EP0222780A1 - Windenergiekonverter - Google Patents

Windenergiekonverter

Info

Publication number
EP0222780A1
EP0222780A1 EP86901872A EP86901872A EP0222780A1 EP 0222780 A1 EP0222780 A1 EP 0222780A1 EP 86901872 A EP86901872 A EP 86901872A EP 86901872 A EP86901872 A EP 86901872A EP 0222780 A1 EP0222780 A1 EP 0222780A1
Authority
EP
European Patent Office
Prior art keywords
wing
propulsion
wind energy
energy converter
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86901872A
Other languages
English (en)
French (fr)
Inventor
Michael Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herter Rotor Marketing Division & Co Beteiligungs GmbH
Original Assignee
Herter Rotor Marketing Division & Co Beteiligungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herter Rotor Marketing Division & Co Beteiligungs GmbH filed Critical Herter Rotor Marketing Division & Co Beteiligungs GmbH
Publication of EP0222780A1 publication Critical patent/EP0222780A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/72Adjusting of angle of incidence or attack of rotating blades by turning around an axis parallel to the rotor centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/08Stack or chimney with fluid motor

Definitions

  • the invention relates to a wind energy converter with a rotor with a vertical axis of rotation and with at least one approximately vertical propulsion wing, which is each freely pivotable on at least one rotor arm about an approximately vertical pivot axis, and with a balancing mass rigidly connected to the propulsion wing and arranged in rotation in front of the latter .
  • Wind energy converters with a vertical rotor axis of rotation are known in numerous embodiments. They offer the advantage that they are independent of the wind direction and can therefore be carried out with relatively little construction effort, since no adjustment is necessary in the event of a change in the wind direction.
  • a fundamental disadvantage of such wind energy converters is that the blowing angle of the propulsion wing changes continuously between a largest and a smallest value during each rotor revolution. This change in the blowing angle increases with lower high-speed runs.
  • the high speed number is the ratio of the wind speed to the peripheral speed of the rotor.
  • Angle of attack at the changing angle of attack leads to a considerable reduction in the efficiency of the wind energy converter, since the greatest possible propulsive force at the propulsion wing can only be achieved if the angle of attack assumes the optimum value for the respective current angle of attack.
  • Asymmetrical wing profiles which result in a higher propulsive force and thus a better efficiency of the rotor, cannot be used in the area of small high-speed runs, because the flow would be completely cut off if the change in the blowing angle were large. For this reason, only symmetrical airfoil profiles could be used in these areas, but they have poor efficiency.
  • the propulsion wings are freely pivotably mounted on the rotor arm so that they can adjust to the constantly changing blowing angle with each rotor revolution. Since the swivel axis of the propulsion wing lies approximately on the leading edge of the wing and thus in front of the center of gravity of the wing, there is one Compensating mass provided in front of the pivot axis, which cancels the influence of centrifugal force; the swivel axis lies in the overall center of mass of the body consisting of the propulsion wing and the balancing mass.
  • the centrifugal force which is dependent on the rotational speed, therefore has no influence on the angle of attack of the propulsion wing; the .
  • the angle of attack is only adjusted to a value under the effect of the attacking flow forces, which, however, does not result in an optimal propulsive force and therefore no favorable efficiency. Therefore, the drive wing of this known wind energy converter can also be designed only with a symmetrical wing profile, which likewise results in a very unfavorable efficiency.
  • the object of the invention is therefore to design a wind energy converter of the type mentioned at the outset in such a way that self-starting is ensured and that a low efficiency is achieved, in particular in the case of small and medium-sized high-speed loads.
  • the propulsion wing has an asymmetrical airfoil profile and that the overall center of mass of the body consisting of the propulsion wing and the balancing mass is in the direction of rotation in front of the pivot axis.
  • the lift force acting on the asymmetrical wing profile and the aerodynamic moment are linearly dependent on the angle of attack in the area of the adjacent flow.
  • a centrifugal force acts on the propulsion wing. Since the lift, the wing moment and the centrifugal force depend on the velocities, a balance can be achieved at any speed and therefore at every blowing angle that occurs during the rotation, which can still be influenced by the displacement of the balancing mass. Even in the range of medium to small high-speed numbers, the flow is reliably prevented by detaching the angle of attack from the respective blowing conditions. This is the only way to make it possible to use asymmetrical airfoil profiles, which have a significant gain in performance compared to symmetrical profiles, since significantly higher lift coefficients are achieved with the same blowing angles.
  • the total center of gravity is at most 20% of the mean wing depth in front of the pivot axis.
  • FIG. 1 in a spatial, simplified representation of a wind energy converter
  • Fig. 2 is an enlarged section along the line II - II in Fig. 1 and
  • FIG. 3 shows a section along the line III-III in FIG.
  • the wind energy converter shown in Fig. 1 carries on a mast 1 a rotor 2 with a vertical axis of rotation, which in the illustrated embodiment has two horizontal arms 3, at the end of which a propulsion flue 4 is attached.
  • the propulsion wing 4 (Fig. 2), which can be carried out in any conventional construction, for example made of fiber-reinforced plastic, metal or wood construction, is arranged vertically and is pivotally mounted in the middle on a vertical position shaft 5, which with the rotor arm 3 with - 6 -
  • a screw 6 is connected (Fig. 3).
  • the bearing shaft is supported at its two ends on a force introduction rib 7 of the propulsion wing 4.
  • the swivel axis 8 formed dadurc lies approximately on the leading edge of the propulsion wing 4 Limits 9, which are arranged at an angular distance of approximately 30 ° on both sides of the fastening end of the rotor arm 3.
  • a balancing mass 11 rigidly connected to the propelling wing 4 is arranged, which ensures that the total center of gravity 1 (highlighted in FIG. 2) of the body consisting of the propelling wing 4 and the balancing mass 11 in Direction of rotation of the rotor 2 lies in front of the pivot axis 8.
  • the size and the effective lever arm of the balancing mass are chosen so that the distance between the total mass point 12 to the pivot axis 8 is at most 20% of the mean wing depth of the propulsion wing 4.
  • the propulsion wing 4 has an asymmetrical airfoil profile, the propulsion efficiency of which is particularly favorable.
  • an elastic slot cover 13 is advantageously provided.
  • the rotor 2 can be designed with any number of drive blades 4 and rotor arms 3, for example also as a single-blade rotor. Even with small wind the rotor 2 starts up without drive aid itself. It goes without saying that the total mass of the propulsion aircraft 4 with the balancing mass 11 should be kept as low as possible in order to avoid excessive dynamic mass forces. The simple change in the position of the balancing mass 11 enables an optimal adaptation to the properties of the wing shape used in each case.
  • the pivot axis 8 can be approximately in or just behind the leading edge of the wing. Depending on the shape of the wing (e.g. negative or positive arrow), the pivot axis 8 can also be located in the middle of the propulsion wing 4 in front of or further behind the leading edge of the wing.

Description

Windenergiekonverter
Die Erfindung betrifft einen Windenergiekonverter mit einem Rotor mit senkrechter Drehachse und mit mindestens einem angenähert senkrechten Vortriebsflügel, der jeweils an mindestens einem Rotorarm um eine angenähert senkrecht Schwenkachse frei schwenkbar gelagert ist, und mit einer mit dem Vortriebsflügel starr verbundenen, in Drehrichtun vor diesem angeordneten Ausgleichsmasse.
Windenergiekonverter mit senkrechter Rotordrehachse sind in zahlreichen Ausführungsformen bekannt. Sie bieten den Vorteil, daß sie von der Windrichtung unabhänqiq sind un daher mit verhältnismäßig geringem Bauaufwand ausgeführt werden können, da keine Verstellung bei einer Windrichtu änderung erforderlich ist. Ein grundsätzlicher Nachteil artiger Windenergiekonverter besteht darin, daß sich der Anblaswinkel des Vortriebflügels während jeder Rotorum¬ drehung zwischen einem größten und einem kleinsten Wert kontinuierlich ändert. Diese Änderunq des Anblaswinkels nimmt mit niedrigeren Schnellaufzahlen zu. Die Schnell- laufzahl ist das Verhältnis der Windgeschwindigkeit zu der Umfangsgeschwindigkeit des Rotors.
Mechanische oder sonstige Zwangssteuerungen, die den An¬ stellwinkel der Vortriebsflügel bei jeder RotorUmdrehung zur Anpassung an den Anblaswinkel verändern, sind mecha¬ nisch sehr aufwendig und benötigen verhältnismäßig viel Energie; außerdem muß bei dieser Steuerung die jeweilige Windrichtung berücksichtigt werden.
Eine starre Anbringung der Vortriebsflügel an den Rotor- armen und somit der Verzicht auf eine Anpassung des
Anstellwinkels an den sich ändernden Anblaswinkel führt zu einer erheblichen Verringerung des Wirkungsgrades des Windenergiekonverters, da eine größtmögliche Vortriebs¬ kraft am Vortriebsflügel nur erreicht werden kann, wenn der Anstellwinkel den für den jeweiligen augenblicklichen Anblaswinkel optimalen Wert einnimmt. Asymmetrische Flü¬ gelprofile, die eine höhere Vortriebskraft und damit eine besseren Wirkungsgrad des Rotors ergeben, können im Berei kleiner Schnellaufzahlen nicht verwendet werden, weil bei der großen Anblaswinkeländerung die Strömung vollständig abreißen würde. Deshalb konnten in diesen Bereichen bis¬ her nur symmetrische Flügelprofile verwendet werden, die jedoch einen schlechten Wirkungsgrad haben. Auch bei die¬ sen besteht im Bereich kleiner bis mittlerer Schnellauf- zahlen noch der Nachteil, daß die Änderung des Anblas¬ winkels zumindest teilweise zu einem Ablösen der Strömun und somit zu einem erhöhten Strömungswiderstand bei teil weise wegfallenden Vortrieb führt, wodurch der Gesamt¬ wirkungsgrad des Windenergiekonverters erheblich herab- gesetzt wird.
Bei einem bekannten Windenergiekonverter der eingangs ge nannten Gattung (DE-AS 26 02 380) sind die Vortriebsflüg frei schwenkbar am Rotorarm gelagert, damit sie sich bei jeder RotorUmdrehung auf den sich ständig ändernden An¬ blaswinkel einstellen können. Da die Schwenkachse des Vortriebflügels etwa an der Flügelvorderkante und somit vor dem Massenschwerpunkt des Flügels liegt, ist eine Ausgleichsmasse vor der Schwenkachse vorgesehen, die den Fliehkrafteinfluß aufhebt; die Schwenkachse liegt im Gesamtmassenschwerpunkt des aus dem Vortriebflügel und der Ausgleichsmasse bestehenden Körpers.
Bei diesem bekannten Windenergiekonverter bleibt die von der Drehzahl abhängige Fliehkraft somit ohne Ein¬ fluß auf den Anstellwinkel des Vortriebsflügels; der . Anstellwinkel stellt sich nur unter der Wirkung der angreifenden Strömungskräfte auf einen Wert ein, der jedoch keine optimale Vortriebskraft und somit keinen günstigen Wirkungsgrad ergibt. Deshalb können die Vor¬ triebsflügel dieses bekannten Windenergiekonverters auch nur mit symmetrischem Flügelprofil ausgeführt werden, wodurch sich ebenfalls ein sehr ungünstiger Wirkungsgrad ergibt.
Aufgabe der Erfindung ist es daher, einen Windenergie¬ konverter der eingangs genannten Gattung so auszubilden, daß ein Selbstanlauf gewährleistet ist und daß ein gün¬ stiger Wirkungsgrad insbesondere bei kleinen und mittle ren Schnellaufzahlen erreicht wird.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Vortriebsflügel ein asymmetrisches Tragflügelprofil aufweist und daß der Gesamtmassenschwerpunkt des aus dem Vortriebsflügel und der Ausgleichsmasse bestehenden Körpers in Drehrichtung vor der Schwenkachse liegt.
Die Verlagerung des Gesamtmassenschwerpunktes vor die Schwenkachse führt dazu, daß der Vortriebsflügel mit zunehmender Drehzahl einen größeren Anstellwinkel ein¬ zunehmen sucht. Den durch die Fliehkrafteinwirkung bei erhöhter Drehzahl auftretenden Kräfte wirken die Strö¬ mungskräfte entgegen; bei einem Kräftegleichgewicht nimmt der Vortriebsflügel für jeden augenblicklichen Anblaswinkel den jeweils günstigsten Anstellwinkel ein. Dadurch und durch die jetzt mögliche Verwendung eines asymmetrischen Tragflügelprofils wird eine wesentliche Steigerung des Wirkungsgrades erreicht.
Die am asymmetrischen Tragflügelprofil angreifende Auf- triebskraft und das aerodynamische Moment sind im Bereich anliegender Strömung vom Anblaswinkel linear abhängig. Zugleich greift an dem Vortriebsflügel eine Fliehkraft an. Da der Auftrieb, das Flügelmoment und die Fliehkraft von den jedweiligen Geschwindigkeiten quadratisch abhän- gen, läßt sich bei jeder Geschwindigkeit und somit bei jedem während des Umlaufs vorkommenden Anblaswinkel ein Gleichgewicht erzielen, das durch die Verlagerung der Ausgleichsmasse noch beeinflußt werden kann. Auch im Bereich mittlerer bis kleiner Schnellaufzahlen wird ein Ablösen der Strömung zuverlässig dadurch vermieden, daß der Anstellwinkel den jeweiligen Anblasverhältnissen nachgefahren wird. Erst dadurch wird es möglich, asym¬ metrische Tragflügelprofile zu verwenden, die gegenüber symmetrischen Profilen einen deutlichen Leistungsgewinn aufweisen, da wesentlich höhere Auf riebsbeiwerte bei gleichen Anblaswinkeln erreicht werden.
Die Verwendung von asymmetrischen Flügelprofilen für die Vortriebsflügel von Windenergiekonvertern ist zwar be- kannt (DE-OS 28 16 026); jedoch sind diese Vortriebsflügel starr an den Rotorarmen befestigt und ermöglichen deshalb keine Anpassung an den sich ändernden Anblaswinkel. Des¬ halb wird bei diesem bekannten Windenergiekonverter auch nur ein sehr spezielles Flügelprofil vorgesehen, das gegen Änderungen des Anblaswinkels weniger empfindlich ist, dessen Wirkungsgrad jedoch schlecht ist.
Gemäß einer bevorzugten Ausführungsform des Erfindungs- gedankens ist vorgesehen, daß der Gesamtsσhwerpunkt höchstens um 20 % der mittleren Flügeltiefe vor der Schwenkachse liegt.
Weitere vorteilhafte Ausgestaltungen des Erfindungsgedan kens sind Gegenstand weiterer Unteransprüche.
Die Erfindung wird nachfolgend an einem Ausführungs¬ beispiel näher erläutert, das in der Zeichnung darge- stellt ist. Es zeigt:
Fig. 1 in räumlicher, vereinfachter Darstellungsweise einen Windenergiekonverter, Fig. 2 einen vergrößerten Schnitt längs der Linie II - II in Fig. 1 und
Fig. 3 einen Schnitt längs der Linie III - III in Fig
Der in Fig. 1 gezeigte Windenergiekonverter trägt an ein Mast 1 einen Rotor 2 mit senkrechter Drehachse, der bei dem dargestellten Ausführungsbeispiel zwei waagrechte R arme 3 aufweist, an deren Ende jeweils ein Vortriebsflü 4 angebracht ist.
Der Vortriebsflügel 4 (Fig. 2) , der in jeder herkömmlic Bauweise ausgeführt sein kann, beispielsweise aus Kunst Faserverbund, Metall- oder Holzbauweise, ist senkrecht geordnet und ist in der Mitte an einer senkrechten Lage welle 5, schwenkbar gelagert, die mit dem Rotorarm 3 mit - 6 -
einer Schraube 6 verbunden ist (Fig. 3) . Die Lagerwelle ist an ihren beiden Enden jeweils an einer Krafteinlei¬ tungsrippe 7 des Vortriebsflügels 4 gelagert.* Die dadurc gebildete Schwenkachse 8 liegt angenähert an der Flügel¬ vorderkante des Vortriebsflügels 4. Die freie Schwenkbar keit des Vortriebsflügels 4 um die Schwenkachse 8 wird nur durch Anschläge 9 begrenzt, die in einem Winkelab¬ stand von etwa 30°beiderseits des Befestigungsendes des Rotorarms 3 angeordnet sind.
In einer vor der Flügelvorderkante vorspringenden Flügel nase 10 ist eine mit dem Vortriebsflügel 4 starr verbun¬ dene Ausgleichsmasse 11 angeordnet, die dafür sorgt, daß der (in Fig. 2 hervorgehobene) Gesamtmassenschwerpunkt 1 des aus dem Vortriebsflügel 4 und der Ausgleichsmasse 11 bestehenden Körpers in Drehrichtung des Rotors 2 vor der Schwenkachse 8 liegt.
Die Größe und der wirksame Hebelarm der Ausgleichsmasse werden so gewählt, daß der Abstand des Gesamtmassenschwe punktes 12 zu der Schwenkachse 8 höchstens 20% der mittl ren Flügeltiefe des Vortriebsflügels 4 beträgt.
Wie man aus Fig. 2 erkennt, hat der Vortriebs lügel 4 ein asymmetrisches Tragflügelprofil, dessen Vortriebs¬ wirkungsgrad besonders günstig ist. Am Übergang vom Roto arm 3 zu der Verkleidung der vorspringenden Flügelnase 1 bzw. zum Vortriebsflügel 4 ist zweckmäßigerweise eine elastische Schlitzverkleidung 13 vorgesehen.
Der Rotor 2 kann mit einer beliebigen Anzahl von Vortrie flügeln 4 und Rotorarmen 3 ausgeführt werden, beispiels¬ weise auch als Einflügelrotor. Auch bei kleinen Windge- schwindigkeiten läuft der Rotor 2 ohne Antriebshilfe selbst an. Es versteht sich, daß die Gesamtmasse des Vortriebsflügeis 4 mit der Ausgleichsmasse 11 zur Ver¬ meidung von zu großen dynamischen Massenkräften möglichst gering gehalten werden soll. Die einfache Veränderung der Lage der Ausgleichsmasse 11 ermöglicht eine optimale Anpassung an die Eigenschaften der jeweils verwendeten Flügelform.
Die Schwenkachse 8 kann angenähert in oder kurz hinter der Flügelvorderkante liegen. Je nach der Flügelform (z.B. negativ oder positiv gepfeilt) kann die Schwenk¬ achse 8 in mittlerer Höhe des Vortriebsflügels 4 auch vor oder weiter hinter der Flügelvorderkante liegen.

Claims

Windenergiekonverter
P a t e n t a n s p r ü c h e
1 , Windenergiekonverter mit einem Rotor mit senkrechter Drehachse und mit mindestens einem angenähert senk¬ rechten Vortriebsflügel, der jeweils an mindestens einem Rotorarm um eine angenähert senkrechte Schwenk- achse frei schwenkbar gelagert ist, und mit einer mit dem Vortriebsflügel starr verbundenen, in Drehrichtung vor diesem angeordneten Ausgleichsmasse, dadurch ge¬ kennzeichnet, daß der Vortriebsflügel (4) ein asymmet¬ risches Tragflügelprofil aufweist und daß der Gesamt- massenschwerpunkt (12) des aus dem Vortriebsflügel (4) und der Ausgleichsmasse (11) bestehenden Körpers in Drehrichtung vor der Schwenkachse (8) liegt.
2. Windenergiekonverter nach Anspruch 1 , dadurch gekenn- zeichnet, daß der Gesamtmassenschwerpunkt (12) höch¬ stens um 20% der mittleren Flügeltiefe vor der Schwenk achse (8) liegt.
3. Windenergiekonverter nach Anspruch 1, dadurch gekenn- zeichnet, daß für den Vortriebsflügel (4) eine mecha¬ nische Schwenkwinkelbegrenzung (9) vorgesehen ist.
4. Windenergiekonverter nach Anspruch 1 , dadurch gekenn¬ zeichnet, daß die Ausgleichsmasse (11) in einer vor de Flügelvorderkante vorspringenden Flügelnase (10) unter gebracht ist.
EP86901872A 1985-04-04 1986-03-27 Windenergiekonverter Withdrawn EP0222780A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3512420A DE3512420C1 (de) 1985-04-04 1985-04-04 Windenenergiekonverter
DE3512420 1985-04-04

Publications (1)

Publication Number Publication Date
EP0222780A1 true EP0222780A1 (de) 1987-05-27

Family

ID=6267352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86901872A Withdrawn EP0222780A1 (de) 1985-04-04 1986-03-27 Windenergiekonverter

Country Status (10)

Country Link
US (1) US4799860A (de)
EP (1) EP0222780A1 (de)
JP (1) JPS62502416A (de)
KR (1) KR880700165A (de)
CN (1) CN1004092B (de)
AU (1) AU5661886A (de)
DE (1) DE3512420C1 (de)
DK (1) DK581186A (de)
ES (1) ES296635Y (de)
WO (1) WO1986005846A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI80506C (fi) * 1987-07-21 1990-06-11 Reijo Valtonen Vindkraftstationskonstruktion.
AU631500B2 (en) * 1990-07-24 1992-11-26 Brian Kinloch Kirke Improved variable pitch vertical axis wind turbine
US5057696A (en) * 1991-01-25 1991-10-15 Wind Harvest Co., Inc. Vertical windmill with omnidirectional diffusion
GB9302648D0 (en) * 1993-02-10 1993-03-24 Farrar Austin P Wind powered turbine
DE19501036A1 (de) * 1995-01-16 1995-07-13 Richter Wolfgang Radial durchströmter Windenergie-Konverter mit vertikaler Drehachse
US6543999B1 (en) 2002-02-15 2003-04-08 James Van Polen Windmill
CN1719023B (zh) * 2005-07-27 2010-05-26 王永彰 阻力和升力复合风动力装置
US7608875B2 (en) * 2005-11-30 2009-10-27 Aptina Imaging Corporation Method and apparatus for blocking light to peripheral circuitry of an imager device
CN100360691C (zh) * 2006-03-14 2008-01-09 淄博宜龙化工有限公司 一种以淀粉和腐殖酸盐制造的球团粘合剂及其制法
DE102006044240A1 (de) * 2006-09-15 2008-03-27 Tassa Gmbh Windkraftmaschine
CN102562442B (zh) * 2012-02-07 2015-09-16 秦皇岛风日和科技有限公司 垂直轴风力发电机叶片
RU2599097C2 (ru) * 2014-04-02 2016-10-10 Микаил Гаджимагомедович Вердиев Преобразователь энергии движущейся среды
CN105275749B (zh) * 2015-11-15 2017-11-24 吉林大学 一种立式摆动风力发电装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR530231A (fr) * 1921-01-27 1921-12-17 Moteur à vent
FR1341652A (fr) * 1962-09-20 1963-11-02 Turbine et bateau à turbine à vent
FR2298706A1 (fr) * 1975-01-22 1976-08-20 Sicard Charles Dispositif tournant actionne par un fluide en mouvement
US4105363A (en) * 1976-06-14 1978-08-08 Loth John Lodewyk Overspeed control arrangement for vertical axis wind turbines
CH598489A5 (en) * 1976-07-16 1978-04-28 Donax Sa Vertical axis windmill with balanced vanes
FR2392249A1 (fr) * 1977-05-23 1978-12-22 Monserie Philippe Eolienne omnidirectionnelle a action multiple
CA1045038A (en) * 1977-06-06 1978-12-26 James Cameron Vertical axis wind turbine
GB1599653A (en) * 1977-07-20 1981-10-07 Evans F C Form of windmill
DE2816026A1 (de) * 1978-04-13 1979-10-25 Univ Gakko Hojin Tokai Windkraftmaschine mit vertikaler achse
FR2481756A1 (fr) * 1979-11-21 1981-11-06 Courcel Daniel Dispositifs de regulation automatique et de protection des pales du rotor d'aerogenerateurs a axes verticaux
US4334823A (en) * 1980-12-16 1982-06-15 Sharp Peter A Wind or fluid current turbine
US4415312A (en) * 1982-03-11 1983-11-15 Wixlin, Inc. Transverse axis fluid turbine
FR2541733A1 (fr) * 1982-05-26 1984-08-31 Marie Jean Pales mobiles pour demarrage automatique des " panemones " type " darrieus " et eoliennes s'appliquant a ce procede
DE3304944C2 (de) * 1983-02-12 1986-03-13 Erich Herter Windturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8605846A1 *

Also Published As

Publication number Publication date
DE3512420C1 (de) 1986-09-11
DK581186D0 (da) 1986-12-03
CN86103147A (zh) 1987-05-13
ES296635U (es) 1988-10-16
WO1986005846A1 (en) 1986-10-09
JPS62502416A (ja) 1987-09-17
DK581186A (da) 1986-12-03
CN1004092B (zh) 1989-05-03
US4799860A (en) 1989-01-24
KR880700165A (ko) 1988-02-20
ES296635Y (es) 1989-04-16
AU5661886A (en) 1986-10-23

Similar Documents

Publication Publication Date Title
DE2726589C2 (de)
DE2602380C3 (de) Drehvorrichtung, die durch ein in Bewegung befindliches Fluid wie z.B. Wasser oder Luft, angetrieben wird
DE2735709A1 (de) Windturbinenanlage
WO2008141763A2 (de) Trägerarm für die flügel von windturbinen mit senkrechter drehachse
EP0222780A1 (de) Windenergiekonverter
EP2594784A2 (de) Vertikalwindturbine und Rotorblatt hierfür
DE3227700A1 (de) Windenergiekonverter
DE102019113548A1 (de) Tragwerkstruktur für ein Fluggerät und Fluggerät mit einer solchen
DE3315439C2 (de)
DE102011122140A1 (de) Delta-Wirbelstromgeneratoren
WO1996001368A1 (de) Windenergiekonverter mit vertikaler drehachse
DE2757266C2 (de) Windturbinenanlage mit Hauptrotor und einem oder mehreren Anlaufhilferotoren
DE2657714A1 (de) Auftriebsvorrichtung fuer ein tragfluegel-flugzeug
EP2223853A1 (de) Strömungsdynamische Fläche mit einer von einer durch die angeströmte Fläche induzierten Strömung angetriebenen Turbine
EP0282790A2 (de) Flügelrad
EP0193624A1 (de) Windkraftantrieb
CH700422B1 (de) Axial durchströmte Windturbine.
EP0291002B1 (de) Windradflügel
DE3905337A1 (de) Verfahren zur windkonzentrierung an turbowindrotoren mit horizontaler achse unter anpassung der rotorfluegel an die konzentrationszone
EP0082378A2 (de) Vorrichtung zur Energiegewinnung
DE4442863A1 (de) Flügel mit variabler Krümmung für Windturbinen mit Drehachse im wesentlichen rechtwinklig zur Windrichtung
DE4337479C1 (de) Windenergieanlage
EP0276764A2 (de) Windturbine
DE4202649A1 (de) Windkonverter, insbesondere fuer windschwache gebiete
DE2336317C3 (de) Laufrad einer Pumpenturbine der Francis-Bauart

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870402

17Q First examination report despatched

Effective date: 19880714

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900712

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARTIN, MICHAEL