is not possible, the extraction residue will be disposed of by thermal treatment (gasification).
  • the waste oil to be processed is fed from the collecting container 1 via line 2 to the filter system 3, in which the solid particles are separated from the waste oil by filtration and are withdrawn via line 4.
  • the waste oil freed from the solid particles reaches the distillation column 7 via line 5 and the pump 6.
  • the waste oil is subjected to a distillation in the temperature range between 12 ° C. and 25 ° C. under atmospheric pressure.
  • the gas oil-water mixture escaping overhead from the distillation column 7 is introduced via line 8 into the separating tank 9, in which the water is separated from the gas oil (so-called gas oil I) by phase separation is separated.
  • the gas oil is withdrawn through line 10 and the water through line 11 from the separating tank 9.
  • the pre-distilled and dewatered waste oil withdrawn via line 12 from the distillation column 7 is introduced into the central part of the extraction column 13, which works at a pressure between 5o and 15o bar and a temperature between 2o ° C and 8o ° C.
  • the pump 14 brings the waste oil to the required operating pressure of the extraction column 13 and the heat exchanger 15 ensures that the required operating temperature of the waste oil is reached.
  • the waste oil can also be fed into the extraction column 13 in its upper or lower part.
  • the required solvent is introduced via line 16 into the lower part of the extraction column 13.
  • the solvent absorbs the components of the waste oil that are soluble under the specified operating conditions, while the insoluble components collect together with the impurities in the bottom of the extraction column 13 and are withdrawn from there via line 17 under level control.
  • the valve 18 serves to regulate the extraction of the extraction residue from the extraction column 13.
  • the necessary expansion of the extraction residue to a pressure of 1 to 0.1 bar takes place in the expansion tank 19.
  • the gaseous solvent released in this process is removed via line 20.
  • the expansion tank 19 can be heated and provided with an agitator.
  • the upper part of the extraction column 13 acts as an amplifier section.
  • the top product obtained there is drawn off via line 21 and enters the steam-heated heat exchanger 22, in which the required reflux is generated by a slight increase in temperature, since the solubility of the oil in the supercritical solvent decreases as the temperature increases.
  • the downstream separator 23 the condensed oil is separated off and returned to the extraction column 13 by the pump 24 via line 25, where it is added as reflux to the top of the column.
  • the loaded solvent passes from the separator 23 via the line 26 into the high-pressure separator 27, in which, in the present case, the oil phase is completely separated from the solvent.
  • the separated oil phase which is the extract
  • the low-pressure separator 29 is withdrawn from the lower part of the high-pressure separator 27 in a level-controlled manner and reaches the low-pressure separator 29 via line 28, in which the solvent residues still present in the oil phase are separated off.
  • the amount of the extract drawn off via line 28 is regulated by valve 3o.
  • the solvent-free product oil is withdrawn via line 31 from the low-pressure separator 29 and passes via line 31 into the collecting container 32.
  • the product oil is pressed into the hydrogenation reactor 36 via the pump 34 located in line 33 and the heat exchanger 35 which is the catalytic hydrogenation of the product oil in the presence of commercially available hydrogenation catalysts which contain, for example, nickel as the active component, he follows.
  • the hydrogen required for this is introduced into the hydrogenation reactor 36 via line 37.
  • the halogen and sulfur compounds contained in it are converted into hydrogen or hydrogen sulfide.
  • These products are withdrawn in gaseous form from the hydrogenation reactor 36 via line 38.
  • the hydrogenated product oil in the meantime passes via line 39 into the addition container 4o, into which bleaching earth can be introduced via line 41, which is mixed in the addition container 4o with stirring with the hydrogenated product oil.
  • the bleaching earth / oil mixture is then introduced via the pump 42 and the line 43 into the vacuum distillation column 44, in which it is distilled under a vacuum of from o, oo2 to o, 1 bar and is thus broken down into different fractions.
  • the hydrogenated product oil passes directly into the vacuum distillation column 44 via line 39.
  • Gas oil II is withdrawn via line 45 and spindle oil is removed via line 46.
  • the distillation residue obtained in the vacuum distillation column 44 is conveyed by means of the pump 48 in line 47 into the filter system 49, in which the bleaching earth is separated off by filtration. This oiled bleaching earth passes through line 51 into the gasifier 52, while the base oil obtained during the filtration is drawn off from the filter system 49 via line 50.
  • the following products are also introduced into the gasifier 52: the extraction residue from the expansion tank 19 via the line 53 and the pump 54, the gas oil I from the Separating tank 9 via line 10 and the sewage sludge from biological wastewater treatment 55 via line 56.
  • the gasifier 52 can be an entrained flow gasifier which works according to the known Koppers-Totzek method. Oxygen and / or air and possibly small amounts of water vapor serve as the gasification medium. The gasification can be carried out under normal or increased pressure. If liquids or suspensions are to be gasified, the gasifier is equipped with so-called atomizing burners. The burners can also be preceded by heat exchangers in which the product to be gasified is brought to the temperature required for setting the required viscosity.
  • the products introduced into the gasifier 52 are gasified in a flame reaction at temperatures between 13oo ° C and 2ooo ° C.
  • the additional fuel which may be required for this purpose passes through line 57 and the required air or oxygen via line 58 into the gasifier 52.
  • the gas which is essentially composed of the components CO, H2, CO2, H2O and N2 is fed via line 59 withdrawn from the carburetor 52 and passes through the waste heat boiler 6o into the pressurized water scrubber 61.
  • the gas stream from the line 38 is also introduced into this, so that both gas streams pass through the subsequent gas treatment together.
  • This consists of the pressurized water wash 61 and the pressurized wash 62, the individual stages being connected to one another via the lines 63 and 64.
  • This gas treatment removes both halogen and hydrogen sulfide as well as the metal compounds originating from the oil additives from the gas. Since the gas in the waste heat boiler 6o has already been pre-cooled to the required extent, the gas drawn off after passing through the two washing stages via line 65 can be used without problems as heating gas.
  • the gasification residue (slag) obtained in the gasification is drawn off in the molten state via line 66 from the gasifier and granulated and cooled in a water bath (not shown).
  • the solvent escaping overhead from the high-pressure separator 27 is drawn off via line 67 and returns via the heat exchanger 68 to line 16, via which the solvent is reintroduced into the extraction column 13. Since the solvent circuit is almost isobaric, only a slight increase in pressure has to be brought about by the circuit compressor 69.
  • the heat exchangers 68 and 70 serve the required temperature setting of the solvent.
  • the solvent escaping from the low-pressure separator 29 is drawn off via the line 71 and, after having been compressed to condensation pressure in the compressor 72, reaches the condenser 73, in which it is liquefied.
  • the heat exchanger 74 in turn serves the required temperature setting.
  • Line 2o opens into line 71 in front of heat exchanger 74, via which line the solvent released in expansion tank 19 is drawn off.
  • the liquefied solvent is collected in the template 75 and fed from there through the compressor 76 via line 77 into line 16, if necessary.
  • the water separated in the separating container 9 passes through line 11 into the biological wastewater treatment 55, from which the cleaned wastewater is introduced via line 78 into the receiving water.
  • the sewage sludge resulting from the wastewater treatment is, as already mentioned, fed to the gasifier 52 via line 56.
  • the dry oil emerging from the distillation column 7 was cooled to 43 ° C. via the heat exchanger 15, compressed to 100 bar with the pump 14 and then fed to the extraction column 13 at half the height. At the foot of the extraction column 13, ethane was fed in as a solvent at 43 ° C. and 100 bar.
  • the soluble constituents of the dry oil were taken up by the solvent by countercurrent extraction.
  • the loaded solvent phase was fed to the heat exchanger 22 (dephlegmator) and heated to 48 ° C. This resulted in a partial separation of the low volatility hydrocarbons (denatured additives), which flowed against the rising loaded solvent phase and caused a stripping effect, which achieved an additional separation effect.
  • the dry oil applied could be separated into an extraction residue of 14 kg / h and a value fraction of 126 kg / h.
  • the extraction residue was drawn off at the foot of the extraction column 13, let down to 1 bar and heated to 150 ° C.
  • the solvent released was recompressed and fed to the main solvent stream.
  • the cleaned loaded solvent phase (extract) was freed from the dissolved products after the heat exchanger 22 in the downstream high-pressure separator 27 by heating to 150 ° C. at 100 bar.
  • the separated product in an amount of 126 kg / h was drawn off at the bottom of the high-pressure separator 27 and expanded to 1 bar in the low-pressure separator 29 in order to separate off the solvent still dissolved in it.
  • the solvent released was recompressed and combined with the main solvent stream.
  • the separated product was subjected to hydrogenation in the hydrogenation reactor 36 to break down the halogenated hydrocarbons present in it and then separated into the products base oil, spindle oil and gas oil II in the vacuum distillation column 44. 2.8 kg / h of bleaching earth were added to the product given to the vacuum distillation.
  • the oily bleaching earth was filtered off from the bottom product of the vacuum distillation in the filter system 49. 74 kg / h base oil, 35 kg / h spindle oil and 14 kg / h gas oil II as well as 5.6 kg / h oiled bleaching earth were obtained.
  • the extraction residue preheated to 150 ° C. was compressed to the required admission pressure of the gasifier 52.
  • the gas oil I was mixed with the oil-laden bleaching earth and the small amount of sewage sludge obtained in the biological wastewater treatment 55 and the resulting mixture was also compressed to the required admission pressure of the gasifier 52 and fed to the gasifier 52 together with the extraction residue at approx. 150 ° C.
  • This mixture was under in the carburetor 52 Addition of o, 95 kg oxygen per kg mixture as an oxidizing agent in a flame reaction at temperatures above 15oo ° C gasified.
  • the product of gasification was CO and H2 in a ratio of 2.1: 1 as well as small amounts of CO2 and water vapor as well as traces of H2S and HCl.
  • the metal contents of the residue were oxidized and removed from the carburetor as ash or fly dust.
  • the hot raw gas which was still loaded with small amounts of flying dust, was subjected to the gas treatment described above, whereby heating gas, waste heat steam and saline solution were obtained.
  • it was mixed with the raw gas from the gasification before the gas treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Lubricants (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fats And Perfumes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Bei diesem Verfahren wird das Altöl einer Extraktion unter überkritischen Bedingungen unterworfen. Aus dem hierbei anfallenden Extrakt werden die in ihm enthaltenen Halogenverbindungen durch katalytische Hydrierung entfernt. Der Extraktionsrückstand wird durch Deponierung oder thermische Behandlung (Vergasung) entsorgt. Sofern eine thermische Behandlung des Extraktionsrückstandes vorgesehen ist, können auch andere bei der Durchführung des Verfahrens anfallende Rückstände mit umgesetzt werden, so daß das Verfahren ohne Anfall von die Umwelt belastenden Ruckständen oder Nebenprodukten durchgeführt werden kann. Als Lösungsmittel für die überkritische Extraktion können insbesondere Äthan und/oder Propan verwendet werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Aufarbeitung von Altöl, bei dem das zuvor entwässerte Altöl einer Ex­traktion unter überkritischen Bedingungen unter Anwen­dung eines bei Normalbedingungen gasförmigen Lösungs­mittels unterworfen wird und anschließend aus der abge­trennten überkritischen Gasphase die extrahierten Be­standteile durch Druckerniedrigung und/oder Temperatur­änderung abgeschieden werden.
  • Etwa 5o % aller technisch eingesetzten Schmieröle fal­len als verunreinigte Altöle an und können, soweit sie einer Sammlung zugänglich sind, einer weiteren Nutzung zugeführt werden. Dies kann entweder durch Verbrennung zum Zwecke der Energiegewinnung geschehen oder durch Raffination des Altöls zum Zwecke des erneuten Einsatzes als Schmiermittel. Das aufzuarbeitende Altöl enthält hierbei Verunreinigungen der unterschiedlichsten Art, wie z.B. als sogenannte Additive dienende Metallver­bindungen, Verschleiß- und Alterungsrückstände sowie Verunreinigungen, die aus der unsachgemäßen Lagerung des Altöles herrühren. Diese Verunreinigungen unter­schiedlichster Art erfordern einerseits bei der Alt­ölverbrennung besondere Maßnahmen zum Umweltschutz und müssen andererseits bei einer Raffination des Altöls vollständig von dem zur Wiederverwendung anstehenden Produkt abgetrennt werden.
  • Für die Altölraffination hat das Schwefelsäure/Bleich­erde-Verfahren bisher eine besonders weite Anwendung gefunden. Den Vorteilen einer einfachen Technik stehen hierbei jedoch geringe Ausbeuten, unzureichende Se­lektivität und größere Mengen an problematischen Ab­fallstoffen, im wesentlichen Säureharze und Bleich­erderückstände, gegenüber.Außerdem gewährleistet dieses Verfahren nicht die schadlose Entsorgung der besonders problematischen Schadstoffe wie polychlo­rierte Biphenyle, polychlorierte Phenyle, Halogenal­kane und polykondensierte Aromaten.
  • Neuere Entwicklungen von Verfahren zur Altölraffina­tion sind:
    - das IFP-Verfahren (Ersatz der Schwefelsäure-­Raffination durch eine unterkritische Propan-­Extraktion),
    - das BERC-Verfahren (Lösungsmittelextraktion, Vakuumfraktionierung und Bleicherde- bzw. H₂-Nachbehandlung),
    - das KTI-Verfahren (Vakuum-Dünnschicht-Destilla­tion als Reinigungsstufe),
    - das PROP-Verfahren (Anwendung von Ammonium­phosphaten zur Reinigung und H₂-Behandlung) und
    - das Recyclon-Verfahren (Abrennung der Altöl­verunreinigungen durch Natrium).
  • Diese Verfahren haben bisher mit Ausnahme des KTI-Ver­fahrens den Nachweis ihrer grundsätzlichen verfahrens­technischen Eignung und wirtschaftlichen Technik im großtechnischen Betrieb nicht erbringen können.
  • Das KTI-Verfahren mit einem Dünnschichtverdampfer als physikalischer Reinigungsstufe wurde zwar großtechnisch eingesetzt. Die Probleme der Dünnschichtenverdampfung bestehen jedoch im Fouling der Wärmetauscherflächen und in der vergleichsweise geringen Selektivität des Ver­fahrens.
  • Aus der DE-OS 28 5o 54o und der DE-OS 3o 38 728 ist es ferner bereits bekannt, die Aufarbeitung von Altöl durch Anwendung einer Extraktion unter überkritischen Bedingungen, das heißt bei Temperaturen oberhalb TK und Drücken oberhalb pK , vorzunehmen. Die in diesen Veröffentlichungen beschriebene Arbeitsweise liefert jedoch noch keine Lösung für die schadlose Entsorgung der in den Altölen enthaltenen Halogenverbindungen. Unter Berücksichtigung der heutigen Anforderungen an den Umweltschutz ist in der Praxis eine Anwendung der überkritischen Extraktion zur Altölaufbereitung jedoch nur dann möglich, wenn dieses Problem in befriedigen­der Weise gelöst wird.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, das Verfahren zur Aufarbeitung von Altöl unter Anwendung einer überkritischen Extraktion dahingehend weiter­zuentwickeln, daß das vorstehend geschilderte Ent­sorgungsproblem in befriegender Weise gelöst wird, so daß die Aufarbeitung des Altöls ohne Anfall von die Umwelt in unvertretbarer Weise belastenden Rück­ständen bzw. Nebenprodukten durchgeführt werden kann.
  • Das der Lösung dieser Aufgabe dienende Verfahren der eingangs genannten Art ist erfindungsgekennzeichnet durch die Anwendung der Verfahrensschritte a) bis h) des Hauptanspruches.
  • Für die Entsorgung des anfallenden lösungsmittelfreien Extraktionsrückstandes sieht das erfindungsgemäße Ver­fahren grundsätzlich zwei Möglichkeiten vor. Wenn es die Verhältnisse erlauben, wird man aus Kostengründen bestrebt sein, den Extraktionsrückstand durch Lagerung auf einer Deponie zu entsorgen. Wenn dies jedoch nicht möglich ist, wird man den Extraktionsrückstand durch thermische Behandlung (Vergasung) entsorgen.
  • Weitere Einzelheiten des erfindungsgemäßen Verfahrens ergeben sich aus den vorliegenden Unteransprüchen und sollen nachfolgend durch ein Ausführungsbeispiel an Hand des in der Abbildung dargestellten Fließschemas erläutert werden. Das Fließschema zeigt dabei nur die für die Verfahrenserläuterung unbedingt erforderlichen Anlagenteile, während Nebeneinrichtungen, die in kei­nem Zusammenhang mit dem erfindungsgemäßen Verfahren stehen, nicht dargestellt sind.
  • Das aufzuarbeitende Altöl wird aus dem Sammelbehälter 1 über die Leitung 2 der Filteranlage 3 zugeführt, in der die Feststoffpartikel durch Filtration aus dem Altöl abgetrennt und über die Leitung 4 abgezogen wer­den. Das von den Feststoffpartikeln befreite Altöl ge­langt über die Leitung 5 und die Pumpe 6 in die Destil­lationskolonne 7. Hier wird das Altöl unter atmosphä­rischem Druck einer Destillation im Temperaturbereich zwischen 12o°C und 25o°C unterworfen. Das hierbei über Kopf aus der Destillationskolonne 7 entweichende Gasöl-Wasser-Gemisch wird über die Leitung 8 in den Scheidebehälter 9 eingeleitet, in dem das Wasser durch Phasenscheidung vom Gasöl (sogenanntes Gasöl I) abge­ trennt wird. Das Gasöl wird hierbei durch die Leitung 1o und das Wasser durch die Leitung 11 aus dem Scheidebe­hälter 9 abgezogen. Das über die Leitung 12 aus der Destillationskolonne 7 abgezogene vordestillierte und entwässerte Altöl wird in den mittleren Teil der Ex­traktionskolonne 13 eingeleitet, die bei einem Druck zwischen 5o und 15o bar und einer Temperatur zwischen 2o°C und 8o°C arbeitet. Die Pumpe 14 bringt hierbei das Altöl auf den erforderlichen Betriebsdruck der Ex­traktionskolonne 13 und der Wärmetauscher 15 sorgt für die Erreichung der erforderlichen Betriebstemperatur des Altöles. In Abweichung zur Darstellung im Fließ­schema kann die Einspeisung des Altöles in die Ex­traktionskolonne 13 auch in deren oberen oder unteren Teil erfolgen. Das erforderliche Lösungsmittel wird über die Leitung 16 in den Unterteil der Extraktionskolon­ne 13 eingeleitet. Im Gegenstrom nimmt das Lösungs­mittel die unter den genannten Betriebsbedingungen löslichen Bestandteile des Altöles auf, während sich die unlöslichen Bestandteile zusammen mit den Verun­reinigungen im Sumpf der Extraktionskolonne 13 sam­meln und von dort niveaugesteuert über die Leitung 17 abgezogen werden. Das Ventil 18 dient dabei der Rege­lung des Abzuges des Extraktionsrückstandes aus der Extraktionskolonne 13. Die erforderliche Entspannung des Extraktionsrückstandes auf einen Druck von 1 bis o,o1 bar erfolgt im Entspannungsbehälter 19. Das hier­bei freiwerdende gasförmige Lösungsmittel wird über die Leitung 2o abgezogen. Zur Unterstützung der Ent­gasung kann der Entspannungsbehälter 19 beheizt und mit einem Rührwerk versehen werden.
  • Der Oberteil der Extraktionskolonne 13 wirkt als Ver­stärkerteil. Das dort anfallende Kopfprodukt wird über die Leitung 21 abgezogen und gelangt in den dampfbeheizten Wärmetauscher 22, in dem durch gering­fügige Temperaturerhöhung der erforderliche Rückfluß erzeugt wird, da bei Temperaturerhöhung die Löslich­keit des Öls im überkritischen Lösungsmittel abnimmt. Im nachgeschalteten Abscheider 23 wird das auskon­densierte Öl abgeschieden und mit der Pumpe 24 über die Leitung 25 in die Extraktionskolonne 13 zurück­gefördert und dort als Rückfluß auf den Kopf der Ko­lonne aufgegeben.
  • Das beladene Lösungsmittel gelangt aus dem Abschei­der 23 über die Leitung 26 in den Hochdruckabschei­der 27, in dem im vorliegenden Falle eine Totalab­scheidung der Ölphase aus dem Lösungsmittel erfolgt. Hierbei wird die abgeschiedene Ölphase, die den Ex­trakt darstellt, niveaugesteuert aus dem Unterteil des Hochdruckabscheiders 27 abgezogen und gelangt über die Leitung 28 in den Niederdruckabscheider 29, in dem die Abtrennung der noch in der Ölphase vorhandenen Lö­sungsmittelreste erfolgt. Die Menge des über die Lei­tung 28 abgezogenen Extraktes wird durch das Ventil 3o geregelt. Das lösungsmittelfreie Produktöl wird über die Leitung 31 aus dem Niederdruckabscheider 29 abge­zogen und gelangt über die Leitung 31 in den Sammel­behälter 32. Von hier aus wird das Produktöl über die in der Leitung 33 befindliche Pumpe 34 und den Wärme­tauscher 35 in den Hydrierreaktor 36 gedrückt, in dem die katalytische Hydrierung des Produktöles in Gegen­wart von handelsüblichen Hydrierkatalysatoren, die beispielsweise Nickel als aktive Komponente enthalten, erfolgt. Der hierfür erforderliche Wasserstoff wird über die Leitung 37 in den Hydrierreaktor 36 einge­führt. Durch die Hydrierung des Produktöles werden die in diesem enthaltenen Halogen- und Schwefelver­bindungen in Halogen- bzw.Schwefelwasserstoff über­führt. Diese Produkte werden gasförmig über die Lei­tung 38 aus dem Hydrierreaktor 36 abgezogen. Das hy­drierte Produktöl gelangt währenddessen über die Leitung 39 in den Zugabebehälter 4o, in den über die Leitung 41 Bleicherde eingeführt werden kann, die im Zugabebehälter 4o unter Rühren mit dem hydrierten Pro­duktöl vermischt wird. Das Bleicherde-Öl-Gemisch wird sodann über die Pumpe 42 und die Leitung 43 in die Va­kuumdestillationskolonne 44 eingeleitet, in der es bei einem Vakuum von o,oo2 bis o,1 bar destilliert und damit in verschiedene Fraktionen zerlegt wird. Sofern auf einen Bleicherdezusatz verzichtet werden kann, gelangt das hydrierte Produktöl über die Lei­tung 39 unmittelbar in die Vakuumdestillationskolon­ne 44. Über die Leitung 45 wird hierbei das Gasöl II und über die Leitung 46 das Spindelöl abgezogen. Der in der Vakuumdestillationskolonne 44 anfallende Destillationsrückstand wird vermittels der Pumpe 48 in der Leitung 47 in die Filteranlage 49 gefördert, in der die Bleicherde durch Filtration abgetrennt wird. Diese verölte Bleicherde gelangt über die Lei­tung 51 in den Vergaser 52, während das bei der Fil­tration anfallende Grundöl über die Leitung 5o aus der Filteranlage 49 abgezogen wird.
  • In den Vergaser 52 werden außer der verölten Bleich­erde noch folgende Produkte eingeleitet: Der Extrak­tionsrückstand aus dem Entspannungsbehälter 19 über die Leitung 53 und die Pumpe 54, das Gasöl I aus dem Scheidebehälter 9 über die Leitung 1o sowie der Klär­schlamm aus der biologischen Abwasserreinigung 55 über die Leitung 56. Bei dem Vergaser 52 kann es sich um einen Flugstromvergaser handeln, der nach dem be­kannten Koppers-Totzek-Verfahren arbeitet. Als Verga­sungsmedium dienen hierbei Sauerstoff und/oder Luft so­wie ggf.geringe Mengen an Wasserdampf. Die Vergasung kann unter normalem oder erhöhtem Druck durchgeführt werden. Sofern Flüssigkeiten oder Suspensionen vergast werden sollen, wird der Vergaser mit sogenannten Verdüsungs­brennern ausgerüstet. Den Brennern können ferner Wär­metauscher vorgeschaltet werden, in denen das zu ver­gasende Produkt auf die für die Einstellung der erfor­derlichen Viskosität benötigte Temperatur gebracht wird.
  • Die in den Vergaser 52 eingeleiteten Produkte werden in einer Flammenreaktion bei Temperaturen zwischen 13oo°C und 2ooo°C vergast. Der hierfür gegebenenfalls erforderliche Zusatzbrennstoff gelangt über die Lei­tung 57 und die erforderliche Luft bzw. Sauerstoff über die Leitung 58 in den Vergaser 52. Das anfallen­de, im wesentlichen aus den Bestandteilen CO, H₂, CO₂, H₂O und N₂ bestehende Gas wird über die Leitung 59 aus dem Vergaser 52 abgezogen und gelangt über den Ab­hitzekessel 6o in die Druckwasserwäsche 61. In diese wird auch der Gasstrom aus der Leitung 38 eingeleitet, so daß beide Gasströme die nachfolgende Gasbehandlung gemeinsam durchlaufen. Diese besteht aus der Druckwas­serwäsche 61 und der Drucklaugewäsche 62, wobei die einzelnen Stufen über die Leitungen 63 und 64 mitein­ander verbunden sind. Durch diese Gasbehandlung werden sowohl Halogen- und Schwefelwasserstoff als auch die aus den Öladditiven herrührenden Metallverbindungen aus dem Gas entfernt. Da das Gas im Abhitzekessel 6o bereits im erforderlichen Umfang vorgekühlt worden ist, kann das nach Passieren der beiden Waschstufen über die Leitung 65 abgezogene Gas problemlos als Heizgas ver­wendet werden. Der bei der Vergasung anfallende Verga­sungsrückstand (Schlacke) wird im schmelzflüssigen Zu­stand über die Leitung 66 aus dem Vergaser abgezogen und in einem nicht dargestellten Wasserbad granuliert und gekühlt.
  • Das über Kopf aus dem Hochdruckabscheider 27 entwei­chende Lösungsmittel wird über die Leitung 67 abge­zogen und gelangt über den Wärmetauscher 68 zurück in die Leitung 16, über die das Lösungsmittel wieder in die Extraktionskolonne 13 eingeleitet wird. Da der Lösungsmittelkreislauf nahezu isobar ist, muß durch den Kreislaufkompressor 69 nur eine geringe Drucker­höhung bewirkt werden. Die Wärmetauscher 68 und 7o dienen hierbei der erforderlichen Temperatureinstel­lung des Lösungsmittels.
  • Das aus dem Niederdruckabscheider 29 entweichende Lö­sungsmittel wird über die Leitung 71 abgezogen und gelangt, nachdem es im Kompressor 72 auf Kondensati­onsdruck komprimiert worden ist, in den Kondensator 73, in dem es verflüssigt wird. Der Wärmetauscher 74 dient hierbei wiederum der erforderlichen Temperatureinstel­lung. In die Leitung 71 mündet vor dem Wärmetauscher 74 die Leitung 2o, über die das im Entspannungsbehälter 19 freigesetzte Lösungsmittel abgezogen wird. Das ver­flüssigte Lösungsmittel wird in der Vorlage 75 gesam­melt und von dort bei Bedarf durch den Kompressor 76 über die Leitung 77 in die Leitung 16 eingespeist.
  • Das im Scheidebehälter 9 abgeschiedene Wasser gelangt über die Leitung 11 in die biologische Abwasserreini­gung 55, aus der das gereinigte Abwasser über die Lei­tung 78 in den Vorfluter eingeleitet wird. Der bei der Abwasserreinigung anfallende Klärschlamm wird, wie bereits erwähnt wurde, über die Leitung 56 dem Vergaser 52 zugeführt.
  • Der vorstehend beschriebene Verfahrensgang zeigt, daß es durch eine komplexe Lösung des Entsorgungsproblems möglich ist, die Altölaufarbeitung durch überkriti­sche Extraktion in einer Weise durchzuführen, bei der die Umwelt im Vergleich zu den bisher bekannten Ver­fahren deutlich weniger belastet wird. Selbstverständ­lich sind in Abweichung von dem im Fließschema darge­stellten Ausführungsbeispiel auch gewisse Änderungen des Verfahrensablaufes möglich.
  • So ist bereits weiter oben festgestellt worden, daß es unter Umständen auch möglich ist, den Extraktions­rückstand durch Lagerung auf einer Deponie zu entsor­gen. Da in diesem Falle der Vergaser 52 in Fortfall kommt, müssen dann auch alle anderen Rückstände, die im vorstehenden Verfahrensbeispiel mit in den Verga­ser 52 eingeleitet wurden, durch Lagerung auf einer Deponie oder auf andere Weise entsorgt werden. Im Interesse eines möglichst umfassenden Umweltschutzes wird man deshalb der im vorstehenden Verfahrensbei­spiel beschriebenen Arbeitsweise den Vorzug geben.
  • Ferner kann beispielsweise anstelle der beschriebenen Totalabscheidung des Extraktes in einem einzigen Hochdruck- 27 und Niederdruckabscheider 29 diese Ab­scheidung auch in mehreren Stufen erfolgen. Wird eine derartige fraktionierte Abscheidung der Produk­te des Extraktes durchgeführt, dann sind die dabei anfallenden Fraktionen auch einzeln zu hydrieren, wenn die in den einzelnen Fraktionen vorhandenen Ha­logenverbindungen dies erforderlich machen.
  • Außerdem ist es möglich, statt der im Fließschema vor­gesehenen getrennten Zufuhr von Gasöl, Extraktions­rückstand und Bleicherde zum Vergaser 52 diese Produk­te vor dem Eintritt in den Vergaser zu vereinigen, so daß die Bleicherde im Extraktionsrückstand und Gas­öl I suspendiert wird. Der Zusatz des Gasöles zum Extraktionsrückstand vor der Vergasung ist auch dann angebracht, wenn der Extraktionsrückstand eine zu hohe Viskosität aufweist, da dadurch die Viskosität herab­gesetzt werden kann.
  • Schließlich wird es in manchen Fällen möglich sein, auf eine Reinigung des aus dem Scheidebehälter 9 ab­laufenden Abwassers zu verzichten und das Wasser stattdessen mit dem Extraktionsrückstand zu verga­sen. Hierbei dürfte allerdings in den meisten Fällen eine zusätzliche Zugabe von Brennstoff in den Verga­ser 52 erforderlich sein. Hierbei können gegebenen­falls flüssige, kohlenwasserstoffhaltige Abfallstof­fe, wie beispielsweise über die zulässigen Grenzen hinaus mit Schadstoffen belastetes Altöl, verwendet werden.
  • Die Wirksamkeit des erfindungsgemäßen Verfahrens wird durch das nachfolgende Anwendungsbeispiel belegt.
  • Hierbei wurde nasses Altöl mit 15 % Wasser und 5 % Gasöl I (KP < 17o°C) in einer Menge von 175 kg/h der Destillationskolonne 7 aufgegeben. Es wurden bei 16o°C und 1 bar 26 kg/h Wasser und 9 kg/h Gasöl I abdestilliert.
  • Das aus der Destillationskolonne 7 austretende Trok­kenöl wurde über den Wärmetauscher 15 auf 43°C ge­kühlt, mit der Pumpe 14 auf 1oo bar kompriniert sowie danach der Extraktionskolonne 13 in halber Höhe auf­gegeben. Am Fuß der Extraktionskolonne 13 wurde als Lösungsmittel Äthan bei 43°C und 1oo bar zugeführt.
  • Im unteren Teil der Kolonne, die mit Raschigringen gefüllt war, wurden die löslichen Bestandteile des Trockenöles durch Gegenstromextraktion vom Lösungs­mittel aufgenommen. Die beladene Lösungsmittelphase wurde dem Wärmetauscher 22 (Dephlegmator) zugeführt und auf 48°C erwärmt. Hierbei ergab sich eine Teil­abscheidung der schwerflüchtigen Kohlenwasserstoffe (denaturierte Additive), die der aufsteigenden be­ladenen Lösungsmittelphase entgegenströmten und ei­nen Strippeffekt bewirkten, wodurch ein zusätzlicher Trenneffekt erzielt wurde. Das aufgegebene Trockenöl konnte dabei in einen Extraktionsrückstand von 14 kg/h und in eine Wertfraktion von 126 kg/h aufgetrennt wer­den. Der Extraktionsrückstand wurde am Fuß der Extrak­tionskolonne 13 abgezogen, auf 1 bar entspannt und auf 15o°C aufgeheizt. Das hierbei freiwerdende Lö­sungsmittel wurde rekomprimiert und dem Hauptlösungs­mittelstrom zugefuhrt.
  • Die gereinigte beladene Lösungsmittelphase (Extrakt) wurde im Anschluß an den Wärmetauscher 22 im nachge­schalteten Hochdruckabscheider 27 durch Erwärmung auf 15o°C bei 1oo bar von den gelösten Produkten befreit. Das abgeschiedene Produkt in einer Menge von 126 kg/h wurde am Boden des Hochdruckabscheiders 27 abgezogen und zur Abtrennung des in ihm noch gelösten Lösungs­mittels im Niederdruckabscheider 29 auf 1 bar ent­spannt. Das hierbei frei werdende Lösungsmittel wur­de rekomprimiert und mit dem Hauptlösungsmittelstrom vereinigt.
  • Das abgeschiedene Produkt wurde einer Hydrierung im Hydrierreaktor 36 zum Abbau der in ihm vorhandenen Halogenkohlenwasserstoffe unterworfen und sodann in der Vakuumdestillationskolonne 44 in die Produkte Grundöl, Spindelöl und Gasöl II aufgetrennt. Das der Vakuumdestillation aufgegebene Produkt wurde mit 2,8 kg/h Bleicherde versetzt. Die verölte Bleicherde wurde vom Bodenprodukt der Vakuumdestillation in der Filteranlage 49 abfiltriert. Es fielen 74 kg/h Grundöl, 35 kg/h Spindelöl und 14 kg/h Gasöl II so­wie 5,6 kg/h verölte Bleicherde an.
  • Der auf 15o°C vorgewärmte Extraktionsrückstand wurde auf den erforderlichen Vordruck des Vergasers 52 kom­primiert. Das Gasöl I wurde mit der ölbeladenen Bleich­erde und der in der biologischen Abwasserreinigung 55 anfallenden geringen Klärschlammenge vermischt und das anfallende Gemisch ebenfalls auf den erforderlichen Vordruck des Vergasers 52 komprimiert und zusammen mit dem Extraktionsrückstand bei ca. 15o°C dem Vergaser 52 aufgegeben. Diese Mischung wurde im Vergaser 52 unter Zugabe von o,95 kg Sauerstoff je kg Mischung als Oxi­dationsmittel in einer Flammenreaktion bei Temperatu­ren oberhalb von 15oo°C vergast. Als Produkt der Ver­gasung entstanden CO und H₂ im Verhältnis 2,1 : 1 so­wie kleine Mengen an CO₂ und Wasserdampf sowie Spuren von H₂S und HCl. Die Metallgehalte des Ruckstandes wurden oxidiert und aus dem Vergaser als Asche oder Flugstaub abgezogen. Das noch mit geringen Mengen Flugstaub beladene heiße Rohgas wurde der weiter oben beschriebenen Gasbehandlung unterzogen, wobei Heizgas, Abhitzedampf und salzhaltige Lauge anfielen. Um eine getrennte Wäsche des bei der Hydrierung anfallenden HCl-haltigen Abgases zu vermeiden, wurde dieses vor der Gasbehandlung dem Rohgas der Vergasung zugemischt.
  • Zur Verdeutlichung der Ergebnisse des dargelegten Ver­fahrens im Hinblick auf den Abbau der im Altöl enthal­tenen Schadstoffe wie PCB, PCT, der Chloralkane und der Metallgehalte dient nachfolgende Tabelle:
    Figure imgb0001

Claims (12)

1. Verfahren zur Aufarbeitung von Altöl, bei dem das zuvor entwässerte Altöl einer Extrak­tion unter überkritischen Bedingungen unter Anwendung eines bei Normalbedingungen gasför­migen Lösungsmittels unterworfen wird und anschließend aus der abgetrennten überkriti­schen Gasphase die extrahierten Bestandteile durch Druckerniedrigung und/oder Temperatur­änderung abgeschieden werden, gekennzeichnet durch die Anwendung folgender Verfahrens­schritte:
a) Die im Altöl vorhandenen festen Verun­reinigungen werden durch Filtration ent­fernt;
b) das filtrierte Altöl wird einer atmos­phärischen Destillation im Temperaturbe­reich zwischen 12o°C und 25o°C unterwor­fen;
c) das vordestillierte Altöl wird einer über­kritischen Extraktion bei Drücken von 5o bis 15o bar und Temperaturen von 2o°C bis 8o°C unterworfen, worauf aus der abgetrenn­ten überkritischen Gasphase die Bestandteile des Extraktes in einem Schritt oder frakti­oniert bei Drücken zwischen 5o und 15o bar und Temperaturen zwischen 4o°C und 2oo°C abgeschieden werden;
d) der abgeschiedene Extrakt wird bei Tem­peraturen zwischen 4o°C und 2oo°C durch ein- oder mehrstufige Entspannung bis auf einen Druck von 1 bis o,o1 bar von den in ihm noch vorhandenen Lösungsmittel­resten befreit;
e) der lösungsmittelfreie Extrakt wird bei einem Druck von 5o bis 15o bar und einer Temperatur zwischen 25o°C und 4oo°C einer katalytischen Hydrierung unterworfen, wo­bei der aus der Hydrierung austretende Gasstrom durch Druck-Wasserwäsche und/­oder Druck-Laugenwäsche gereinigt wird;
f) der in der Extraktionsstufe anfallende Extraktionsrückstand wird bei Temperaturen zwischen 4o°C und 2oo°C durch ein- oder mehrstufige Entspannung auf einen Druck von 1 bis o,o1 bar von dem in ihm gelösten Lösungsmittel befreit;
g) der lösungsmittelfreie Extraktionsrückstand wird durch Deponierung oder thermische Be­handlung entsorgt,
und
h) das aus dem Extraktionsrückstand zurückge­wonnene Lösungsmittel wird mit dem aus dem Extrakt zurückgewonnenen Lösungsmittel ver­einigt und nach entsprechender Verdichtung dem Hauptlösungsmittelstrom zugesetzt, der in die Extraktionsstufe zurückgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeich­net, daß der hydrierte Extrakt,gegebenenfalls unter Zusatz von Bleicherde in einer Menge von bis zu 5 Gew.-%, durch Vakuumdestillation frak­tioniert wird.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der lösungsmittelfreie Ex­traktionsrückstand in einer Flammenreaktion in Gegenwart von Sauerstoff und/oder Luft bei Tem­peraturen zwischen 13oo°C und 2ooo°C vergast wird, wobei das anfallende, im wesentlichen aus den Komponenten CO, H₂, CO₂, H₂O und N₂ bestehen­de Gas in einer nachgeschalteten Gasreinigung von unerwünschten Bestandteilen, insbesondere von den aus den Öladditiven herrührenden Me­tallverbindungen, befreit wird.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das bei der atmosphärischen Destillation des Altöles anfallende Gasöl I gemein­sam mit dem Extraktionsrückstand vergast wird.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß das Gasöl I dem Extraktions­rückstand zwecks Viskositätserniedrigung vor der Vergasung zugemischt wird.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die bei der Vakuumdestilla­tion des hydrierten Extraktes anfallende verölte Bleicherde im Extraktionsrückstand und Gasöl I suspendiert und gemeinsam mit diesen vergast wird.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß das bei der atmosphäri­schen Destillation des Altöles anfallende Was­ser mit dem Extraktionsrückstand vergast wird.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Vergasung des bei der atmosphärischen Destillation des Altöles an­fallenden Wassers unter Brennstoffzugabe erfolgt.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß dem bei der atmosphärischen Destillation des Altöles anfallenden Wasser vor der Vergasung flüssige kohlenwasserstoffhaltige Abfallstoffe zugesetzt werden.
1o. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß das bei der atmosphärischen Destillation des Altöles anfallende Wasser einer biologischen Abwasserreinigung aufgearbeitet und der dort anfallende Klärschlamm gemeinsam mit dem Extraktionsrückstand vergast wird.
11. Verfahren nach den Ansprüchen 1 bis 1o, dadurch gekennzeichnet, daß als Lösungsmittel für die Extraktion Äthan oder Propan sowie Mischungen dieser Gase verwendet werden.
12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß das verwendete Lösungsmittel einen Zusatz von Butan enthält.
EP86116200A 1986-01-29 1986-11-21 Verfahren zur Aufarbeitung von Altöl Expired EP0230543B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86116200T ATE41029T1 (de) 1986-01-29 1986-11-21 Verfahren zur aufarbeitung von altoel.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3602586 1986-01-29
DE19863602586 DE3602586A1 (de) 1986-01-29 1986-01-29 Verfahren zur aufarbeitung von altoel

Publications (2)

Publication Number Publication Date
EP0230543A1 true EP0230543A1 (de) 1987-08-05
EP0230543B1 EP0230543B1 (de) 1989-03-01

Family

ID=6292841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86116200A Expired EP0230543B1 (de) 1986-01-29 1986-11-21 Verfahren zur Aufarbeitung von Altöl

Country Status (6)

Country Link
US (1) US4797198A (de)
EP (1) EP0230543B1 (de)
JP (1) JPS62184097A (de)
AT (1) ATE41029T1 (de)
DE (2) DE3602586A1 (de)
ES (1) ES2006695B3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU638922B1 (de) * 1992-10-01 1993-07-08

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3839799A1 (de) * 1988-11-25 1990-07-05 Rwe Entsorgung Ag Verfahren zur aufarbeitung kontaminierter oele
US5143597A (en) * 1991-01-10 1992-09-01 Mobil Oil Corporation Process of used lubricant oil recycling
US5316743A (en) * 1992-09-28 1994-05-31 Leblanc Ralph W Diesel fuel cracking unit
FR2725725B1 (fr) * 1994-10-17 1996-12-13 Inst Francais Du Petrole Procede et installation pour la purification des huiles usagees
US6066350A (en) * 1997-02-07 2000-05-23 Cargill Incorporated Method and arrangement for processing cocoa mass
US7045038B1 (en) * 1999-12-21 2006-05-16 Industrial Microwave Technologies, Inc. Process for treating waste oil
EP1279722A1 (de) * 2001-07-18 2003-01-29 Minitec Engineering GmbH Verfahren zur Reinigung von Ölen und zur Entfernung von Feststoffablagerungen in ölführenden Anlagen, Rohrbündelwärmeübertragern, Transformatoren, Tankbehälter oder ähnlichem
US20040071848A1 (en) * 2002-10-15 2004-04-15 Cargill Inc. Process for producing cocoa butter and cocoa powder by liquefied gas extraction
US7201934B2 (en) * 2002-10-15 2007-04-10 Cargill, Incorporated Dispersible cocoa products
US20040071847A1 (en) * 2002-10-15 2004-04-15 Cargill, Inc. Producing cocoa powders with different cocoa butter contents by liquefied gas extraction on substantially the same production line
US8088276B2 (en) * 2008-08-08 2012-01-03 CleanOil Limited Oil re-refining system and method
BR112021015453A2 (pt) * 2019-02-05 2021-11-23 Regen Iii Corp Método e sistema para refinar novamente e melhorar óleo usado

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2030609A1 (de) * 1969-09-09 1971-03-18 Petrolchemisches Kombinat Verfahren zur Aufarbeitung von ge brauchten Schmierölen
US3919076A (en) * 1974-07-18 1975-11-11 Pilot Res & Dev Co Re-refining used automotive lubricating oil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074882A (en) * 1959-02-02 1963-01-22 Texaco Inc Petroleum treating process involving solvent deasphalting and propane fractionation
US3507777A (en) * 1968-01-25 1970-04-21 Exxon Research Engineering Co Cracking process
US3594308A (en) * 1970-06-22 1971-07-20 Universal Oil Prod Co Petroleum crude oil conversion process
US3864242A (en) * 1973-12-13 1975-02-04 Imamura Seisakusho Kk Treating muddy-like waste oily material
US4021333A (en) * 1975-08-27 1977-05-03 The Lubrizol Corporation Method of rerefining oil by distillation and extraction
IT1091961B (it) * 1978-01-12 1985-07-06 Snam Progetti Procedimento per la rigenerazione degli oli esausti
DE2850540C2 (de) * 1978-11-22 1982-12-23 Fried. Krupp Gmbh, 4300 Essen Verfahren zur Aufbereitung von Altöl
CS209612B1 (en) * 1979-11-10 1981-12-31 Alexander Tkac Method of treating the spent motor oils
US4363717A (en) * 1981-01-15 1982-12-14 Mobil Oil Corporation Conversion of heavy hydrocarbon oils
IT1137280B (it) * 1981-07-07 1986-09-03 Assoreni E Snamprogetti Spa Procedimento per recupero di oli esausti
US4482453A (en) * 1982-08-17 1984-11-13 Phillips Petroleum Company Supercritical extraction process
DE3321356A1 (de) * 1983-06-14 1984-12-20 Drägerwerk AG, 2400 Lübeck Gasdosimeter in einer halterung, ein diffusionspruefroehrchen enthaltend
US4431523A (en) * 1983-06-24 1984-02-14 Phillips Petroleum Company Upgrading fuel fractions in a re-refined oil process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2030609A1 (de) * 1969-09-09 1971-03-18 Petrolchemisches Kombinat Verfahren zur Aufarbeitung von ge brauchten Schmierölen
US3919076A (en) * 1974-07-18 1975-11-11 Pilot Res & Dev Co Re-refining used automotive lubricating oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU638922B1 (de) * 1992-10-01 1993-07-08

Also Published As

Publication number Publication date
DE3602586A1 (de) 1987-07-30
EP0230543B1 (de) 1989-03-01
DE3662205D1 (en) 1989-04-06
JPS62184097A (ja) 1987-08-12
ES2006695B3 (es) 1989-10-16
US4797198A (en) 1989-01-10
ATE41029T1 (de) 1989-03-15

Similar Documents

Publication Publication Date Title
DE3623430C2 (de)
DE3121206C2 (de) Verfahren zum Vergasen fester Abfälle
DE3437374C2 (de)
DE19852007C2 (de) Verfahren zur Wiederaufarbeitung von Altölen
EP0377606B1 (de) Verfahren zur reinigung und regenerierung von altölen
EP0054772B1 (de) Verfahren zum Reinigen eines Gasstroms
DE2850540C2 (de) Verfahren zur Aufbereitung von Altöl
EP0230543B1 (de) Verfahren zur Aufarbeitung von Altöl
EP0159495A2 (de) Verfahren zum Entfernen von C02 und/oder H2S aus Gasen
EP0054783A1 (de) Verfahren und Anlage zum Abtrennen von Schwefelwasserstoff und Kohlendioxid aus einem Gasgemisch
DE3311879A1 (de) Verfahren zur entfernung von halogenierten alophatischen und aromatischen verbindungen aus petroleumprodukten
DE3133562A1 (de) &#34;verfahren zur herstellung fluessiger kohlenwasserstoffe&#34;
DE2744437A1 (de) Verfahren zur aufbereitung von bei der entgasung oder vergasung von kohlen anfallenden abwaessern
DE1468600A1 (de) Verfahren zur Auftrennung einer Mischung mittels einer Fluessig-Fluessig-Extraktion
DE19608463A1 (de) Verfahren zum Extrahieren von Phenolen aus einem phenolhaltigen Abwasser mittels eines Lösungsmittel-Gemisches
DE3405858C2 (de) Verfahren zur Wiederaufbereitung von Altölen
DE3237930C1 (de) Reinigung von wasserstoff-freien,fluorierten Schmiermitteln
DE3236504C2 (de)
DE3002984C2 (de) Verfahren zur Rückgewinnung von Lösungsmitteln aus lösungsmittelhaltigen Kohlenwasserstoffphasen in Kohlenwasserstoff-Raffinationssystemen
EP0084319B1 (de) Verfahren zur Trocknung und Entfernung von Kohlenwasserstoffen aus bzw. von Gasen
DE2718950C2 (de) Verfahren zur Anlagerung von Wasserstoff an Kohle
DE1948428B2 (de) Verfahren zur gewinnung von nh tief 3 und h tief 2s aus einer leichte kohlenwasserstoffe, wasserstoff sowie h tief 2s und nh tief 3 enthaltenden ausgangsloesung
EP0209665A1 (de) Verfahren zur Kohlehydrierung mittels Sumpfphase- und katalysator-Festbetthydrierung
EP0990019B1 (de) Verfahren zur altölaufarbeitung
EP0515950B1 (de) Herstellung von Synthesegas aus aschereichen Kohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880805

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 41029

Country of ref document: AT

Date of ref document: 19890315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3662205

Country of ref document: DE

Date of ref document: 19890406

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911008

Year of fee payment: 6

Ref country code: CH

Payment date: 19911008

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19911024

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911028

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911104

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19911106

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911130

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921121

Ref country code: AT

Effective date: 19921121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921122

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921130

Ref country code: CH

Effective date: 19921130

Ref country code: BE

Effective date: 19921130

BERE Be: lapsed

Owner name: KRUPP KOPPERS G.M.B.H.

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86116200.6

Effective date: 19930610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971013

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971113

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971115

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981121

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19931214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051121