EP0222780A1 - Wind energy converter - Google Patents

Wind energy converter

Info

Publication number
EP0222780A1
EP0222780A1 EP86901872A EP86901872A EP0222780A1 EP 0222780 A1 EP0222780 A1 EP 0222780A1 EP 86901872 A EP86901872 A EP 86901872A EP 86901872 A EP86901872 A EP 86901872A EP 0222780 A1 EP0222780 A1 EP 0222780A1
Authority
EP
European Patent Office
Prior art keywords
wing
propulsion
wind energy
energy converter
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86901872A
Other languages
German (de)
French (fr)
Inventor
Michael Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herter Rotor Marketing Division & Co Beteiligungs GmbH
Original Assignee
Herter Rotor Marketing Division & Co Beteiligungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herter Rotor Marketing Division & Co Beteiligungs GmbH filed Critical Herter Rotor Marketing Division & Co Beteiligungs GmbH
Publication of EP0222780A1 publication Critical patent/EP0222780A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/72Adjusting of angle of incidence or attack of rotating blades by turning around an axis parallel to the rotor centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/08Stack or chimney with fluid motor

Definitions

  • the invention relates to a wind energy converter with a rotor with a vertical axis of rotation and with at least one approximately vertical propulsion wing, which is each freely pivotable on at least one rotor arm about an approximately vertical pivot axis, and with a balancing mass rigidly connected to the propulsion wing and arranged in rotation in front of the latter .
  • Wind energy converters with a vertical rotor axis of rotation are known in numerous embodiments. They offer the advantage that they are independent of the wind direction and can therefore be carried out with relatively little construction effort, since no adjustment is necessary in the event of a change in the wind direction.
  • a fundamental disadvantage of such wind energy converters is that the blowing angle of the propulsion wing changes continuously between a largest and a smallest value during each rotor revolution. This change in the blowing angle increases with lower high-speed runs.
  • the high speed number is the ratio of the wind speed to the peripheral speed of the rotor.
  • Angle of attack at the changing angle of attack leads to a considerable reduction in the efficiency of the wind energy converter, since the greatest possible propulsive force at the propulsion wing can only be achieved if the angle of attack assumes the optimum value for the respective current angle of attack.
  • Asymmetrical wing profiles which result in a higher propulsive force and thus a better efficiency of the rotor, cannot be used in the area of small high-speed runs, because the flow would be completely cut off if the change in the blowing angle were large. For this reason, only symmetrical airfoil profiles could be used in these areas, but they have poor efficiency.
  • the propulsion wings are freely pivotably mounted on the rotor arm so that they can adjust to the constantly changing blowing angle with each rotor revolution. Since the swivel axis of the propulsion wing lies approximately on the leading edge of the wing and thus in front of the center of gravity of the wing, there is one Compensating mass provided in front of the pivot axis, which cancels the influence of centrifugal force; the swivel axis lies in the overall center of mass of the body consisting of the propulsion wing and the balancing mass.
  • the centrifugal force which is dependent on the rotational speed, therefore has no influence on the angle of attack of the propulsion wing; the .
  • the angle of attack is only adjusted to a value under the effect of the attacking flow forces, which, however, does not result in an optimal propulsive force and therefore no favorable efficiency. Therefore, the drive wing of this known wind energy converter can also be designed only with a symmetrical wing profile, which likewise results in a very unfavorable efficiency.
  • the object of the invention is therefore to design a wind energy converter of the type mentioned at the outset in such a way that self-starting is ensured and that a low efficiency is achieved, in particular in the case of small and medium-sized high-speed loads.
  • the propulsion wing has an asymmetrical airfoil profile and that the overall center of mass of the body consisting of the propulsion wing and the balancing mass is in the direction of rotation in front of the pivot axis.
  • the lift force acting on the asymmetrical wing profile and the aerodynamic moment are linearly dependent on the angle of attack in the area of the adjacent flow.
  • a centrifugal force acts on the propulsion wing. Since the lift, the wing moment and the centrifugal force depend on the velocities, a balance can be achieved at any speed and therefore at every blowing angle that occurs during the rotation, which can still be influenced by the displacement of the balancing mass. Even in the range of medium to small high-speed numbers, the flow is reliably prevented by detaching the angle of attack from the respective blowing conditions. This is the only way to make it possible to use asymmetrical airfoil profiles, which have a significant gain in performance compared to symmetrical profiles, since significantly higher lift coefficients are achieved with the same blowing angles.
  • the total center of gravity is at most 20% of the mean wing depth in front of the pivot axis.
  • FIG. 1 in a spatial, simplified representation of a wind energy converter
  • Fig. 2 is an enlarged section along the line II - II in Fig. 1 and
  • FIG. 3 shows a section along the line III-III in FIG.
  • the wind energy converter shown in Fig. 1 carries on a mast 1 a rotor 2 with a vertical axis of rotation, which in the illustrated embodiment has two horizontal arms 3, at the end of which a propulsion flue 4 is attached.
  • the propulsion wing 4 (Fig. 2), which can be carried out in any conventional construction, for example made of fiber-reinforced plastic, metal or wood construction, is arranged vertically and is pivotally mounted in the middle on a vertical position shaft 5, which with the rotor arm 3 with - 6 -
  • a screw 6 is connected (Fig. 3).
  • the bearing shaft is supported at its two ends on a force introduction rib 7 of the propulsion wing 4.
  • the swivel axis 8 formed dadurc lies approximately on the leading edge of the propulsion wing 4 Limits 9, which are arranged at an angular distance of approximately 30 ° on both sides of the fastening end of the rotor arm 3.
  • a balancing mass 11 rigidly connected to the propelling wing 4 is arranged, which ensures that the total center of gravity 1 (highlighted in FIG. 2) of the body consisting of the propelling wing 4 and the balancing mass 11 in Direction of rotation of the rotor 2 lies in front of the pivot axis 8.
  • the size and the effective lever arm of the balancing mass are chosen so that the distance between the total mass point 12 to the pivot axis 8 is at most 20% of the mean wing depth of the propulsion wing 4.
  • the propulsion wing 4 has an asymmetrical airfoil profile, the propulsion efficiency of which is particularly favorable.
  • an elastic slot cover 13 is advantageously provided.
  • the rotor 2 can be designed with any number of drive blades 4 and rotor arms 3, for example also as a single-blade rotor. Even with small wind the rotor 2 starts up without drive aid itself. It goes without saying that the total mass of the propulsion aircraft 4 with the balancing mass 11 should be kept as low as possible in order to avoid excessive dynamic mass forces. The simple change in the position of the balancing mass 11 enables an optimal adaptation to the properties of the wing shape used in each case.
  • the pivot axis 8 can be approximately in or just behind the leading edge of the wing. Depending on the shape of the wing (e.g. negative or positive arrow), the pivot axis 8 can also be located in the middle of the propulsion wing 4 in front of or further behind the leading edge of the wing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Un convertisseur d'énergie éolienne comprend un rotor avec un axe de rotation vertical dont chaque bras (3) porte une aile perpendiculaire de propulsion (4) librement pivotable autour d'un axe de pivotement situé à proximité du bord d'attaque de l'aile. Une masse d'équilibrage (11) est agencée dans une saillie (10) du bord d'attaque de l'aile. Le centre de gravité (12) de la masse totale du corps formé par l'aile de propulsion (4) et la masse d'équilibrage (11) se situe devant l'axe de pivotement (8) de l'aile de propulsion (4). L'aile de propulsion (4) a un profil asymétrique d'aile portante, et se place dans l'angle d'attaque optimal lors de chaque rotation du rotor. Ce convertisseur a un rendement élevé même à des vitesses de rotation moyennes et faibles et est capable de démarrer tout seul.A wind power converter comprises a rotor with a vertical axis of rotation, each arm (3) of which carries a perpendicular propulsion wing (4) which can be freely pivoted about a pivot axis located near the leading edge of the wing. A balancing mass (11) is arranged in a projection (10) from the leading edge of the wing. The center of gravity (12) of the total mass of the body formed by the propulsion wing (4) and the balancing mass (11) is located in front of the pivot axis (8) of the propulsion wing ( 4). The propulsion wing (4) has an asymmetrical profile of a bearing wing, and is placed in the optimal angle of attack during each rotation of the rotor. This converter has a high efficiency even at medium and low rotational speeds and is able to start on its own.

Description

WindenergiekonverterWind energy converter
Die Erfindung betrifft einen Windenergiekonverter mit einem Rotor mit senkrechter Drehachse und mit mindestens einem angenähert senkrechten Vortriebsflügel, der jeweils an mindestens einem Rotorarm um eine angenähert senkrecht Schwenkachse frei schwenkbar gelagert ist, und mit einer mit dem Vortriebsflügel starr verbundenen, in Drehrichtun vor diesem angeordneten Ausgleichsmasse.The invention relates to a wind energy converter with a rotor with a vertical axis of rotation and with at least one approximately vertical propulsion wing, which is each freely pivotable on at least one rotor arm about an approximately vertical pivot axis, and with a balancing mass rigidly connected to the propulsion wing and arranged in rotation in front of the latter .
Windenergiekonverter mit senkrechter Rotordrehachse sind in zahlreichen Ausführungsformen bekannt. Sie bieten den Vorteil, daß sie von der Windrichtung unabhänqiq sind un daher mit verhältnismäßig geringem Bauaufwand ausgeführt werden können, da keine Verstellung bei einer Windrichtu änderung erforderlich ist. Ein grundsätzlicher Nachteil artiger Windenergiekonverter besteht darin, daß sich der Anblaswinkel des Vortriebflügels während jeder Rotorum¬ drehung zwischen einem größten und einem kleinsten Wert kontinuierlich ändert. Diese Änderunq des Anblaswinkels nimmt mit niedrigeren Schnellaufzahlen zu. Die Schnell- laufzahl ist das Verhältnis der Windgeschwindigkeit zu der Umfangsgeschwindigkeit des Rotors.Wind energy converters with a vertical rotor axis of rotation are known in numerous embodiments. They offer the advantage that they are independent of the wind direction and can therefore be carried out with relatively little construction effort, since no adjustment is necessary in the event of a change in the wind direction. A fundamental disadvantage of such wind energy converters is that the blowing angle of the propulsion wing changes continuously between a largest and a smallest value during each rotor revolution. This change in the blowing angle increases with lower high-speed runs. The high speed number is the ratio of the wind speed to the peripheral speed of the rotor.
Mechanische oder sonstige Zwangssteuerungen, die den An¬ stellwinkel der Vortriebsflügel bei jeder RotorUmdrehung zur Anpassung an den Anblaswinkel verändern, sind mecha¬ nisch sehr aufwendig und benötigen verhältnismäßig viel Energie; außerdem muß bei dieser Steuerung die jeweilige Windrichtung berücksichtigt werden.Mechanical or other positive controls which change the angle of attack of the propulsion vanes for each rotor revolution to adapt to the angle of attack are mechanically very complex and require a relatively large amount Energy; in addition, the respective wind direction must be taken into account in this control.
Eine starre Anbringung der Vortriebsflügel an den Rotor- armen und somit der Verzicht auf eine Anpassung desRigid attachment of the propulsion vanes to the rotor arms and thus no need to adapt the
Anstellwinkels an den sich ändernden Anblaswinkel führt zu einer erheblichen Verringerung des Wirkungsgrades des Windenergiekonverters, da eine größtmögliche Vortriebs¬ kraft am Vortriebsflügel nur erreicht werden kann, wenn der Anstellwinkel den für den jeweiligen augenblicklichen Anblaswinkel optimalen Wert einnimmt. Asymmetrische Flü¬ gelprofile, die eine höhere Vortriebskraft und damit eine besseren Wirkungsgrad des Rotors ergeben, können im Berei kleiner Schnellaufzahlen nicht verwendet werden, weil bei der großen Anblaswinkeländerung die Strömung vollständig abreißen würde. Deshalb konnten in diesen Bereichen bis¬ her nur symmetrische Flügelprofile verwendet werden, die jedoch einen schlechten Wirkungsgrad haben. Auch bei die¬ sen besteht im Bereich kleiner bis mittlerer Schnellauf- zahlen noch der Nachteil, daß die Änderung des Anblas¬ winkels zumindest teilweise zu einem Ablösen der Strömun und somit zu einem erhöhten Strömungswiderstand bei teil weise wegfallenden Vortrieb führt, wodurch der Gesamt¬ wirkungsgrad des Windenergiekonverters erheblich herab- gesetzt wird.Angle of attack at the changing angle of attack leads to a considerable reduction in the efficiency of the wind energy converter, since the greatest possible propulsive force at the propulsion wing can only be achieved if the angle of attack assumes the optimum value for the respective current angle of attack. Asymmetrical wing profiles, which result in a higher propulsive force and thus a better efficiency of the rotor, cannot be used in the area of small high-speed runs, because the flow would be completely cut off if the change in the blowing angle were large. For this reason, only symmetrical airfoil profiles could be used in these areas, but they have poor efficiency. Even in the case of these small to medium high-speed vehicles, there is also the disadvantage that the change in the blowing angle leads at least in part to a detachment of the currents and thus to an increased flow resistance with the propulsion sometimes being lost, thereby reducing the overall efficiency of the wind energy converter is considerably reduced.
Bei einem bekannten Windenergiekonverter der eingangs ge nannten Gattung (DE-AS 26 02 380) sind die Vortriebsflüg frei schwenkbar am Rotorarm gelagert, damit sie sich bei jeder RotorUmdrehung auf den sich ständig ändernden An¬ blaswinkel einstellen können. Da die Schwenkachse des Vortriebflügels etwa an der Flügelvorderkante und somit vor dem Massenschwerpunkt des Flügels liegt, ist eine Ausgleichsmasse vor der Schwenkachse vorgesehen, die den Fliehkrafteinfluß aufhebt; die Schwenkachse liegt im Gesamtmassenschwerpunkt des aus dem Vortriebflügel und der Ausgleichsmasse bestehenden Körpers.In a known wind energy converter of the type mentioned at the beginning (DE-AS 26 02 380), the propulsion wings are freely pivotably mounted on the rotor arm so that they can adjust to the constantly changing blowing angle with each rotor revolution. Since the swivel axis of the propulsion wing lies approximately on the leading edge of the wing and thus in front of the center of gravity of the wing, there is one Compensating mass provided in front of the pivot axis, which cancels the influence of centrifugal force; the swivel axis lies in the overall center of mass of the body consisting of the propulsion wing and the balancing mass.
Bei diesem bekannten Windenergiekonverter bleibt die von der Drehzahl abhängige Fliehkraft somit ohne Ein¬ fluß auf den Anstellwinkel des Vortriebsflügels; der . Anstellwinkel stellt sich nur unter der Wirkung der angreifenden Strömungskräfte auf einen Wert ein, der jedoch keine optimale Vortriebskraft und somit keinen günstigen Wirkungsgrad ergibt. Deshalb können die Vor¬ triebsflügel dieses bekannten Windenergiekonverters auch nur mit symmetrischem Flügelprofil ausgeführt werden, wodurch sich ebenfalls ein sehr ungünstiger Wirkungsgrad ergibt.In this known wind energy converter, the centrifugal force, which is dependent on the rotational speed, therefore has no influence on the angle of attack of the propulsion wing; the . The angle of attack is only adjusted to a value under the effect of the attacking flow forces, which, however, does not result in an optimal propulsive force and therefore no favorable efficiency. Therefore, the drive wing of this known wind energy converter can also be designed only with a symmetrical wing profile, which likewise results in a very unfavorable efficiency.
Aufgabe der Erfindung ist es daher, einen Windenergie¬ konverter der eingangs genannten Gattung so auszubilden, daß ein Selbstanlauf gewährleistet ist und daß ein gün¬ stiger Wirkungsgrad insbesondere bei kleinen und mittle ren Schnellaufzahlen erreicht wird.The object of the invention is therefore to design a wind energy converter of the type mentioned at the outset in such a way that self-starting is ensured and that a low efficiency is achieved, in particular in the case of small and medium-sized high-speed loads.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Vortriebsflügel ein asymmetrisches Tragflügelprofil aufweist und daß der Gesamtmassenschwerpunkt des aus dem Vortriebsflügel und der Ausgleichsmasse bestehenden Körpers in Drehrichtung vor der Schwenkachse liegt.This object is achieved in that the propulsion wing has an asymmetrical airfoil profile and that the overall center of mass of the body consisting of the propulsion wing and the balancing mass is in the direction of rotation in front of the pivot axis.
Die Verlagerung des Gesamtmassenschwerpunktes vor die Schwenkachse führt dazu, daß der Vortriebsflügel mit zunehmender Drehzahl einen größeren Anstellwinkel ein¬ zunehmen sucht. Den durch die Fliehkrafteinwirkung bei erhöhter Drehzahl auftretenden Kräfte wirken die Strö¬ mungskräfte entgegen; bei einem Kräftegleichgewicht nimmt der Vortriebsflügel für jeden augenblicklichen Anblaswinkel den jeweils günstigsten Anstellwinkel ein. Dadurch und durch die jetzt mögliche Verwendung eines asymmetrischen Tragflügelprofils wird eine wesentliche Steigerung des Wirkungsgrades erreicht.The shift of the center of gravity in front of the swivel axis leads to the propulsion wing trying to take up a larger angle of attack with increasing speed. Due to the centrifugal force Forces occurring at increased speed counteract the flow forces; with an equilibrium of forces, the propulsion wing assumes the most favorable angle of attack for each momentary blowing angle. This and the now possible use of an asymmetrical wing profile will result in a significant increase in efficiency.
Die am asymmetrischen Tragflügelprofil angreifende Auf- triebskraft und das aerodynamische Moment sind im Bereich anliegender Strömung vom Anblaswinkel linear abhängig. Zugleich greift an dem Vortriebsflügel eine Fliehkraft an. Da der Auftrieb, das Flügelmoment und die Fliehkraft von den jedweiligen Geschwindigkeiten quadratisch abhän- gen, läßt sich bei jeder Geschwindigkeit und somit bei jedem während des Umlaufs vorkommenden Anblaswinkel ein Gleichgewicht erzielen, das durch die Verlagerung der Ausgleichsmasse noch beeinflußt werden kann. Auch im Bereich mittlerer bis kleiner Schnellaufzahlen wird ein Ablösen der Strömung zuverlässig dadurch vermieden, daß der Anstellwinkel den jeweiligen Anblasverhältnissen nachgefahren wird. Erst dadurch wird es möglich, asym¬ metrische Tragflügelprofile zu verwenden, die gegenüber symmetrischen Profilen einen deutlichen Leistungsgewinn aufweisen, da wesentlich höhere Auf riebsbeiwerte bei gleichen Anblaswinkeln erreicht werden.The lift force acting on the asymmetrical wing profile and the aerodynamic moment are linearly dependent on the angle of attack in the area of the adjacent flow. At the same time, a centrifugal force acts on the propulsion wing. Since the lift, the wing moment and the centrifugal force depend on the velocities, a balance can be achieved at any speed and therefore at every blowing angle that occurs during the rotation, which can still be influenced by the displacement of the balancing mass. Even in the range of medium to small high-speed numbers, the flow is reliably prevented by detaching the angle of attack from the respective blowing conditions. This is the only way to make it possible to use asymmetrical airfoil profiles, which have a significant gain in performance compared to symmetrical profiles, since significantly higher lift coefficients are achieved with the same blowing angles.
Die Verwendung von asymmetrischen Flügelprofilen für die Vortriebsflügel von Windenergiekonvertern ist zwar be- kannt (DE-OS 28 16 026); jedoch sind diese Vortriebsflügel starr an den Rotorarmen befestigt und ermöglichen deshalb keine Anpassung an den sich ändernden Anblaswinkel. Des¬ halb wird bei diesem bekannten Windenergiekonverter auch nur ein sehr spezielles Flügelprofil vorgesehen, das gegen Änderungen des Anblaswinkels weniger empfindlich ist, dessen Wirkungsgrad jedoch schlecht ist.The use of asymmetrical wing profiles for the propulsion wing of wind energy converters is known (DE-OS 28 16 026); however, these propulsion vanes are rigidly attached to the rotor arms and therefore do not allow adaptation to the changing blowing angle. This is why this known wind energy converter also only a very special wing profile is provided, which is less sensitive to changes in the blowing angle, but whose efficiency is poor.
Gemäß einer bevorzugten Ausführungsform des Erfindungs- gedankens ist vorgesehen, daß der Gesamtsσhwerpunkt höchstens um 20 % der mittleren Flügeltiefe vor der Schwenkachse liegt.According to a preferred embodiment of the concept of the invention, it is provided that the total center of gravity is at most 20% of the mean wing depth in front of the pivot axis.
Weitere vorteilhafte Ausgestaltungen des Erfindungsgedan kens sind Gegenstand weiterer Unteransprüche.Further advantageous embodiments of the invention are the subject of further dependent claims.
Die Erfindung wird nachfolgend an einem Ausführungs¬ beispiel näher erläutert, das in der Zeichnung darge- stellt ist. Es zeigt:The invention is explained in more detail below using an exemplary embodiment which is illustrated in the drawing. It shows:
Fig. 1 in räumlicher, vereinfachter Darstellungsweise einen Windenergiekonverter, Fig. 2 einen vergrößerten Schnitt längs der Linie II - II in Fig. 1 undFig. 1 in a spatial, simplified representation of a wind energy converter, Fig. 2 is an enlarged section along the line II - II in Fig. 1 and
Fig. 3 einen Schnitt längs der Linie III - III in Fig3 shows a section along the line III-III in FIG
Der in Fig. 1 gezeigte Windenergiekonverter trägt an ein Mast 1 einen Rotor 2 mit senkrechter Drehachse, der bei dem dargestellten Ausführungsbeispiel zwei waagrechte R arme 3 aufweist, an deren Ende jeweils ein Vortriebsflü 4 angebracht ist.The wind energy converter shown in Fig. 1 carries on a mast 1 a rotor 2 with a vertical axis of rotation, which in the illustrated embodiment has two horizontal arms 3, at the end of which a propulsion flue 4 is attached.
Der Vortriebsflügel 4 (Fig. 2) , der in jeder herkömmlic Bauweise ausgeführt sein kann, beispielsweise aus Kunst Faserverbund, Metall- oder Holzbauweise, ist senkrecht geordnet und ist in der Mitte an einer senkrechten Lage welle 5, schwenkbar gelagert, die mit dem Rotorarm 3 mit - 6 -The propulsion wing 4 (Fig. 2), which can be carried out in any conventional construction, for example made of fiber-reinforced plastic, metal or wood construction, is arranged vertically and is pivotally mounted in the middle on a vertical position shaft 5, which with the rotor arm 3 with - 6 -
einer Schraube 6 verbunden ist (Fig. 3) . Die Lagerwelle ist an ihren beiden Enden jeweils an einer Krafteinlei¬ tungsrippe 7 des Vortriebsflügels 4 gelagert.* Die dadurc gebildete Schwenkachse 8 liegt angenähert an der Flügel¬ vorderkante des Vortriebsflügels 4. Die freie Schwenkbar keit des Vortriebsflügels 4 um die Schwenkachse 8 wird nur durch Anschläge 9 begrenzt, die in einem Winkelab¬ stand von etwa 30°beiderseits des Befestigungsendes des Rotorarms 3 angeordnet sind.a screw 6 is connected (Fig. 3). The bearing shaft is supported at its two ends on a force introduction rib 7 of the propulsion wing 4. The swivel axis 8 formed dadurc lies approximately on the leading edge of the propulsion wing 4 Limits 9, which are arranged at an angular distance of approximately 30 ° on both sides of the fastening end of the rotor arm 3.
In einer vor der Flügelvorderkante vorspringenden Flügel nase 10 ist eine mit dem Vortriebsflügel 4 starr verbun¬ dene Ausgleichsmasse 11 angeordnet, die dafür sorgt, daß der (in Fig. 2 hervorgehobene) Gesamtmassenschwerpunkt 1 des aus dem Vortriebsflügel 4 und der Ausgleichsmasse 11 bestehenden Körpers in Drehrichtung des Rotors 2 vor der Schwenkachse 8 liegt.In a wing nose projecting in front of the leading edge of the wing, a balancing mass 11 rigidly connected to the propelling wing 4 is arranged, which ensures that the total center of gravity 1 (highlighted in FIG. 2) of the body consisting of the propelling wing 4 and the balancing mass 11 in Direction of rotation of the rotor 2 lies in front of the pivot axis 8.
Die Größe und der wirksame Hebelarm der Ausgleichsmasse werden so gewählt, daß der Abstand des Gesamtmassenschwe punktes 12 zu der Schwenkachse 8 höchstens 20% der mittl ren Flügeltiefe des Vortriebsflügels 4 beträgt.The size and the effective lever arm of the balancing mass are chosen so that the distance between the total mass point 12 to the pivot axis 8 is at most 20% of the mean wing depth of the propulsion wing 4.
Wie man aus Fig. 2 erkennt, hat der Vortriebs lügel 4 ein asymmetrisches Tragflügelprofil, dessen Vortriebs¬ wirkungsgrad besonders günstig ist. Am Übergang vom Roto arm 3 zu der Verkleidung der vorspringenden Flügelnase 1 bzw. zum Vortriebsflügel 4 ist zweckmäßigerweise eine elastische Schlitzverkleidung 13 vorgesehen.As can be seen from FIG. 2, the propulsion wing 4 has an asymmetrical airfoil profile, the propulsion efficiency of which is particularly favorable. At the transition from the arm 3 Roto to the cladding of the projecting wing nose 1 or to the thrust wing 4, an elastic slot cover 13 is advantageously provided.
Der Rotor 2 kann mit einer beliebigen Anzahl von Vortrie flügeln 4 und Rotorarmen 3 ausgeführt werden, beispiels¬ weise auch als Einflügelrotor. Auch bei kleinen Windge- schwindigkeiten läuft der Rotor 2 ohne Antriebshilfe selbst an. Es versteht sich, daß die Gesamtmasse des Vortriebsflügeis 4 mit der Ausgleichsmasse 11 zur Ver¬ meidung von zu großen dynamischen Massenkräften möglichst gering gehalten werden soll. Die einfache Veränderung der Lage der Ausgleichsmasse 11 ermöglicht eine optimale Anpassung an die Eigenschaften der jeweils verwendeten Flügelform.The rotor 2 can be designed with any number of drive blades 4 and rotor arms 3, for example also as a single-blade rotor. Even with small wind the rotor 2 starts up without drive aid itself. It goes without saying that the total mass of the propulsion aircraft 4 with the balancing mass 11 should be kept as low as possible in order to avoid excessive dynamic mass forces. The simple change in the position of the balancing mass 11 enables an optimal adaptation to the properties of the wing shape used in each case.
Die Schwenkachse 8 kann angenähert in oder kurz hinter der Flügelvorderkante liegen. Je nach der Flügelform (z.B. negativ oder positiv gepfeilt) kann die Schwenk¬ achse 8 in mittlerer Höhe des Vortriebsflügels 4 auch vor oder weiter hinter der Flügelvorderkante liegen. The pivot axis 8 can be approximately in or just behind the leading edge of the wing. Depending on the shape of the wing (e.g. negative or positive arrow), the pivot axis 8 can also be located in the middle of the propulsion wing 4 in front of or further behind the leading edge of the wing.

Claims

WindenergiekonverterWind energy converter
P a t e n t a n s p r ü c h eP a t e n t a n s r u c h e
1 , Windenergiekonverter mit einem Rotor mit senkrechter Drehachse und mit mindestens einem angenähert senk¬ rechten Vortriebsflügel, der jeweils an mindestens einem Rotorarm um eine angenähert senkrechte Schwenk- achse frei schwenkbar gelagert ist, und mit einer mit dem Vortriebsflügel starr verbundenen, in Drehrichtung vor diesem angeordneten Ausgleichsmasse, dadurch ge¬ kennzeichnet, daß der Vortriebsflügel (4) ein asymmet¬ risches Tragflügelprofil aufweist und daß der Gesamt- massenschwerpunkt (12) des aus dem Vortriebsflügel (4) und der Ausgleichsmasse (11) bestehenden Körpers in Drehrichtung vor der Schwenkachse (8) liegt.1, wind energy converter with a rotor with a vertical axis of rotation and with at least one approximately vertical propulsion wing, which is each freely pivotable on at least one rotor arm about an approximately vertical pivot axis, and with a rigidly connected to the propulsion wing in front of the latter in the direction of rotation arranged balancing mass, characterized ge indicates that the propulsion wing (4) has an asymmetrical hydrofoil profile and that the overall center of mass (12) of the body consisting of the propulsion wing (4) and the balancing mass (11) in the direction of rotation in front of the pivot axis ( 8) lies.
2. Windenergiekonverter nach Anspruch 1 , dadurch gekenn- zeichnet, daß der Gesamtmassenschwerpunkt (12) höch¬ stens um 20% der mittleren Flügeltiefe vor der Schwenk achse (8) liegt.2. Wind energy converter according to claim 1, characterized in that the total center of mass (12) is at most 20% of the mean wing depth in front of the pivot axis (8).
3. Windenergiekonverter nach Anspruch 1, dadurch gekenn- zeichnet, daß für den Vortriebsflügel (4) eine mecha¬ nische Schwenkwinkelbegrenzung (9) vorgesehen ist.3. Wind energy converter according to claim 1, characterized in that a mechanical swivel angle limitation (9) is provided for the propulsion wing (4).
4. Windenergiekonverter nach Anspruch 1 , dadurch gekenn¬ zeichnet, daß die Ausgleichsmasse (11) in einer vor de Flügelvorderkante vorspringenden Flügelnase (10) unter gebracht ist. 4. Wind energy converter according to claim 1, characterized gekenn¬ characterized in that the compensating mass (11) in a front de leading edge of the wing nose (10) is brought under.
EP86901872A 1985-04-04 1986-03-27 Wind energy converter Withdrawn EP0222780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3512420 1985-04-04
DE3512420A DE3512420C1 (en) 1985-04-04 1985-04-04 Wind energy converter

Publications (1)

Publication Number Publication Date
EP0222780A1 true EP0222780A1 (en) 1987-05-27

Family

ID=6267352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86901872A Withdrawn EP0222780A1 (en) 1985-04-04 1986-03-27 Wind energy converter

Country Status (10)

Country Link
US (1) US4799860A (en)
EP (1) EP0222780A1 (en)
JP (1) JPS62502416A (en)
KR (1) KR880700165A (en)
CN (1) CN1004092B (en)
AU (1) AU5661886A (en)
DE (1) DE3512420C1 (en)
DK (1) DK581186D0 (en)
ES (1) ES296635Y (en)
WO (1) WO1986005846A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI80506C (en) * 1987-07-21 1990-06-11 Reijo Valtonen VINDKRAFTSTATIONSKONSTRUKTION.
AU631500B2 (en) * 1990-07-24 1992-11-26 Brian Kinloch Kirke Improved variable pitch vertical axis wind turbine
US5057696A (en) * 1991-01-25 1991-10-15 Wind Harvest Co., Inc. Vertical windmill with omnidirectional diffusion
GB9302648D0 (en) * 1993-02-10 1993-03-24 Farrar Austin P Wind powered turbine
DE19501036A1 (en) * 1995-01-16 1995-07-13 Richter Wolfgang Radially streamed vertical axis wind-power converter
US6543999B1 (en) 2002-02-15 2003-04-08 James Van Polen Windmill
CN1719023B (en) * 2005-07-27 2010-05-26 王永彰 Resistance and lifting force composite wind pwoer device
US7608875B2 (en) * 2005-11-30 2009-10-27 Aptina Imaging Corporation Method and apparatus for blocking light to peripheral circuitry of an imager device
CN100360691C (en) * 2006-03-14 2008-01-09 淄博宜龙化工有限公司 Pelletizing binder with starch and humus acid and production thereof
DE102006044240A1 (en) * 2006-09-15 2008-03-27 Tassa Gmbh Wind power machine, has wind rotor with two lift wing bodies, which are fastened at extension arms by supporting arrangements, where extension arms is provided with radial external bend-elastic end piece
CN102562442B (en) * 2012-02-07 2015-09-16 秦皇岛风日和科技有限公司 Vane of vertical shaft wind-driven generator
RU2599097C2 (en) * 2014-04-02 2016-10-10 Микаил Гаджимагомедович Вердиев Moving medium energy converter
CN105275749B (en) * 2015-11-15 2017-11-24 吉林大学 A kind of vertical swing wind power generation plant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR530231A (en) * 1921-01-27 1921-12-17 Wind motor
FR1341652A (en) * 1962-09-20 1963-11-02 Turbine and wind turbine boat
FR2298706A1 (en) * 1975-01-22 1976-08-20 Sicard Charles ROTATING DEVICE ACTIVATED BY A MOVING FLUID
US4105363A (en) * 1976-06-14 1978-08-08 Loth John Lodewyk Overspeed control arrangement for vertical axis wind turbines
CH598489A5 (en) * 1976-07-16 1978-04-28 Donax Sa Vertical axis windmill with balanced vanes
FR2392249A1 (en) * 1977-05-23 1978-12-22 Monserie Philippe Wind turbine generator with vertical shaft - has pivoted blades at ends of horizontal cross arms to catch wind from all directions
CA1045038A (en) * 1977-06-06 1978-12-26 James Cameron Vertical axis wind turbine
GB1599653A (en) * 1977-07-20 1981-10-07 Evans F C Form of windmill
DE2816026A1 (en) * 1978-04-13 1979-10-25 Univ Gakko Hojin Tokai WIND POWER MACHINE WITH VERTICAL AXIS
FR2481756A1 (en) * 1979-11-21 1981-11-06 Courcel Daniel Wind driven generator mounted on pylon - has vertical aerofoil blades with automatic blade angle adjustment according to wind loading
US4334823A (en) * 1980-12-16 1982-06-15 Sharp Peter A Wind or fluid current turbine
US4415312A (en) * 1982-03-11 1983-11-15 Wixlin, Inc. Transverse axis fluid turbine
FR2541733A1 (en) * 1982-05-26 1984-08-31 Marie Jean Moving blades for automatically starting up "panemones" of the "darrieus" type and wind machines applying to this method
DE3304944C2 (en) * 1983-02-12 1986-03-13 Erich Herter Wind turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8605846A1 *

Also Published As

Publication number Publication date
CN86103147A (en) 1987-05-13
DE3512420C1 (en) 1986-09-11
ES296635U (en) 1988-10-16
AU5661886A (en) 1986-10-23
KR880700165A (en) 1988-02-20
JPS62502416A (en) 1987-09-17
DK581186A (en) 1986-12-03
CN1004092B (en) 1989-05-03
US4799860A (en) 1989-01-24
WO1986005846A1 (en) 1986-10-09
ES296635Y (en) 1989-04-16
DK581186D0 (en) 1986-12-03

Similar Documents

Publication Publication Date Title
DE2726589C2 (en)
DE69822359T2 (en) Rotor blade of a rotary wing airplane
DE2602380C3 (en) Rotating device that is driven by a moving fluid such as water or air
DE2735709A1 (en) WIND TURBINE SYSTEM
WO2008141763A2 (en) Supporting arm for the blades of wind turbines with a vertical rotational axis
EP0222780A1 (en) Wind energy converter
EP2594784A2 (en) Vertical wind turbine and rotor blade for the same
EP2147210A2 (en) Blade for wind turbines with a vertical rotational axis
DE3227700A1 (en) WIND ENERGY CONVERTER
DE102019113548A1 (en) Support structure for an aircraft and aircraft with such
DE3315439C2 (en)
DE102011122140A1 (en) Delta eddy current generator for generating eddies at rotor blade of wind power plant, has support provided with wing such that eddies are producible over main surface, where eddies comprise axis that is directed parallel to surface
WO1996001368A1 (en) Wind-energy convertor with a vertical axis of rotation
DE2757266C2 (en) Wind turbine system with main rotor and one or more auxiliary start-up motors
DE2657714A1 (en) Aircraft wing with cascade configuration - has horizontal aerofoil section blades mounted in frame with wing section top and bottom members
EP2223853A1 (en) Fluid dynamic area with a turbine driven by the flow induced by the area subject to the flow
EP0193624A1 (en) Wind power propulsion
AT510238B1 (en) ROTOR FOR A WINDRAD
CH700422B1 (en) Axial-flow wind turbine used for electricity generation, has helical blade with aerodynamic cross section inclined rearwardly toward rotation axis over length of blade
EP0291002B1 (en) Blade for a windmill rotor
DE3905337A1 (en) Method for concentrating the wind at turbo wind rotors having a horizontal axis while matching the rotor vane to the concentration zone
EP0082378A2 (en) Energy-producing device
DE10044101A1 (en) Drive for fast watercraft
DE4442863A1 (en) Vane with variable curvature for wind turbine
DE4337479C1 (en) Wind power installation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870402

17Q First examination report despatched

Effective date: 19880714

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900712

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARTIN, MICHAEL