WO2010018021A1 - Réduction de la charge thermique d’un boîtier extérieur pour une turbomachine - Google Patents

Réduction de la charge thermique d’un boîtier extérieur pour une turbomachine Download PDF

Info

Publication number
WO2010018021A1
WO2010018021A1 PCT/EP2009/057942 EP2009057942W WO2010018021A1 WO 2010018021 A1 WO2010018021 A1 WO 2010018021A1 EP 2009057942 W EP2009057942 W EP 2009057942W WO 2010018021 A1 WO2010018021 A1 WO 2010018021A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
inner housing
turbomachine according
medium
bore
Prior art date
Application number
PCT/EP2009/057942
Other languages
German (de)
English (en)
Inventor
Rudolf PÖTTER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2011522448A priority Critical patent/JP5221760B2/ja
Priority to EP09806401A priority patent/EP2310633B1/fr
Priority to AT09806401T priority patent/ATE539233T1/de
Priority to CN200980131576.9A priority patent/CN102132008B/zh
Publication of WO2010018021A1 publication Critical patent/WO2010018021A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam

Definitions

  • the invention relates to a turbomachine comprising a rotor formed in a flow direction and rotatable about a rotation axis, an inner housing and an outer housing, wherein the inner housing is arranged around the rotor, wherein the outer housing is arranged around the inner housing, wherein the rotor has a medium-pressure thrust balance piston comprising a arranged around the medium-pressure thrust balance piston shell surface, wherein a pre-chamber between the inner housing and the medium-pressure thrust balance piston is formed, wherein a first steam line is formed for supplying steam into the pre-chamber in the inner housing.
  • Turbomachines are subjected to live steam of high temperature and high pressure and convert the thermal energy of the live steam into mechanical rotational energy.
  • the rotational energy is converted into electrical energy via a generator which is arranged to transmit torque to the turbomachine.
  • the steam flowing into the steam turbine fresh steam usually has a higher temperature than the steam, which exits the steam turbine again.
  • a steam turbine essentially comprises a rotor, an inner housing and optionally an outer housing.
  • the thermal loads of these components are different by the decrease of the temperature of the steam along a flow direction. For example, in high-pressure turbine sections in the inflow region, high-temperature properties are required for the materials
  • thrust balancing pistons are provided, which oppose the pressure caused by the pressure difference across the blading thrust a counter force to maintain the capacity of the thrust bearing.
  • an antechamber is formed between the thrust balance piston and the inner housing, which is acted upon by steam, whereby a force acts on the thrust balance piston and thus on the entire rotor.
  • the steam in this chamber usually has a high temperature and a high pressure.
  • the rotatable rotor is sealed by seals against the inner housing. Despite good seals escapes nevertheless located in the antechamber part of the steam on the seal in a space between the inner housing and
  • Outer housing In general, located in the space between the inner housing and the outer casing of the exhaust steam, which has a lower temperature and a lower pressure compared to the live steam. Due to the comparatively hot vapor flowing out between the thrust balance piston and the inner housing, the outer housing is thermally stressed at this point. Therefore, a higher quality material is selected as the material for the outer casing.
  • the invention begins, whose task is to provide a low-cost steam turbine.
  • a turbomachine comprising a rotor formed in a flow direction and rotatable about a rotation axis, an inner casing and an outer casing, wherein the inner casing is disposed about the rotor, wherein the outer housing is disposed about the inner housing, the rotor having a medium-pressure thrust balance piston comprising a arranged around the medium-pressure thrust balance piston shell surface, wherein a pre-chamber between the inner housing and the medium-pressure thrust balance piston is formed, wherein a first Steam line for supplying steam is formed in the antechamber in the inner housing, wherein in the inner housing an annular chamber is arranged, which is fluidically connected to a Abdampfraum, wherein the annular chamber is arranged opposite the lateral surface.
  • the steam flowing into the gap between the medium-pressure thrust balance piston and the inner housing need not be supplied via an external line, but can be provided by the steam turbine itself, by passing a portion of the exhaust steam to the Abdampfraum after flowing through the live steam through the turbine blading , Most of the exhaust steam is passed as a cold reheater steam to the reheater and heated to a higher temperature.
  • the inner housing has a separation projection which, viewed in the flow direction, is arranged downstream of the medium-pressure thrust balance piston.
  • the prechamber For a force to act on the medium pressure thrust balance piston, it is necessary for the steam to be in a closed space, here the prechamber.
  • the built in this pre-chamber pressure acts directly on the medium-pressure thrust balance piston.
  • the first steam line can be fluidly connected to a HZÜ steam line.
  • a HZÜ steam line is a hot Intermediate superheater steam line understood.
  • the effluent from a high-pressure turbine section steam is passed as a cold reheater steam to a reheater and heated there to a higher temperature and fed as a hot reheater steam of a medium-pressure turbine section again.
  • a hot reheater steam By using the hot reheater steam, a vapor of suitable pressure is available.
  • the first steam line is connected to a space in front of a medium-pressure blading.
  • the steam in this room has a suitable pressure.
  • a first bore in the inner housing is provided, which fluidly connects the Abdampfraum with the annular chamber.
  • a second bore in the inner housing is provided, which connects the first bore with the annular chamber.
  • the first bore is formed substantially parallel to the axis of rotation and the second bore substantially perpendicular to the axis of rotation.
  • 1 shows a part of a steam turbine according to the prior art
  • 2 shows a part of a steam turbine designed according to the invention.
  • FIG. 1 shows a part of a steam turbine according to the prior art.
  • the steam turbine comprises a rotor 2 rotatably mounted about a rotation axis 1.
  • An inner housing 3 is arranged around the rotor 2.
  • an outer housing 4 is arranged.
  • the rotor In a compensating piston area 5, the rotor has a medium-pressure thrust balance piston 6.
  • This medium-pressure thrust balance piston 6 has a larger radius than the rotor 2 located outside the compensating piston area 5.
  • the medium-pressure thrust balance piston 6 has a lateral surface 7 located on the surface.
  • a gap 8 is formed between the lateral surface 7 and the inner housing 3, a gap 8 is formed.
  • a fresh steam flowing into the steam turbine flows in a flow direction 9 through a turbine blading region, not shown, comprising guide vanes and rotor blades.
  • the steam relaxes and cools down on the way in the flow direction 9 and a part of the exhaust steam is guided in an evaporation chamber 11.
  • a hot reheater steam is passed into an antechamber 10. This hot reheater steam exerts a pressure in the pre-chamber 10 on the medium-pressure thrust balance piston 6, which causes a force in the opposite direction to the flow direction.
  • a portion of the located in the prechamber 10 hot reheater steam flows into the gap 8 and flows on the inner casing 3, whereby a thermal load is reached at this point.
  • a seal 14 in particular a labyrinth seal, is arranged. It could also be arranged brush seals.
  • the inner housing 3 has a separation projection 15.
  • the separation projection 15 is also opposite to seals 16 the rotor 2 sealed.
  • the seals 16 may be designed, for example, as labyrinth seals or as brush seals.
  • the part of the steam turbine shown in Figure 2 shows an inventive arrangement.
  • the essential difference between the embodiment according to FIG. 2 and the embodiment according to FIG. 1 is that an annular chamber 17 is provided in the inner housing 3, which is fluidically connected to the exhaust-steam space 11. These are in the
  • Inner housing 3 a first bore 18 and a second bore 19 is provided.
  • the first bore 18 is formed substantially parallel to the rotation axis 1 and the second bore 19 substantially perpendicular to the rotation axis 1.
  • the steam located in the Abdampf syndromem 11 is now passed over the first bore 18 and the second bore 19 to the annular chamber 17.
  • a first part 20 of this steam flows in the direction of the outer housing 4 and a second part 21 of the steam flows in the direction of the prechamber 10.
  • the steam flowing out of the prechamber 10 in a third direction 22 is stopped, as it were, and thus is no longer able to with the temperature of the hot reheat to the outer housing 4 to flow.
  • the annular chamber 17 is in this case arranged opposite the lateral surface 7. Furthermore, a plug 23 is provided which seals the first bore 18. The annular chamber 17 is hereby rotated in the inner housing 3. As a result of the arrangement according to the invention shown in FIG. 2, the hot steam contained in the first steam line 12 becomes hot
  • Reheater steam which has a lower pressure than the cold reheater steam, blocked by the outer housing 4.
  • the recess 25 located in the rotor 2 is referred to as a small intermediate floor.
  • the seal 16 is well sealed in the small intermediate bottom 24, for example with an abrasive layer or with a brush seal.
  • the first bore 18 and the second bore 19 are to be set, that there is no collision with the first steam line 12.
  • the exhaust temperature of the exhaust steam increases, but remains significantly lower than the temperature of the steam in the first steam line 12, which is referred to as a hot reheater temperature.
  • the pressure in front of and behind the medium-pressure thrust balance piston 6 is almost the same for this operating condition. Because of the axial arrangement of the annular chamber 17, the exhaust steam flows mainly into the pre-chamber 10.
  • the outer housing 4 is similarly loaded as the outer housing according to FIG.
  • the ring chamber 17 therefore prevents the temperature of the hot reheater steam in the first steam line 12 from influencing the outer casing material. As a result, a cheaper steam turbine can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

L’invention concerne une turbomachine comprenant un piston de compensation du glissement à moyenne pression (6). Selon l’invention, la sortie entre le rotor (2) et le boîtier intérieur (3) de la vapeur qui se trouve devant le piston de compensation du glissement (6) est empêchée au moyen d’une vapeur de décharge qui se trouve dans une chambre annulaire (17).
PCT/EP2009/057942 2008-08-14 2009-06-25 Réduction de la charge thermique d’un boîtier extérieur pour une turbomachine WO2010018021A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011522448A JP5221760B2 (ja) 2008-08-14 2009-06-25 ターボ機械用アウターハウジングの熱負荷の軽減法
EP09806401A EP2310633B1 (fr) 2008-08-14 2009-06-25 Réduction de la charge thermique d'un boîtier extérieur pour une turbomachine
AT09806401T ATE539233T1 (de) 2008-08-14 2009-06-25 Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine
CN200980131576.9A CN102132008B (zh) 2008-08-14 2009-06-25 蒸汽涡轮机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08014549.3 2008-08-14
EP08014549A EP2154332A1 (fr) 2008-08-14 2008-08-14 Réduction de la charge thermique d'un boîtier extérieur pour une turbomachine

Publications (1)

Publication Number Publication Date
WO2010018021A1 true WO2010018021A1 (fr) 2010-02-18

Family

ID=40639730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/057942 WO2010018021A1 (fr) 2008-08-14 2009-06-25 Réduction de la charge thermique d’un boîtier extérieur pour une turbomachine

Country Status (5)

Country Link
EP (2) EP2154332A1 (fr)
JP (1) JP5221760B2 (fr)
CN (1) CN102132008B (fr)
AT (1) ATE539233T1 (fr)
WO (1) WO2010018021A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431570A1 (fr) * 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Turbine à vapeur comprenant un piston d'équilibrage de poussée et blocage de vapeur saturé
JP5917324B2 (ja) * 2012-07-20 2016-05-11 株式会社東芝 タービンおよびタービン運転方法
EP2840229A1 (fr) * 2013-08-23 2015-02-25 Siemens Aktiengesellschaft Guide d'écoulement à l'intérieur d'un joint d'étanchéité pour une turbine à vapeur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224764A1 (fr) * 1985-11-27 1987-06-10 GebràœDer Sulzer Aktiengesellschaft Dispositif compensateur de force axiale pour pompes à fluide
WO2001016467A1 (fr) * 1999-08-27 2001-03-08 Siemens Aktiengesellschaft Turbine et procede pour evacuer du fluide de fuite
DE19951570A1 (de) * 1999-10-27 2001-05-03 Abb Patent Gmbh Einrichtung zur Kompensierung des Axialschubs bei Turbomaschinen
EP1624155A1 (fr) * 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Turbine à vapeur et procédé d'opération d'une turbine à vapeur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424138A1 (de) * 1984-06-30 1986-01-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Luftspeichergasturbine
DE4313455A1 (de) * 1993-04-24 1994-10-27 Klein Schanzlin & Becker Ag Radialer Spalt, beispielsweise einer Strömungsmaschine
US6036433A (en) * 1998-06-29 2000-03-14 General Electric Co. Method of balancing thrust loads in steam turbines
EP1806476A1 (fr) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Turbine pour une centrale thermique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224764A1 (fr) * 1985-11-27 1987-06-10 GebràœDer Sulzer Aktiengesellschaft Dispositif compensateur de force axiale pour pompes à fluide
WO2001016467A1 (fr) * 1999-08-27 2001-03-08 Siemens Aktiengesellschaft Turbine et procede pour evacuer du fluide de fuite
DE19951570A1 (de) * 1999-10-27 2001-05-03 Abb Patent Gmbh Einrichtung zur Kompensierung des Axialschubs bei Turbomaschinen
EP1624155A1 (fr) * 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Turbine à vapeur et procédé d'opération d'une turbine à vapeur

Also Published As

Publication number Publication date
JP2011530670A (ja) 2011-12-22
JP5221760B2 (ja) 2013-06-26
EP2310633A1 (fr) 2011-04-20
CN102132008A (zh) 2011-07-20
EP2154332A1 (fr) 2010-02-17
ATE539233T1 (de) 2012-01-15
CN102132008B (zh) 2014-02-19
EP2310633B1 (fr) 2011-12-28

Similar Documents

Publication Publication Date Title
EP1774140B1 (fr) Turbine a vapeur et procede pour faire fonctionner une turbine a vapeur
WO2013029911A1 (fr) Refroidissement pour une turbomachine
EP2596213B1 (fr) Turbine à vapeur avec un refroidissement interne
CH702000A2 (de) Wirbelkammern zur Spaltströmungssteuerung.
WO2017029008A1 (fr) Refroidissement de rotor pour turbine à vapeur
EP2719869A1 (fr) Étanchéification axiale dans une structure de boîtier pour une turbomachine
EP2718545B1 (fr) Turbine à vapeur comprenant un piston de compensation
EP2310633B1 (fr) Réduction de la charge thermique d'un boîtier extérieur pour une turbomachine
EP1206627A1 (fr) Turbine et procede pour evacuer du fluide de fuite
EP2997236B1 (fr) Turbine à vapeur
CH708987A2 (de) Dampfturbine und Verfahren zur Montage derselben.
EP1731715A1 (fr) Transition d'une chambre de combustion à une turbine
EP2511485A1 (fr) Turbomachine, installation à turbine à vapeur, et procédé de chauffage d'un arbre de turbine à vapeur
DE112019001682T5 (de) Dampfturbinenanlage und Kombikraftwerk
EP3183426B1 (fr) Refroidissement contrôlé d'arbres de turbines
EP3109407A1 (fr) Dispositif de stator pour une turbomachine comprenant un dispositif de carter et plusieurs aubes directrices
EP3445948B1 (fr) Turbine à vapeur
EP2211017A1 (fr) Rotor doté d'un espace creux pour une turbomachine
EP1598537B1 (fr) Corps d'une turbine à vapeur et procédé de refroidissement d'une turbine à vapeur
EP2859192A1 (fr) Segment d'entrée pour une turbomachine
EP2840229A1 (fr) Guide d'écoulement à l'intérieur d'un joint d'étanchéité pour une turbine à vapeur
EP2025873A1 (fr) Introduction de vapeur pour une turbine à vapeur
WO2017021067A1 (fr) Conception de turbine dans une zone d'admission de surcharge
EP2236761A1 (fr) Support d'aube directrice

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131576.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009806401

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011522448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE