EP0224764A1 - Dispositif compensateur de force axiale pour pompes à fluide - Google Patents

Dispositif compensateur de force axiale pour pompes à fluide Download PDF

Info

Publication number
EP0224764A1
EP0224764A1 EP86115684A EP86115684A EP0224764A1 EP 0224764 A1 EP0224764 A1 EP 0224764A1 EP 86115684 A EP86115684 A EP 86115684A EP 86115684 A EP86115684 A EP 86115684A EP 0224764 A1 EP0224764 A1 EP 0224764A1
Authority
EP
European Patent Office
Prior art keywords
sleeve
bores
gap
pump
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86115684A
Other languages
German (de)
English (en)
Other versions
EP0224764B1 (fr
Inventor
Johann Guelich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of EP0224764A1 publication Critical patent/EP0224764A1/fr
Application granted granted Critical
Publication of EP0224764B1 publication Critical patent/EP0224764B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons

Definitions

  • the invention relates to an axial thrust compensation device for a liquid pump, which essentially consists of a fixed bushing and a relief piston rotating in this bushing and firmly connected to the pump wheel shaft.
  • Such devices are used in liquid pumps, in particular in multi-stage high-performance radial pumps, and have the purpose and the task of neutralizing or reducing large axial thrust forces.
  • a device consists of a rotating pressure compensation or relief piston which is firmly connected to the pump impeller and which runs in a fixed sleeve without contact.
  • the sleeve can be designed as a separate part that is firmly connected to the housing, but also as a part that is directly machined onto the pump housing.
  • the relief piston itself can be formed as part of the pump rotor shaft or rigidly connected to the rotor shaft as a separate part.
  • the axial thrust compensation device is arranged downstream of the last stage in the direction of the following pump stages.
  • the pressure conditions in the area of the axial thrust compensating device in the liquid are such that, in the operating state, working liquid constantly flows from the impeller side space to and through the gap between the bushing and the relief piston.
  • This liquid is set in rotation in the impeller side space, the intensity of which increases with the flow rate through the gap.
  • the working medium therefore enters the gap with a peripheral component. This rotation of the working fluid can interfere with the maximum performance of the pump by increasing the tendency of the rotor to self-oscillate.
  • the object of the invention is to completely prevent the impeller-side penetration of liquid with pre-rotation into the gap and to supply liquid without pre-rotation to the gap without complex additional devices.
  • the invention as characterized in the claims, solves this problem with the aid of the flowing partial flow from the gap into the impeller side space. Since only pre-rotation-free liquid is fed into the gap via the channels, the rotational movement of the liquid through the gap into the gap space facing away from the pump wheel is reduced, which in turn reduces the tendency of the pump rotor to natural vibrations in the limit load range and thus permits higher pump outputs with the same dimensions of the pump rotor shaft .
  • a device according to the invention has particular advantages for multi-stage, high-speed high-pressure radial pumps such as Boiler feed pumps.
  • the figure shows schematically in section a part of the last two stages of a radial pump with an axial thrust compensation device.
  • the schematic section through the housing and rotor of the last two stages of a radial pump shows the one-part or multi-part, fixed pump housing 1 and the two pump wheels 2, 3, which are rigidly connected to the pump wheel shaft 4.
  • the direction of flow of the liquid in the channels 22, 23 of the pump wheels 2, 3, in the pump wheel adjoining rooms 12, 21, 31 and in the main flow channels 11 is indicated by arrows.
  • the axial thrust compensation device consists of the bush 5, which is fixedly connected to the housing, and the relief piston 6, which is rigidly connected to the rotor shaft 4 and rotates in the bush 5.
  • the sleeve 5 has bores 51, only one of which is shown, which open into an internal groove 52, which in turn opens into the gap 56 between the sleeve 5 and the relief piston 6.
  • the bores in the recess 15 are connected to the wheel side space 31 on the outside of the bush 5.
  • the outer and inner diameter (D2, D1) of the sleeve 5 and the outer diameter (D3) of the relief piston 6 the flow conditions in this area as shown by the arrows.
  • the embodiment of the invention suitable for a particular type of pump can be determined by a pump specialist without any problems.
  • the working fluid flows in a secondary flow from the pump wheel 32 into the wheel side space 31.
  • the working fluid flows in the pump wheel side space 31 radially to the opening of the gap 56 between the bushing 5 and 5 on the pump wheel side Relief piston 6 of the axial thrust compensation device 5, 6.
  • the working fluid experiences in the wheel side space 31 a rotational movement in the direction of rotation of the pump wheel 3, a so-called before rotation. The pre-rotation becomes stronger, the greater the amount of liquid flowing to the gap 56.
  • the inflow of working fluid with pre-rotation to the end of the gap 56 on the pump wheel side is completely eliminated by using the Radial bores 51 and groove 52 pre-rotation-free working fluid is fed to the gap 56 between the two ends of the gap.
  • Part of the liquid flowing through holes 51 and 52 groove (Q2) flows back through the gap 56 in the impeller side space and thus causes a complete locking effect, so that no liquid with pre-rotation can penetrate into the gap 56. Since the aim of the invention is to reduce the rotation of the liquid in the gap 56, it is also conceivable that the bores 51 are not arranged in the radial direction but in the direction opposite to the direction of rotation of the pump, which additionally reduces the rotation of the working fluid in the gap 56 becomes.
  • the groove 52 has the task of uniformly supplying the working fluid to the gap 56 over the circumference of the compensating piston 6 and thus, seen over the circumference, to create pressure conditions which are as balanced as possible. However, it is also conceivable that the groove 52 is completely absent and the bores 51 open directly into the gap 56.
  • the working fluid is supplied to the bores 51 via the recess 15.
  • the recess 15 is missing and the bores 51 are connected directly to the pump wheel side space 31 by lateral bores in the bushing 5 (not shown here) or inclined bores in the housing 1.
  • the rotation of the pump wheel 3 generates a rotating flow of the working fluid in the wheel side space 31 and thus an outward radial pressure gradient.
  • the ratios must now be selected so that, in the operating state, the radial pressure difference in the side space 31 between the outer and inner diameter of the bushing (D2, D1) is greater than the pressure loss in the bores 51 and groove 52 at a flow rate (Q 1) alone, ie that part of the flow (Q) that flows in the gap 56 to the end of the gap 56 facing away from the pump wheel. If this condition is met, a ram flow (Q2) flows from the mouth to the pump-wheel-side gap end into the wheel-side space 31, which at the same time completely prevents the penetration of working fluid with pre-rotation into the gap 56.
  • a high-speed, multi-stage high-pressure radial pump can be achieved, for example, if the ratio of the outer to inner diameter of the sleeve (D2 / D1) is less than or equal to 1.25, and the sum of the cross sections of the radial bores 51 is at least three times larger than the cross section of the Gap 56 is, and if the radial bores 51 are made only a few millimeters apart, near the end face 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Rotary Pumps (AREA)
EP86115684A 1985-11-27 1986-11-12 Dispositif compensateur de force axiale pour pompes à fluide Expired EP0224764B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5066/85A CH669241A5 (de) 1985-11-27 1985-11-27 Axialschub-ausgleichsvorrichtung fuer fluessigkeitspumpe.
CH5066/85 1985-11-27

Publications (2)

Publication Number Publication Date
EP0224764A1 true EP0224764A1 (fr) 1987-06-10
EP0224764B1 EP0224764B1 (fr) 1989-05-03

Family

ID=4287365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115684A Expired EP0224764B1 (fr) 1985-11-27 1986-11-12 Dispositif compensateur de force axiale pour pompes à fluide

Country Status (5)

Country Link
US (1) US4892459A (fr)
EP (1) EP0224764B1 (fr)
CH (1) CH669241A5 (fr)
DE (1) DE3663165D1 (fr)
FI (1) FI93259C (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687429A1 (fr) * 1992-02-17 1993-08-20 Alsthom Gec Procede et dispositif pour supprimer l'instabilite d'une turbine a vapeur.
DE4313455A1 (de) * 1993-04-24 1994-10-27 Klein Schanzlin & Becker Ag Radialer Spalt, beispielsweise einer Strömungsmaschine
EP2154332A1 (fr) * 2008-08-14 2010-02-17 Siemens Aktiengesellschaft Réduction de la charge thermique d'un boîtier extérieur pour une turbomachine
EP1596069A3 (fr) * 2004-05-10 2010-12-29 Hitachi Industries Co., Ltd. Pompe centrifuge
RU2451920C1 (ru) * 2010-11-23 2012-05-27 Открытое акционерное общество Научно-производственное объединение "Искра" Экспериментальная установка для исследования модельных ступеней центробежных компрессоров
WO2020065674A1 (fr) * 2018-09-27 2020-04-02 Ksb Tech Pvt. Ltd Pompe à plusieurs étages, à optimisation de poussée axiale
EP3896288A1 (fr) * 2020-04-16 2021-10-20 Sulzer Management AG Pompe centrifuge pour transporter un fluide

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104284A (en) * 1990-12-17 1992-04-14 Dresser-Rand Company Thrust compensating apparatus
DE29500744U1 (de) * 1995-01-18 1996-05-15 Sihi Ind Consult Gmbh Strömungsmaschine mit Entlastungskolben
US6012898A (en) * 1996-06-07 2000-01-11 Ebara Corporation Submerged motor pump
JPH09324791A (ja) * 1996-06-07 1997-12-16 Ebara Corp サブマージドモータポンプ
US6129507A (en) 1999-04-30 2000-10-10 Technology Commercialization Corporation Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same
US7794199B2 (en) * 2005-05-24 2010-09-14 Franklin Electric Co., Inc. Bypass system for purging air from a submersible pump
US20090004032A1 (en) * 2007-03-29 2009-01-01 Ebara International Corporation Deswirl mechanisms and roller bearings in an axial thrust equalization mechanism for liquid cryogenic turbomachinery
EP2419621A4 (fr) 2009-04-17 2015-03-04 Echogen Power Systems Système et procédé pour gérer des problèmes thermiques dans des moteurs à turbine à gaz
JP5681711B2 (ja) 2009-06-22 2015-03-11 エコージェン パワー システムズ インコーポレイテッドEchogen Power Systems Inc. 1または2以上の工業プロセスでの熱流出物処理方法および装置
WO2011017476A1 (fr) 2009-08-04 2011-02-10 Echogen Power Systems Inc. Pompe à chaleur avec collecteur solaire intégré
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
WO2014031526A1 (fr) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Circuit de fluide de travail super critique comprenant une turbopompe et une pompe de démarrage en une configuration en série
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
AU2014209091B2 (en) 2013-01-28 2018-03-15 Brett A. BOWAN Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
AU2014225990B2 (en) 2013-03-04 2018-07-26 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
WO2016073252A1 (fr) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Gestion de poussée active d'une turbopompe à l'intérieur d'un circuit de circulation de fluide de travail supercritique dans un système de moteur thermique
EP3121450B1 (fr) * 2015-07-23 2020-09-02 Sulzer Management AG Pompe de transport d'un fluide présentant une viscosité variable
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
MA61232A1 (fr) 2020-12-09 2024-05-31 Supercritical Storage Company Inc Système de stockage d'énergie thermique électrique à trois réservoirs
KR102567992B1 (ko) * 2021-08-09 2023-08-18 터보윈 주식회사 베어링마모요인추력저감보정부가 적용된 공기 압축 수단

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE390366C (de) * 1924-02-18 Paul Joseph Charles Marechal Entlastungsvorrichtung an Turbomaschinen
DE407077C (de) * 1920-11-06 1924-12-10 Paul Joseph Charles Marechal Entlastungsvorrichtung fuer Turbinen
DE539225C (de) * 1931-11-26 Georg Weyland Axialschubentlastung mittels stufenfoermiger Entlastungsscheiben
DE611232C (de) * 1935-03-25 Klein Einrichtung zur Achsschubentlastung an Kreiselpumpen
US2410769A (en) * 1941-05-07 1946-11-05 Vickers Electrical Co Ltd Turbine, turbine type compressor, and the like rotating machine
DE922807C (de) * 1945-03-06 1955-01-24 Aeg Einrichtung zum Ausgleich des Axialschubes mehrstufiger Kreiselpumpen
FR1276208A (fr) * 1960-12-14 1961-11-17 Pompe sans bourrage ni presse-étoupe avec passage du liquide par une section intérieure du palier d'entrée
DE1147120B (de) * 1959-10-28 1963-04-11 Siemens Ag Einrichtung zum Ausgleich des Axialschubes bei einer unter Fluessigkeit arbeitenden Kreiselpumpe
US3393947A (en) * 1966-04-13 1968-07-23 United Aircraft Corp Two-directional axial thrust balancer
DE1940555A1 (de) * 1969-08-08 1971-02-18 Sp K Bjuro Projektirowaniju Ge Zentrifugal-Hermetikpumpe
FR2045276A5 (fr) * 1969-04-02 1971-02-26 United Aircraft Corp
US3614255A (en) * 1969-11-13 1971-10-19 Gen Electric Thrust balancing arrangement for steam turbine
FR2096412A1 (fr) * 1970-06-22 1972-02-18 Borg Warner
FR2264964A1 (fr) * 1974-03-21 1975-10-17 Maschf Augsburg Nuernberg Ag Procédé pour élever la limite dynamique de puissance des turbines et des compresseurs et moyens pour sa mise en oeuvre
FR2362286A1 (fr) * 1976-08-18 1978-03-17 Mitsui Toatsu Chemicals Systeme d'etancheite pour une pompe composite a plusieurs etages
US4170435A (en) * 1977-10-14 1979-10-09 Swearingen Judson S Thrust controlled rotary apparatus
US4493610A (en) * 1981-10-28 1985-01-15 Hitachi, Ltd. Axial thrust balancing system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280750A (en) * 1964-09-17 1966-10-25 Crane Co Motor driven pump
DE2757952C2 (de) * 1977-12-24 1983-02-24 Sihi Gmbh & Co Kg, 2210 Itzehoe Selbstansaugende Kreiselpumpe

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE390366C (de) * 1924-02-18 Paul Joseph Charles Marechal Entlastungsvorrichtung an Turbomaschinen
DE539225C (de) * 1931-11-26 Georg Weyland Axialschubentlastung mittels stufenfoermiger Entlastungsscheiben
DE611232C (de) * 1935-03-25 Klein Einrichtung zur Achsschubentlastung an Kreiselpumpen
DE407077C (de) * 1920-11-06 1924-12-10 Paul Joseph Charles Marechal Entlastungsvorrichtung fuer Turbinen
US2410769A (en) * 1941-05-07 1946-11-05 Vickers Electrical Co Ltd Turbine, turbine type compressor, and the like rotating machine
DE922807C (de) * 1945-03-06 1955-01-24 Aeg Einrichtung zum Ausgleich des Axialschubes mehrstufiger Kreiselpumpen
DE1147120B (de) * 1959-10-28 1963-04-11 Siemens Ag Einrichtung zum Ausgleich des Axialschubes bei einer unter Fluessigkeit arbeitenden Kreiselpumpe
FR1276208A (fr) * 1960-12-14 1961-11-17 Pompe sans bourrage ni presse-étoupe avec passage du liquide par une section intérieure du palier d'entrée
US3393947A (en) * 1966-04-13 1968-07-23 United Aircraft Corp Two-directional axial thrust balancer
FR2045276A5 (fr) * 1969-04-02 1971-02-26 United Aircraft Corp
DE1940555A1 (de) * 1969-08-08 1971-02-18 Sp K Bjuro Projektirowaniju Ge Zentrifugal-Hermetikpumpe
US3614255A (en) * 1969-11-13 1971-10-19 Gen Electric Thrust balancing arrangement for steam turbine
FR2096412A1 (fr) * 1970-06-22 1972-02-18 Borg Warner
FR2264964A1 (fr) * 1974-03-21 1975-10-17 Maschf Augsburg Nuernberg Ag Procédé pour élever la limite dynamique de puissance des turbines et des compresseurs et moyens pour sa mise en oeuvre
FR2362286A1 (fr) * 1976-08-18 1978-03-17 Mitsui Toatsu Chemicals Systeme d'etancheite pour une pompe composite a plusieurs etages
US4170435A (en) * 1977-10-14 1979-10-09 Swearingen Judson S Thrust controlled rotary apparatus
US4493610A (en) * 1981-10-28 1985-01-15 Hitachi, Ltd. Axial thrust balancing system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYDROCARBON PROCESSING, Band 55, Nr. 12, Dezember 1976, Seiten 79-84, Houston, US; E. MAKAY: "How to avoid field problems with ... boiler feed pumps" *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687429A1 (fr) * 1992-02-17 1993-08-20 Alsthom Gec Procede et dispositif pour supprimer l'instabilite d'une turbine a vapeur.
DE4313455A1 (de) * 1993-04-24 1994-10-27 Klein Schanzlin & Becker Ag Radialer Spalt, beispielsweise einer Strömungsmaschine
EP0622525A1 (fr) * 1993-04-24 1994-11-02 KSB Aktiengesellschaft Eléments de structure avec un interstice radial
EP1596069A3 (fr) * 2004-05-10 2010-12-29 Hitachi Industries Co., Ltd. Pompe centrifuge
CN102132008B (zh) * 2008-08-14 2014-02-19 西门子公司 蒸汽涡轮机
EP2154332A1 (fr) * 2008-08-14 2010-02-17 Siemens Aktiengesellschaft Réduction de la charge thermique d'un boîtier extérieur pour une turbomachine
WO2010018021A1 (fr) * 2008-08-14 2010-02-18 Siemens Aktiengesellschaft Réduction de la charge thermique d’un boîtier extérieur pour une turbomachine
RU2451920C1 (ru) * 2010-11-23 2012-05-27 Открытое акционерное общество Научно-производственное объединение "Искра" Экспериментальная установка для исследования модельных ступеней центробежных компрессоров
WO2020065674A1 (fr) * 2018-09-27 2020-04-02 Ksb Tech Pvt. Ltd Pompe à plusieurs étages, à optimisation de poussée axiale
CN113227583A (zh) * 2018-09-27 2021-08-06 Ksb股份有限公司 具有轴向推力优化的多级泵
US11549512B2 (en) 2018-09-27 2023-01-10 KSB SE & Co. KGaA Multistage pump with axial thrust optimization
CN113227583B (zh) * 2018-09-27 2023-08-08 Ksb股份有限公司 具有轴向推力优化的多级泵
EP3896288A1 (fr) * 2020-04-16 2021-10-20 Sulzer Management AG Pompe centrifuge pour transporter un fluide

Also Published As

Publication number Publication date
FI93259C (fi) 1995-03-10
FI93259B (fi) 1994-11-30
FI864381A (fi) 1987-05-28
US4892459A (en) 1990-01-09
CH669241A5 (de) 1989-02-28
FI864381A0 (fi) 1986-10-28
DE3663165D1 (en) 1989-06-08
EP0224764B1 (fr) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0224764A1 (fr) Dispositif compensateur de force axiale pour pompes à fluide
DE69004975T2 (de) Pumpenlaufrad.
DE3244893C2 (de) Axialschublager fuer turbolader
DE1958225C3 (de) Außeneingriffszahnradpumpe
DE2751255A1 (de) Drehbohrer, insbesondere mit wendbaren schneideinsaetzen ausgeruesteter drehbohrer
DE1528700A1 (de) Pumpen mit Motorantrieb
EP1083346B1 (fr) Unité de palier radial axial
DE2602499A1 (de) Mehrstufige pumpe
DE2445849C2 (de) Lagerbuchse für ein hydrostatisches Lager
DE4200687A1 (de) Radiallager
DE69717239T2 (de) Dynamische Fluiddrucklagervorrichtung
DE69716552T2 (de) Dichtung/lagervorrichtung
EP1483081B1 (fr) Broche a frequence rapide dotee d'un palier d'air special
DE1453435C3 (de) Hydraulische Radialkolbenmaschine
DE2828348A1 (de) Schraubenspindelmaschine
DE2539425C2 (fr)
DE10238415B4 (de) Gleitlager für eine Welle eines Abgasturboladers
DE19621773A1 (de) Außendruckluftlagerspindel
EP0461131A1 (fr) Dispositif d'equilibrage de poussees axiales.
EP0529379A1 (fr) Montage de rotor pour turbomachines
DE2660714C2 (fr)
DE1528717B2 (de) Vorrichtung zum ausgleich des axialschubes bei mehrstufigen kreiselpumpen
CH638590A5 (de) Hydrostatische kolbenmaschine.
DE2352520B1 (de) Hydrostatische Kolbenmaschine
DE2125042A1 (de) Strömungsmaschine mit einem Laufrad mit mehreren Kanälen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19870613

17Q First examination report despatched

Effective date: 19880315

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3663165

Country of ref document: DE

Date of ref document: 19890608

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86115684.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051110

Year of fee payment: 20

Ref country code: DE

Payment date: 20051110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051114

Year of fee payment: 20

Ref country code: SE

Payment date: 20051114

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051216

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061112

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20061112

EUG Se: european patent has lapsed
BE20 Be: patent expired

Owner name: *GEBRUDER SULZER A.G.

Effective date: 20061112