WO2008141763A2 - Trägerarm für die flügel von windturbinen mit senkrechter drehachse - Google Patents

Trägerarm für die flügel von windturbinen mit senkrechter drehachse Download PDF

Info

Publication number
WO2008141763A2
WO2008141763A2 PCT/EP2008/003889 EP2008003889W WO2008141763A2 WO 2008141763 A2 WO2008141763 A2 WO 2008141763A2 EP 2008003889 W EP2008003889 W EP 2008003889W WO 2008141763 A2 WO2008141763 A2 WO 2008141763A2
Authority
WO
WIPO (PCT)
Prior art keywords
arm
cross
section
convex surface
wing
Prior art date
Application number
PCT/EP2008/003889
Other languages
English (en)
French (fr)
Other versions
WO2008141763A3 (de
Inventor
Lucio Zancai
Original Assignee
Ropatec Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ropatec Srl filed Critical Ropatec Srl
Priority to EP08758531A priority Critical patent/EP2145102A2/de
Publication of WO2008141763A2 publication Critical patent/WO2008141763A2/de
Publication of WO2008141763A3 publication Critical patent/WO2008141763A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/712Shape curved concave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the individual wings or vanes which are vertically arranged and extend in a straight line, arcuate or helical shape, are generally of two plates rotating in a horizontal plane or of arms which are spoke-like of the Hub of the rotor of the turbine extend, to be carried.
  • the cross-section of said plates, or said arms is normally shaped such that the resistance, with respect to the air flow which these elements and the blades which cause the rotation of the turbine, as small as possible and that the resistance, with respect The air which is penetrated by these elements during their rotation is reduced as much as possible.
  • the cross section of said support elements is as small as possible and has a flat, possibly lenticular or wing profile-shaped, cross-section which is suitable for reducing the impact resistance of the air and avoiding the formation of vortices as far as possible.
  • the cross sections with these features have the disadvantage that they are in no way actively involved in the drive of the turbine and that, because of their shape, in each case several (at least two) of these support elements are required for each wing.
  • the invention has as its object to provide a support arm for the wings of wind turbines with vertical axis of rotation which, despite its noteworthy cross-section of a broader and not flat shape, formed on the generated by the rotation of the rotor blade thrust, at least during part of the rotation involved and which one minimal resistance, or another thrust (depending on the speed range) during the remaining part of the rotation is achieved, whereby an optimization of the efficiency of the turbine is achieved and further offered the opportunity to make the structure of the turbine more stable and the start-up characteristics at relatively low To improve wind speeds.
  • the invention proposes an arm having the cross-section of a turbine blade, e.g. gas turbine blade type, which has a "front" in the direction of rotation, with convex aerodynamic, eg circular arc, parabolic course, with nose cone-shaped cross section or a cross section corresponding to the region of the leading edge of a wing profile, with the curve tip, or the apex , arranged in the direction of rotation and from a "rear part" with concave surface which is also substantially circular arc or parabolic.
  • a turbine blade e.g. gas turbine blade type
  • the points of contact between the front convex and the rear concave area are substantially in the range of the maximum vertical dimension of the cross section, whereby a sudden interruption of the profile is achieved with the formation of two trailing edges for the airflow passing over the front convex surface.
  • the cross-section is substantially symmetrical with respect to a horizontal axis, it may be constant along the entire longitudinal extension of the arm or may vary, e.g. in the vicinity of the hub, providing a more rounded tip and a less deep concave surface as compared to the cross section in the area near the wing where the rotational speed is greater;
  • the cross section can be adapted to the different operating conditions in order to further improve the efficiency.
  • the arm according to the invention is exposed to the wind which causes the rotation of the turbine, the wind being exposed to the "concave surface" rear area which is capable of rotating the kinetic energy of the wind while the "front" convex portion of the arm is at a minimum Provides resistance to movement through the air; So in this phase contributes the arm actively contributes to the rotation of the turbine.
  • the most unfavorable position is reached when the arm occupies 90 ° to the direction of the acting according to horizontal planes, wind.
  • the air is deflected by the convex profile of the front surface of the arm which offers as little resistance as possible.
  • the rotation of the turbine is effectively supported by the support arms of the wing;
  • a further advantageous effect is achieved which contributes to the start-up of the rotation of the turbine low wind speeds favored, which is advantageous for those turbines whose wings are designed for high performance only at high wind speeds.
  • the cross-section of the arm according to the invention offers itself, because of the ratio of the vertical dimension to the horizontal dimension which tends to the value 1, for the formation of possible internal support structures of different types and remarkable stability and efficient connections, be it in the hub or in the wing It may also be possible to reduce the number of arms per wing to a single arm.
  • the arm of the invention may be separated from the supporting shell alone, with or without filling of the internal cavity, e.g. with foam resin, be formed; said shell may have a supporting function together with an internal structure, or it may be mounted only as an aerodynamic exterior covering.
  • the longitudinal shape of the support arms may be straight or curved.
  • Fig. 1 shows a perspective view of a wind turbine with a vertical axis of rotation and three wings, each of which is supported by arms according to the invention which are fastened by means of molded, the wings comprehensive, temple.
  • FIG. 2 shows a perspective representation of a stump of a support arm attached to a wing according to the invention.
  • Fig. 3 shows the cross section of a support arm according to the invention with an indication of the wind flow and the direction of rotation during the phase with effect of the wind on the rear concave surface.
  • Fig. 4 shows the same in Fig. 3 shown cross-section of the support arm according to the invention with an indication of the wind flow and the direction of rotation during the phase with effect of the wind on the front convex surface.
  • FIG. 5 shows a side view of part of a support arm according to the invention which has different cross-sections and a curved discharge surface at the wing-side end.
  • the rotor which consists of a hub 1, consisting of spoke-shaped arms 2 and wings 3, according to a vertical axis A rotatably mounted R.
  • the outer ends of the arms 2 have molded, the profile of the wings 3 embracing, bracket 3a on;
  • known types of attachment between the outer ends of the arms 2 and the wings 3 are not excluded.
  • the arms 2 have a cross-section 2s on softer, with respect to the horizontal axis, substantially symmetrical and, viewed in the direction of rotation of a "front" convex surface 2a, for example, with a semicircular, parabolic, nasenkonusförmigem or entry edge shape course of a wing profile and a " rear "concave surface 2b, is formed.
  • the concave surface 2b may be semicircular or parabolic, with a greater or lesser degree or depth.
  • the rear concave surface 2b forms a longitudinal groove which can have a constant cross section 2s or different cross sections, for example less deep in the region towards the hub 1 and deeper in the region in the direction of the wing, for the entire longitudinal extent.
  • the dimensions according to the horizontal axis of symmetry and / or in the vertical direction over the entire Be constant longitudinal extent or, in the areas of attachment to the hub 1 and / or the wing be greater.
  • the points of contact between the outermost longitudinal edges of the front convex surface 2a and those of the rear concave surface 2b form two longitudinal edges with a sharpened vertex which, upon impact of the wind, substantially act on the rear concave surface, as leading edges, substantially upon the front upon impact of the wind convex surface act as trailing edges.
  • the end region of the groove formed by the concave rear surface 2b is provided with a transverse angled, straight or arcuate, transition surface 2d which is suitable Air which hits the arm 2 from behind and which flows along the concave groove 2b due to the position of the arm 2 through 90 ° with respect to the direction of the wind W and because of the action of the centrifugal force toward the outer end of the same arm 2; in the direction of trailing edge 3c of the wing 3 distract.
  • This transverse deflecting surface 2d preferably has an arcuate or parabolic shape in order, by deriving the above-mentioned flow in the direction of the trailing edge 3c of the vane 3, to obtain a reaction force which sums up with the forces which cause the rotation of the turbine.
  • the cross-section 2s can be dimensioned such that within these structures or organs can be accommodated which are suitable for stable carrier function and efficient connections, be it in the region of the hub 1 or in the region of the wing 3, to reach.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Trägerarm für die Flügel von Windturbinen mit vertikaler Drehachse welcher wesentlich radial zwischen der Nabe (1) oder dem Lagerorgan der Turbine und jedem der entsprechenden zur Nabe beabstandeten Flügel (3) angeordnet ist, wobei der Querschnitt (2s) des Arms wesentlich symmetrisch zu einer horizontalen Achse ist und von einer, gemäß Drehrichtung (R) des Rotors, vorderen konvexen Fläche (2a) und einer hinteren konkaven Fläche (2b) gebildet ist und wobei der Querschnitt (2s), sei es der konkaven als auch der konvexen Fläche, den Verlauf eines Kreisbogens, einer Parabel, eines Nasenkonus oder einer Eintrittkante eines Flügelprofils hat.

Description

TRÄGERARM FÜR DIE FLÜGEL VON WINDTURBINEN MIT SENKRECHTER DREHACHSE
Beschreibung
Es ist bekannt dass bei Windturbinen mit senkrechter Drehachse vom Typ Darrieus die einzelnen Flügel oder Schaufeln, welche vertikal angeordnet sind und sich geradlinig, bogenförmig oder schraubenlinenförmig erstrecken, allgemein von zwei, in einer horizontalen Ebene drehenden, Platten oder von Armen welche sich speichenartig von der Nabe des Rotors der Turbine erstrecken, getragen werden. Der Querschnitt der besagten Platten, bzw. der besagten Arme, ist normalerweise derart geformt, dass der Widerstand, in Bezug auf den Luftstrom welcher diese Elemente sowie die Flügel welche die Drehung der Turbine bewirken trifft, möglichst klein ist und dass der Widerstand, in Bezug auf die Luft welche von diesen Elementen während ihrer Rotation durchdrungen wird, möglichst reduziert wird.
Gewöhnlich ist also der Querschnitt der besagten Trägerelemente möglichst klein und hat einen flachen, eventuell linsenförmigen oder flügelprofilförmigen, Querschnitt welcher geeignet ist den Auftreffwiderstand der Luft zu vermindern und möglichst das Bilden von Wirbeln zu vermeiden. Die Querschnitte mit diesen Merkmalen weisen den Nachteil auf, dass sie keinesfalls aktiv am Antrieb der Turbine beteiligt sind und dass, wegen ihrer Form, jeweils mehrere (mindestens zwei) dieser Trägerelemente für jeden Flügel erforderlich sind.
Die Erfindung stellt sich die Aufgabe einen Trägerarm für die Flügel von Windturbinen mit senkrechter Drehachse zu schaffen welcher, trotz seines beachtungswerten Querschnittes der eine breitere und nicht flache Form einnimmt, sich am, durch die Drehung des Rotorflügels erzeugt Schubes, mindestens während eines Teiles der Drehung beteiligt und welcher einen minimalen Widerstand, bzw. einen weiteren Schub (in Abhängigkeit des Drehzahlbereiches) während des verbleibenden Teiles der Drehung bewirkt, wobei eine Optimierung des Wirkungsgrades der Turbine erreicht wird und weiters die Möglichkeit geboten wird die Struktur der Turbine stabiler zu gestalten und die Anlaufeigenschaften bei relativ niedrigen Windgeschwindigkeiten zu verbessern.
Zur Lösung dieser Aufgabe schlägt die Erfindung einen Arm vor welcher den Querschnitt einer Turbinenschaufel, z.B. vom Typ einer Gasturbinenlaufschaufel, hat, welcher aus einem in Drehrichtung gesehen „vorderen" Bereich, mit konvexem aerodynamischem, z.B. kreisbogenförmigem, parabelförmigem Verlauf, mit nasenkonusförmigem Querschnitt oder einem Querschnitt entsprechend dem Bereich der Eintrittskante eines Flügelprofils, mit der Kurvenspitze, bzw. dem Scheitel, in Drehrichtung angeordnet und aus einem „hinteren Teil" mit konkaver Fläche welche ebenfalls wesentlich kreisbogenförmig oder parabelförmig ist, besteht. Die Berührungspunkte zwischen dem vorderen konvexen und dem hinteren konkaven Bereich befinden sich wesentlich im Bereich der maximalen vertikalen Abmessung des Querschnittes, wobei eine plötzliche Unterbrechung des Profils mit Ausbildung zweier Abströmkanten für die über die vordere konvexe Oberfläche streichende Luftströmung, erreicht wird. Der Querschnitt ist wesentlich symmetrisch gemäß einer horizontalen Achse, er kann entlang der gesamten Längserstreckung des Arms konstant sein oder variieren, z.B. indem in der Nähe der Nabe eine mehr abgerundete Kurvenspitze und eine weniger tiefe konkave Fläche im Vergleich zum Querschnitt im Bereich nahe dem Flügel, wo die Drehgeschwindigkeit größer ist, vorgesehen ist; somit kann der Querschnitt den unterschiedlichen Funktionsbedingungen angepasst sein um den Wirkungsgrad weiter zu verbessern.
Der erfindungsgemäße Arm ist dem Wind ausgesetzt welcher die Drehung der Turbine bewirkt, wobei dem Wind der „hintere" Bereich mit konkaver Fläche ausgesetzt ist welche geeignet ist die kinetische Energie des Windes in Drehung umzusetzen, während der „vordere" konvexe Bereich des Arms einen minimalen Widerstand gegen die Bewegung durch die Luft bietet; in dieser Phase trägt also der Arm aktiv zur Drehung der Turbine bei. Während der besagten aktiven Phase werden zwei unterschiedliche Phänomene genutzt; einmal das Phänomen der Umwandlung der kinetischen Energie des Windes welcher auf die hintere Fläche des Armes (optimal bei Arm in Stellung 90° zur Windrichtung) wirkt sowie das Phänomen welches durch den Impuls des Abflusses der Luft längs dem Kanal der hinteren konkaven Fläche des Armes (welcher einen Winkel größer als 90° zur Windrichtung bildet) und durch die Zentrifugalwirkung bewirkt wird, wobei beim Austritt aus besagtem Kanal in Richtung Flügel, anfänglich eine starke Verlangsamung erfolgt und anschließend sich der Druck im Bereich des Auftreffens auf die Fläche des angebrachten Flügels erhöht. Dieser Effekt kann optimiert werden indem am, dem Flügel zugekehrten, Ende des besagten Kanals eine schräge oder bogenförmige Fläche für den Abfluss in Richtung Abströmkante des angebrachten Flügels vorgesehen ist.
Bei andauernder Drehung befindet sich der selbe Arm in einer
Verminderungsphase der Schubwirkung während welcher er wesentlich von vorne, auf die konvexe Fläche des Arms, beaufschlagt wird. Die ungünstigste Position wird erreicht wenn der Arm 90° zur Richtung des, gemäß horizontaler Ebenen, wirkenden Windes einnimmt. Die Luft wird vom konvexen Profil der vorderen Fläche des Armes welche möglichst wenig Widerstand bietet, abgelenkt. Durch den aerodynamisch gestalteten Querschnitt des erfindungsgemäßen Arms und durch die Verwirbelung, zusammen mit dem durch die Abströmkanten erzeugten Unterdruck im Innern des durch die konkave hintere Fläche gebildeten Längskanals des Arms, wird während der Drehung des Arms ein Ansammeln fluktuierenden Druckes erreicht welches bei bestimmtem Drehzahlbereich und in Abhängigkeit des Querschnittes des Arms einen „aktiven" Schub bewirkt welcher die Drehung unterstützt.
Erfindungsgemäß wird also erreicht, dass die Drehung der Turbine effektiv durch die Trägerarme der Flügel unterstützt wird; insbesondere wird weiters ein vorteilhafter Effekt erreicht welcher den Anlauf der Drehung der Turbine bei niedrigen Windstärken begünstigt, was für jene Turbinen vorteilhaft ist deren Flügel für hohe Leistungen nur bei hoher Windstärke, ausgelegt sind.
Der Querschnitt des erfindungsgemäßen Arms bietet sich, wegen des Verhältnisses der vertikalen Abmessung zur horizontalen Abmessung welches zum Wert 1 tendiert, für die Ausbildung eventueller interner Tragstrukturen unterschiedlicher Art und beachtenswerter Stabilität und effizienter Verbindungen, sei es im Bereich der Nabe als auch des Flügels, an, wobei eventuell auch die Verminderung der Anzahl der Arme pro Flügel auf einen einzigen Arm möglich wird. Natürlich kann der erfindungsgemäße Arm von der tragenden Schale allein, mit oder ohne Füllung des Innenhohlraumes, z.B. mit Schaumharz, gebildet sein; die besagte Schale kann zusammen mit einer Innenstruktur tragende Funktion haben oder sie kann nur als aerodynamische Außenverkleidung angebracht sein. Erfindungsgemäß kann die Längsform der Trägerarme gerade oder gebogen sein.
Die Erfindung wird anschließend anhand eines in den beigelegten Zeichnungen schematisch dargestellten vorzuziehenden Ausführungsbeispieles eines erfindungsgemäßen Trägerarms für die Flügel einer Windturbine mit vertikaler Drehachse näher erklärt, dabei erfüllen die Zeichnungen rein erklärenden, nicht begrenzenden Zweck.
Die Fig. 1 zeigt in perspektivischer Darstellung eine Windturbine mit vertikaler Drehachse und drei Flügeln, von denen jeder von erfindungsgemäßen Armen getragen wird welche mittels ausgeformter, die Flügel umfassender, Bügel befestigt sind.
Die Fig. 2 zeigt in perspektivischer Darstellung einen Stumpf eines an einem Flügel befestigten erfindungsgemäßen Trägerarms.
Die Fig. 3 zeigt den Querschnitt eines erfindungsgemäßen Trägerarms mit Andeutung der Windströmung und der Drehrichtung während der Phase mit Wirkung des Windes auf die hintere konkave Fläche. Die Fig. 4 zeigt den selben in Fig. 3 dargestellten Querschnitt des erfindungsgemäßen Trägerarms mit Andeutung der Windströmung und der Drehrichtung während der Phase mit Wirkung des Windes auf die vordere konvexe Fläche.
Die Fig. 5 zeigt in Seitenansicht einen Teil eines erfindungsgemäßen Trägerarms welcher unterschiedliche Querschnitte und eine gebogene Ableitfläche am flügelseitigen Ende aufweist.
Die Fig. 6, 7, 8 sind Querschnitt in unterschiedlichen Bereichen am selben, in Fig. 5 dargestellten Trägerarm.
Der Rotor welcher aus einer Nabe 1 , aus speichenförmig angeordneten Armen 2 und aus Flügeln 3 besteht ist, gemäß einer vertikalen Achse A drehbar R gelagert. Die äußeren Enden der Arme 2 weisen ausgeformte, das Profil der Flügel 3 umgreifende, Bügel 3a auf; es werden jedoch bekannte Befestigungsarten zwischen den äußeren Enden der Arme 2 und den Flügeln 3 nicht ausgeschlossen.
Die Arme 2 weisen einen Querschnitt 2s auf weicher, bezogen auf die horizontale Achse, wesentlich symmetrisch ist und, in Drehrichtung gesehen, von einer „vorderen" konvexen Fläche 2a, z.B. mit halbkreisförmigem, parabelförmigem, nasenkonusförmigem oder eintrittskantenförmigem Verlauf eines Flügelprofils und von einer „hinteren" konkaven Fläche 2b, gebildet wird. Natürlich kann auch die konkave Fläche 2b halbkreisförmig oder parabelförmig sein und zwar mit stärkerer oder schwächerer Ausprägung oder Tiefe. Die hintere konkave Fläche 2b bildet eine Längsrille welche für die gesamte Längserstreckung einen konstanten Querschnitt 2s oder unterschiedliche Querschnitte, z.B. weniger tief im Bereich in Richtung Nabe 1 und tiefer im Bereich in Richtung Flügel, aufweisen kann. Erfindungsgemäß können auch die Abmessungen gemäß der horizontalen Symmetrieachse und/oder in vertikaler Richtung über die gesamte Längserstreckung konstant sein oder, in den Bereichen der Befestigung an der Nabe 1 und/oder des Flügels 3, größer sein.
Die Berührungspunkte zwischen den äußersten Längsrändern der vorderen konvexen Fläche 2a und jenen der hinteren konkaven Fläche 2b bilden zwei Längskanten mit zugespitztem Scheitel welche, bei Auftreffen des Windes wesentlich auf die hintere konkave Fläche, als Eintrittskanten wirken während sie bei Auftreffen des Windes wesentlich auf die vordere konvexe Fläche als Abströmkanten wirken.
Gemäß einer Weiterentwicklung des Erfindungsgedankens ist am äußeren Ende des Arms 2, im Verbindungsbereich mit dem Flügel 3, der Endbereich der Rille welche durch die konkave hintere Fläche 2b gebildet wird mit einer quer verlaufenden angewinkelten, geraden oder bogenförmigen, Übergangsfläche 2d versehen welche geeignet ist jene Luft welche den Arm 2 von hinten trifft und welche, wegen der Position des Arms 2 über 90° in Bezug auf die Richtung des Windes W und wegen der Wirkung der Fliehkraft in Richtung äußeres Ende des selben Arms 2, entlang der konkaven Rille 2b strömt, in Richtung Abströmkante 3c des Flügels 3 abzulenken. Diese quer liegende Umlenkfläche 2d hat vorzugsweise einen bogenförmigen oder parabelförmigen Verlauf um, durch die Ableitung der obgenannten Strömung in Richtung Abströmkante 3c des Flügels 3, eine Reaktionskraft zu erhalten welche sich mit den Kräften welche die Drehung der Turbine bewirken summiert.
Wegen der unterstützenden Wirkung der Trägerarme 2 kann der Querschnitt 2s derart dimensioniert werden, dass innerhalb diesem Strukturen oder Organe untergebracht werden können welche geeignet sind um eine stabile Trägerfunktion und effiziente Verbindungen, sei es im Bereich der Nabe 1 als auch im Bereich des Flügels 3, zu erreichen.

Claims

PATENTANSPRÜCHE
1. Trägerarm für die Flügel von Windturbinen mit vertikaler Drehachse welcher wesentlich radial zwischen der Nabe (1) oder dem Lagerorgan der Turbine und jedem der entsprechenden zur Nabe beabstandeten Flügel (3) angeordnet ist, dadurch gekennzeichnet, dass der Querschnitt (2s) des Arms wesentlich symmetrisch zu einer horizontalen Achse ist und von einer, gemäß Drehrichtung (R) des Rotors, vorderen konvexen Fläche (2a) und einer hinteren konkaven Fläche (2b) gebildet ist und dass der Querschnitt (2s), sei es der konkaven als auch der konvexen Fläche, den
Verlauf eines Kreisbogens, einer Parabel, eines Nasenkonus oder einer Eintrittkante eines Flügelprofils hat.
2. Trägerarm gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Querschnitt (2s) des Arms (2) wesentlich konstant für die gesamte
Längserstreckung des Arms (2) ist.
3. Trägerarm gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Querschnitt (2s) des Arms (2) mindestens über einen Teil seiner Längserstreckung variiert indem sich der Verlauf der konkaven Fläche (2b) und der konvexen Fläche (2a) den unterschiedlichen Funktionsbedingungen in Abhängigkeit des unterschiedlichen Abstandes zur Drehachse (A) und/oder der Bedingungen des Auftreffens des Windes (W) anpasst.
4. Trägerarm gemäß Anspruch 1 , dadurch gekennzeichnet, dass die äußersten Ränder der konvexen Fläche (2a) und der konkaven Fläche (2b) im Bereich der gegenseitigen Berührung zwei Längskanten (2c) mit spitzem Scheitel bilden welche wesentlich im Bereich der maximalen vertikalen Abmessung des Querschnittes (2s) des Arms (2) positioniert sind.
5. Trägerarm gemäß Anspruch 1, dadurch gekennzeichnet, dass am, dem Flügel (3) zugekehrten, Ende des Arms (2), der Längskanal welcher durch die hintere konkave Fläche (2b) gebildet wird eine angewinkelte gerade oder gebogene, quer verlaufende Ableitfläche (2d) aufweist welche geeignet ist die in Richtung Flügel (3) fließende Luft durch den besagten
Kanal in Richtung Abströmkante (3c) des besagten Flügels (3) abzuleiten.
6. Trägerarm gemäß Anspruch 1 , dadurch gekennzeichnet, dass dieser sich in Längsrichtung gerade oder mindestens teilweise gebogen erstreckt.
7. Trägerarm gemäß Anspruch 1 , dadurch gekennzeichnet, dass dessen tragende Struktur ausschließlich aus der selben einstückigen oder zusammengesetzten Schale besteht welche aus der konvexen Fläche (2a) und der konkaven Fläche (2b) mit oder ohne Innenfüllung gebildet wird.
8. Trägerarm gemäß Anspruch 1 , dadurch gekennzeichnet, dass die von der konvexen Fläche (2a) und der konkaven Fläche (2b) gebildete Schale ausschließlich als äußere aerodynamische Abdeckung einer innen liegenden tragenden und Verbindungsstruktur wirkt oder zusammen mit einer inneren Struktur als tragende und Verbindungsstruktur wirkt.
PCT/EP2008/003889 2007-05-17 2008-05-15 Trägerarm für die flügel von windturbinen mit senkrechter drehachse WO2008141763A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08758531A EP2145102A2 (de) 2007-05-17 2008-05-15 Trägerarm für die flügel von windturbinen mit senkrechter drehachse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITBZ20070021 ITBZ20070021A1 (it) 2007-05-17 2007-05-17 Braccio di supporto per ali di turbine eoliche ad asse di rotazione verticale
ITBZ2007A000021 2007-05-17

Publications (2)

Publication Number Publication Date
WO2008141763A2 true WO2008141763A2 (de) 2008-11-27
WO2008141763A3 WO2008141763A3 (de) 2009-08-06

Family

ID=40032213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/003889 WO2008141763A2 (de) 2007-05-17 2008-05-15 Trägerarm für die flügel von windturbinen mit senkrechter drehachse

Country Status (3)

Country Link
EP (1) EP2145102A2 (de)
IT (1) ITBZ20070021A1 (de)
WO (1) WO2008141763A2 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20080584A1 (it) * 2008-09-26 2010-03-27 Tozzi Nord S R L Disposizione di fissaggio di elementi portanti a bracci di supporto in rotori di turbine eoliche ad asse verticale e relativo rotore eolico
WO2010071850A3 (en) * 2008-12-19 2011-01-13 Higher Dimension Materials, Inc. Multi-rotor vertical axis wind turbine
ITFI20090185A1 (it) * 2009-08-11 2011-02-12 Enatek S R L "alternatore elettrico del tipo per generatori eolici"
CN102128130A (zh) * 2011-04-13 2011-07-20 天津理工大学 一种阻力型垂直轴风力机
US7988413B2 (en) 2010-04-23 2011-08-02 Eastern Wind Power Vertical axis wind turbine
WO2011033348A3 (en) * 2009-09-18 2011-08-04 Urban Green Energy, Inc. Vertical axis wind turbine and its wind rotor
WO2010150084A3 (en) * 2009-06-26 2011-08-04 Urban Green Energy, Inc. Vertical axis wind turbine
US8030792B2 (en) 2009-03-12 2011-10-04 Eastern Wind Power Vertical axis wind turbine system
WO2012034370A1 (zh) * 2010-09-13 2012-03-22 青海风发科技发展有限公司 具有自起动装置的垂直轴风力机
FR2968044A1 (fr) * 2010-11-29 2012-06-01 Electricite De France Hydrolienne a flux transverse a faible trainee
WO2013014376A1 (fr) * 2011-07-25 2013-01-31 Electricite De France Turbine hydraulique a trainee en bout d'aile reduite
CN102926925A (zh) * 2011-08-10 2013-02-13 宜兴宜友科技有限公司 一种垂直轴风力发电机叶片
ITPD20120127A1 (it) * 2012-04-23 2013-10-24 Vortex Energy S R L Struttura di turbina eolica o idraulica ad asse verticale
US8648483B2 (en) 2009-03-12 2014-02-11 Eastern Wind Power Vertical axis wind turbine system
WO2017111756A1 (en) 2015-12-23 2017-06-29 Okan Universitesi Low friction vertical axis-horizontal blade wind turbine with high efficiency
WO2022086394A1 (en) * 2020-10-19 2022-04-28 Seatwirl Ab Vertical axis wind turbine and method of joining blade and strut

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216382A (zh) * 2012-01-20 2013-07-24 台达电子工业股份有限公司 垂直轴风力发电机及其叶臂
NL2009286C2 (en) * 2012-08-06 2014-02-10 Stichting Energie Swallow tail airfoil.
US11136958B2 (en) 2012-08-06 2021-10-05 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Swallow tail airfoil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US979098A (en) 1910-02-14 1910-12-20 John Scheubeck Wind-motor.
DE8615467U1 (de) 1986-06-07 1986-08-14 Möller, Karl-Friedrich, 6054 Rodgau Profilwindrad
DE20112763U1 (de) 2001-08-08 2002-03-14 Itam Umweltanlagen Gmbh Anlaufhilfe für H-Darrieus Windkraftanlagen durch eine spezielle Gestaltung des Rotorblattträgers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355958A (en) * 1981-09-18 1982-10-26 Cornick Roy C Rotary impeller for fluid driven machine
JP2005282540A (ja) * 2004-03-30 2005-10-13 Daiwa House Ind Co Ltd 揚力型垂直軸風車を用いた風力発電機における回転数制御機構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US979098A (en) 1910-02-14 1910-12-20 John Scheubeck Wind-motor.
DE8615467U1 (de) 1986-06-07 1986-08-14 Möller, Karl-Friedrich, 6054 Rodgau Profilwindrad
DE20112763U1 (de) 2001-08-08 2002-03-14 Itam Umweltanlagen Gmbh Anlaufhilfe für H-Darrieus Windkraftanlagen durch eine spezielle Gestaltung des Rotorblattträgers

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20080584A1 (it) * 2008-09-26 2010-03-27 Tozzi Nord S R L Disposizione di fissaggio di elementi portanti a bracci di supporto in rotori di turbine eoliche ad asse verticale e relativo rotore eolico
WO2010071850A3 (en) * 2008-12-19 2011-01-13 Higher Dimension Materials, Inc. Multi-rotor vertical axis wind turbine
US8648483B2 (en) 2009-03-12 2014-02-11 Eastern Wind Power Vertical axis wind turbine system
US8030792B2 (en) 2009-03-12 2011-10-04 Eastern Wind Power Vertical axis wind turbine system
WO2010150084A3 (en) * 2009-06-26 2011-08-04 Urban Green Energy, Inc. Vertical axis wind turbine
ITFI20090185A1 (it) * 2009-08-11 2011-02-12 Enatek S R L "alternatore elettrico del tipo per generatori eolici"
WO2011018811A1 (en) 2009-08-11 2011-02-17 Enatek S.R.L. An electric alternator for wind power generators
US9243611B2 (en) 2009-09-18 2016-01-26 Hanjun Song Vertical axis wind turbine blade and its wind rotor
WO2011033348A3 (en) * 2009-09-18 2011-08-04 Urban Green Energy, Inc. Vertical axis wind turbine and its wind rotor
US8258647B2 (en) 2010-04-23 2012-09-04 Eastern Wind Power Vertical axis wind turbine
US7988413B2 (en) 2010-04-23 2011-08-02 Eastern Wind Power Vertical axis wind turbine
US8373294B2 (en) 2010-04-23 2013-02-12 Eastern Wind Power Vertical axis wind turbine
US8376688B2 (en) 2010-04-23 2013-02-19 Eastern Wind Power Vertical axis wind turbine
WO2012034370A1 (zh) * 2010-09-13 2012-03-22 青海风发科技发展有限公司 具有自起动装置的垂直轴风力机
WO2012072927A1 (fr) * 2010-11-29 2012-06-07 Electricite De France Hydrolienne a flux transverse a faible trainee
FR2968044A1 (fr) * 2010-11-29 2012-06-01 Electricite De France Hydrolienne a flux transverse a faible trainee
CN102128130A (zh) * 2011-04-13 2011-07-20 天津理工大学 一种阻力型垂直轴风力机
WO2013014376A1 (fr) * 2011-07-25 2013-01-31 Electricite De France Turbine hydraulique a trainee en bout d'aile reduite
FR2978502A1 (fr) * 2011-07-25 2013-02-01 Electricite De France Turbine hydraulique a trainee en bout d'aile reduite
CN102926925A (zh) * 2011-08-10 2013-02-13 宜兴宜友科技有限公司 一种垂直轴风力发电机叶片
EP2657514A1 (de) * 2012-04-23 2013-10-30 Wind Twentyone S.r.l. Vertikal-Achse Wind- oder Wasserturbinen- Struktur
ITPD20120127A1 (it) * 2012-04-23 2013-10-24 Vortex Energy S R L Struttura di turbina eolica o idraulica ad asse verticale
WO2017111756A1 (en) 2015-12-23 2017-06-29 Okan Universitesi Low friction vertical axis-horizontal blade wind turbine with high efficiency
WO2022086394A1 (en) * 2020-10-19 2022-04-28 Seatwirl Ab Vertical axis wind turbine and method of joining blade and strut

Also Published As

Publication number Publication date
ITBZ20070021A1 (it) 2008-11-18
WO2008141763A3 (de) 2009-08-06
EP2145102A2 (de) 2010-01-20

Similar Documents

Publication Publication Date Title
WO2008141763A2 (de) Trägerarm für die flügel von windturbinen mit senkrechter drehachse
EP1177381B1 (de) Windkraftanlage mit vertikalrotor
DE60125172T2 (de) Rotorblatt für eine windkraftanlage
WO2009036713A1 (de) Strömungsenergieanlage, insbesondere windkraftanlage
DE102011118844B3 (de) Vertikalwindturbine und Rotorblatt hierfür
WO2008141813A2 (de) Flügel für windturbinen mit vertikaler drehachse
EP2004990A1 (de) Rotorblatt einer windenergieanlage
EP2366891B1 (de) Windenergieanlagenrotorblatt
WO2005035978A1 (de) Rotorblatt für eine windkraftanlage
EP1923567A2 (de) Rotorblatt und Windkraftanlage
DE202013101943U1 (de) Vorrichtung zur Verringerung des Antriebsleistungsbedarfs eines Wasserfahrzeuges
EP2366892B1 (de) Windenergieanlagenrotorblatt
EP3399183B1 (de) Rotorblatt einer windenergieanlage
WO2010097204A2 (de) Wasserrad
AT503184B1 (de) Unterschlächtiges wasserrad
DE102016108338A1 (de) Windkraftanlage
EP0222780A1 (de) Windenergiekonverter
EP2546513A2 (de) Windkraftanlage und Turbinenlaufrad hierfür
EP3386854B1 (de) Tragschrauberrotorblatt
DE202008005724U1 (de) Axial durchströmte Windturbine
CH700422B1 (de) Axial durchströmte Windturbine.
DE102013010947B3 (de) Offener, durchströmter Strömungskonzentrator und offener, durchströmter Strömungsrezeptor
WO2011117276A2 (de) Rotorblatt für h-rotor
EP3686423B1 (de) Rotorblatt für eine windturbine
DE202008010290U1 (de) Windkraft nach dem Darrieus-Prinzip

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008758531

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08758531

Country of ref document: EP

Kind code of ref document: A2