EP0221968A1 - Verfahren zur entfernung von metallionen aus körpern aus glas oder keramischen werkstoffen - Google Patents

Verfahren zur entfernung von metallionen aus körpern aus glas oder keramischen werkstoffen

Info

Publication number
EP0221968A1
EP0221968A1 EP86903215A EP86903215A EP0221968A1 EP 0221968 A1 EP0221968 A1 EP 0221968A1 EP 86903215 A EP86903215 A EP 86903215A EP 86903215 A EP86903215 A EP 86903215A EP 0221968 A1 EP0221968 A1 EP 0221968A1
Authority
EP
European Patent Office
Prior art keywords
plasma
glass
voltage
ions
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86903215A
Other languages
German (de)
English (en)
French (fr)
Inventor
Hugh S. Munro
Heinrich GRÜNWALD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0221968A1 publication Critical patent/EP0221968A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps

Definitions

  • the invention relates to a method for removing metal ions, especially Alkali ions from the surface layer of glass and ceramic bodies.
  • Alkali ions especially Sodium and lithium, but also potassium ions cause a certain electrical conductivity or the like.
  • Types of glass R.H. Doremus: "Glass Science”, Wiley, New York 1973, p. 146). Because of the high surface conductivity they can e.g. not be used as substrate glasses in microelectronics or for the construction of electrical circuit boards (D.J. Newman and M.J. Aggleton, Physics in Technology, Jan. 1977, pages 10-17).
  • E-glass is used for this, which is almost alkali-free and consists, for example, of 50-55% Si0 2 , 8-12% B 2 0 3 , 13-15% A1 2 0 3 , 1-2% Na 2 0 + K 2 0, 15-17% CaO and 3-5% MgO (HH Dunken: "Physical Chemistry of the Glass Surface", VEB German Publisher for Basic Industry, L employzig 1981, p. 378). Alkali contents of 0.1% and less are now required. E-glass is relatively expensive due to its B p O content. When it melts, volatile fluorine compounds can escape. Measures to protect the environment from these substances are an additional cost factor. It is desirable to overcome these disadvantages by using inexpensive, conventional glasses, the surface layer of which has been freed from alkali ions. On the other hand, e-glasses with too high an alkali content could be optimized by removing residual alkali.
  • Refractive index and reflectivity compared to pure Si0 are desirable low-cost flat glasses with reduced reflectivity and thus increased light transmission.
  • the reflectivity of glasses can be reduced by applying layers whose refractive index lies between that of the glass (approx. 1.5) and that of the air (approx. 1.0).
  • a thin layer of a suitable material is applied to the glass to be tempered.
  • the anti-reflective layer can also through
  • the remaining silicate framework has a lower refractive index. - ⁇ -
  • the alkali-depleted glass of the top layer has a lower coefficient of expansion and exerts a compressive stress, which increases the work required for crack formation.
  • the alkali ions are mostly removed by the action of acidic gases such as HC1 or S0 2 , S0 3 , S0C1 2 etc. together with water vapor on the glass surface which is several hundred degrees Celsius (HH Dunken, aa-.OrV S. 287; A. Sendt, Glastechn. Ber. 37 (2), 1964, 102-115; H. Scholze: "Glass. Nature, Structure and Properties", Springer, Berlin 1977, p. 222).
  • the resistance of alkali-containing glasses can be increased if the alkali ions are removed from the surface layer. This is particularly interesting for preventing the corrosion of glass optical fibers and for preventing the undesired migration of alkali ions Glass vessels in the medical pharmaceutical field of application. Conventionally, the removal of the alkali ions from the surface can be done, for example, by treating the glass bodies heated to a few hundred degrees Celsius with SO 2 (RH Doremus, loc. Cit. P. 236; A. Sendt, loc. Cit. P. 110).
  • the invention has for its object to provide a method with which by removing metal ions, especially alkali ions, both the electrical surface conductivity and the reflectivity of molded glass bodies can be reduced and their chemical resistance and mechanical strength can be improved.
  • the shape of the glass body to be tempered should not be subject to any restrictions.
  • the process should make it possible to treat the vitreous at room temperature so as not to change their volume properties and shape.
  • the method should also be applicable in an analogous manner to enamelled bodies and bodies made of ceramic and other amorphous and crystalline materials.
  • the object is, as explained in more detail in the claims, achieved in that metal surfaces, in particular alkali ions, are removed from the surface to be coated by treatment with a low-pressure plasma or a corona discharge.
  • impurities for example sodium
  • SiO p silicon oxide
  • low-pressure plasmas can be used for the selective removal of metal ions, in particular alkali ions, from the surface layer of glass or under certain conditions, in particular when using non-oxidizing discharge gases, such as hydrogen, nitrogen or noble gases, which are not or little useful for surface cleaning use ceramic materials without the treated body having to be heated or an additional electrical potential applied.
  • non-oxidizing discharge gases such as hydrogen, nitrogen or noble gases
  • the effect is likely to be by bombarding the surface with gas ions and with high-energy, metastably excited gas particles, and possibly the "hard” UV radiation from the low-pressure plasma or the corona discharge.
  • the outer layer becomes particularly poor in alkali ions and accumulates in SiO p , so that it becomes more "quartz-like" and corresponding glasses or ceramic bodies have the above advantageous properties.
  • the treatment of bodies made of silicate glass in the low-pressure plasma is advantageously carried out in a reactor made of quartz glass or internally coated with SiO p , the low-pressure plasma being generated by an electrical high-frequency field of usually 13.56 MHz, which is applied via external electrodes or an external metal coil.
  • the inner surfaces of the reactor which are exposed to the low-pressure plasma are advantageously coated with a material for the treatment of bodies made of glass or ceramic according to the invention which does not release any troublesome impurities under the conditions according to the process.
  • the electrodes can also be arranged inside the reactor and the reactor can also consist of metal.
  • suitable measures should be taken to prevent the transfer of metal particles to the bodies treated according to the invention (see: J.L. Vossen, Pure Appl. Chem. 5_2, pp. 1759-1765).
  • the frequency of the field generating the plasma can be selected from a DC voltage to a high frequency.
  • special microwave plasma reactors for example according to US Pat. No. 4,049,940
  • the interiors of hollow bodies can be processed according to the invention.
  • the construction of the reactor should ensure with advantageous application of the method that the bodies to be coated are located in the bright glowing zone of the discharge and are exposed to the bombardment of ionized and metastably excited gas particles and to UV radiation. All the surfaces of (arbitrarily shaped) bodies that are in contact with the low-pressure plasma are remunerated. Covered areas or those on which the bodies rest are not remunerated.
  • the leakage rate of the gas supply system and the reactor should be less than 10 dm 3 Pa / sec when the method is advantageously used.
  • the method according to the invention can also be carried out at pressures from 13.3 Pa (0.1 Torr) to 2 * 10 Pa (2 atm), advantageously 1 * 10 Pa (1 atm) using corona discharge devices.
  • the frequency of the applied voltage can be selected from a DC voltage to a high frequency voltage, but is usually 10-40 kHz. Depending on the pressure and electrode spacing, the voltage is up to 20 kV.
  • a corona discharge can alternatively be used at, for example, normal pressure, a voltage of 10 kV, a frequency of 10 kHz and a power of 1-10 kW.
  • the decisive step in the method according to the invention that removes the metal ions consists of treating the body with a plasma, in an advantageous application of the invention in a low-pressure plasma (at, for example, 26.6 Pa) or with a plasma generated by corona discharge.
  • a plasma in an advantageous application of the invention in a low-pressure plasma (at, for example, 26.6 Pa) or with a plasma generated by corona discharge.
  • hydrogen, nitrogen or a are used as the discharge gas for this purpose
  • Noble gas advantageously pure argon or helium used.
  • the power transferred from the electric field to the low-pressure plasma can be between 0.01 and 1 watt per cm 3 plasma volume. In an advantageous application of the invention, it is in the range of 0.05 W / cm 3 .
  • the parameters of pressure and power in the low-pressure plasma cannot be set completely independently of one another, since with a given reactor design and a given pressure, only a certain power can be transferred to the low-pressure plasma. The higher the pressure and power selected, the more it heats the surface of the treated body through the low-pressure plasma treatment.
  • the duration of the plasma treatment is determined by the desired degree of depletion of metal ions. For alkali ions, this is typically in the range from a few minutes to an hour. This process step also kills microorganisms.
  • Finished products made of easily and inexpensively to process alkali-containing glasses or ceramic materials or enamelled objects can be remunerated after their final shaping.
  • the parts to be tempered do not have to be flat, they can have any shape.
  • the method according to the invention can easily be controlled via the parameters pressure, power, duration and possibly temperature.
  • the method can be used with suitable systems already available on the market, e.g. RIE ("Reactive Ion Etching") systems, corona discharge systems or microwave reactors.
  • RIE Reactive Ion Etching
  • the method according to the invention can be particularly advantageous in vacuum production lines, such as those e.g. be used in microelectronics, be integrated.
  • FIG. 1 A corresponding arrangement is shown schematically in FIG. 1. It is particularly suitable for tempering small vitreous bodies.
  • a glass reactor (1) with a volume of 0.9 dm 3 after removing a cap (2), is charged with the glass bodies to be tempered, closed again with the cap and evacuated with a suitable rotary pump or a diffusion pump. 3) read.
  • the backflow of hydrocarbons from the pump is suppressed with a cold trap (4) or an absorption filter.
  • Flat substrates (5) can be heated up to 250 ° C if necessary to intensify the treatment.
  • an oil that is hot from an oil thermostat (6) is pumped through a substrate holder (7). If a cooling thermostat is used as an alternative, cooling is also possible.
  • To clean the surface of the vitreous to be tempered from organic contaminants they are first exposed to an air plasma.
  • Air is metered into the evacuated reactor with a fine regulating valve (8) until a constant pressure of 26.6 Pa (0.2 Torr) is reached and the low-pressure plasma is ignited by switching on a high-frequency generator (9).
  • the reflected electrical power is minimized and the power consumed by the low-pressure plasma is set to 40 W by means of an adaptation network (10).
  • the power consumed is calculated as the difference between the fed-in and reflected power with a wattmeter (11) certainly.
  • the generator is switched off, the metered-in air is switched off and the reactor is pumped empty to the lowest achievable pressure.
  • a 30-minute plasma treatment with argon (3-ring) at 26.6 Pa (0.2 Torr) and 40 W is now carried out in the manner described.
  • the reactor is aerated via an aeration valve (12) and the tempered glass body is removed from the reactor.
  • FIGS. 2 to 7 show ESCA ("Electron Spectroscopy for Chemical Analysis") spectra of two cover glasses for microscopy purposes, one of which remained untreated, the other was subjected to the method according to the invention described in the exemplary embodiment.
  • the overview spectra (FIGS. 2 and 3) show the signals of all elements present in the glass surface. the absence of signals of sodium and potassium in FIG. 3 can be clearly seen.
  • FIGS. 4 to 7 show the signals of potassium, sodium and aluminum in higher resolution.
  • FIG. 4 shows the 2p 3 and the 2p 1 signals of potassium (the signals at 285 and 288.5 eV come from carbon impurities) at the untreated glass surface at binding energies (BE) of 293.5 eV and 296.0 eV .
  • BE binding energies
  • FIG. 5 shows the 2s signal of sodium (63.4 eV) and the 2p signal of aluminum (74.3 eV) on the untreated glass surface.
  • FIG. 7 shows the corresponding area of the spectrum of the treated surface. The signals from sodium and aluminum have disappeared.
  • the ESCA spectra demonstrate that potassium, sodium and aluminum are removed from the surface layer of the glass by the process according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
EP86903215A 1985-05-21 1986-05-16 Verfahren zur entfernung von metallionen aus körpern aus glas oder keramischen werkstoffen Withdrawn EP0221968A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3518197 1985-05-21
DE19853518197 DE3518197A1 (de) 1985-05-21 1985-05-21 Verfahren zur entfernung von metallionen aus koerpern aus glas, keramischen werkstoffen und sonstigen amorphen werkstoffen sowie kristallinen werkstoffen

Publications (1)

Publication Number Publication Date
EP0221968A1 true EP0221968A1 (de) 1987-05-20

Family

ID=6271234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86903215A Withdrawn EP0221968A1 (de) 1985-05-21 1986-05-16 Verfahren zur entfernung von metallionen aus körpern aus glas oder keramischen werkstoffen

Country Status (5)

Country Link
US (1) US4983255A (ja)
EP (1) EP0221968A1 (ja)
JP (1) JP2523561B2 (ja)
DE (1) DE3518197A1 (ja)
WO (1) WO1986007051A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616144B1 (fr) * 1987-06-02 1992-07-24 Saint Gobain Emballage Desionisation du buvant de recipients en verre
US5211734A (en) * 1989-03-31 1993-05-18 Tdk Corporation Method for making a magnetic head having surface-reinforced glass
IT1245420B (it) * 1991-02-27 1994-09-20 Cselt Centro Studi Lab Telecom Procedimento per la fabbricazione di guide ottiche integrate in vetro
DE4221864C2 (de) * 1992-07-03 1995-02-09 Ver Glaswerke Gmbh Verfahren zur Herstellung einer mit einer teilreflektierenden Hartstoffschicht versehenen Glasscheibe
FR2697456B1 (fr) * 1992-10-30 1994-12-23 Air Liquide Procédé et dispositif de fluxage par voie sèche.
DE4241152A1 (de) * 1992-12-07 1994-06-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dotiertes Quarzglas und daraus hergestellte Gegenstände
FR2730725B1 (fr) * 1995-02-16 1997-11-14 Saverglass Verrerie Procede d'attaque superficielle d'une surface d'un materiau vitreux multicomposants par plasma
CN1214997C (zh) * 1996-03-18 2005-08-17 戴纳利克公司 制造玻璃的方法
JPH10185953A (ja) * 1996-12-27 1998-07-14 Mitsubishi Electric Corp プローブカード探針の洗浄方法およびこの洗浄方法を実施するための装置
US6177356B1 (en) 1997-06-05 2001-01-23 Sizary Ltd. Semiconductor cleaning apparatus
US5979190A (en) * 1997-09-29 1999-11-09 Lucent Technologies Inc. Method for manufacturing an article comprising a refractory a dielectric body
US6136669A (en) * 1998-07-21 2000-10-24 International Business Machines Corporation Mobile charge immune process
US6041623A (en) * 1998-08-27 2000-03-28 Lucent Technologies Inc. Process for fabricating article comprising refractory dielectric body
JP3678212B2 (ja) * 2002-05-20 2005-08-03 ウシオ電機株式会社 超高圧水銀ランプ
DE102006009822B4 (de) * 2006-03-01 2013-04-18 Schott Ag Verfahren zur Plasmabehandlung von Glasoberflächen, dessen Verwendung sowie Glassubstrat und dessen Verwendung
DE102008061156A1 (de) * 2008-12-09 2010-06-10 Osram Gesellschaft mit beschränkter Haftung Hybridoptik
TW201109285A (en) * 2009-09-10 2011-03-16 Applied Vacuum Coating Technologies Co Ltd Method of strengthening glass plate
DE102010011192B4 (de) 2010-03-11 2013-05-16 Schott Ag Verfahren zur Oberflächenbehandlung von Substraten
US20110269087A1 (en) * 2010-04-30 2011-11-03 Duchateau Gary L Portable solar panel for heating air
US9988304B2 (en) * 2011-09-02 2018-06-05 Guardian Glass, LLC Method of strengthening glass by plasma induced ion exchanges in connection with tin baths, and articles made according to the same
US9604877B2 (en) * 2011-09-02 2017-03-28 Guardian Industries Corp. Method of strengthening glass using plasma torches and/or arc jets, and articles made according to the same
US10273048B2 (en) 2012-06-07 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US9034442B2 (en) 2012-11-30 2015-05-19 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
TWI705946B (zh) 2014-09-05 2020-10-01 美商康寧公司 玻璃物品及改善玻璃物品可靠性的方法
CA2968536C (en) 2014-11-26 2021-05-25 Corning Incorporated Methods for producing strengthened and durable glass containers
CN117062787A (zh) 2021-03-25 2023-11-14 肖特制药股份有限两合公司 药物容器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467953A (en) * 1946-09-19 1949-04-19 Distillation Products Inc Use of glow discharge in vacuum coating processes
DE1017813B (de) * 1951-08-28 1957-10-17 Rca Corp Glaskoerper mit einer skelettierten Siliziumdioxydschicht
GB1115055A (en) * 1964-09-15 1968-05-22 Atomic Energy Commission Film deposition in an evacuated chamber
DE1496546A1 (de) * 1965-01-27 1969-05-14 Jenaer Glaswerk Schott & Gen Verfahren zur Steigerung der Festigkeit von Gegenstaenden aus Glas,Emaille und Keramik
GB1189714A (en) * 1966-07-29 1970-04-29 Libbey Owens Ford Co A Continuous Process of Coating by Vapour Deposition.
GB1263582A (en) * 1969-09-19 1972-02-09 Barr & Stroud Ltd Improvements in or relating to thin film deposition
IT1012355B (it) * 1973-06-20 1977-03-10 Rca Corp Corpo di vetro presentante una pellicola di ossido semicondut tore trasparente
US3879183A (en) * 1973-08-15 1975-04-22 Rca Corp Corona discharge method of depleting mobile ions from a glass region
US4110093A (en) * 1974-04-22 1978-08-29 Macedo Pedro B Method for producing an impregnated waveguide
FR2290126A1 (fr) * 1974-10-31 1976-05-28 Anvar Perfectionnements apportes aux dispositifs d'excitation, par des ondes hf, d'une colonne de gaz enfermee dans une enveloppe
EP0001837A3 (de) * 1977-11-02 1979-05-30 Battelle-Institut e.V. Verfahren zur Entspiegelung von Gläsern sowie Vorrichtung zur Durchführung eines solchen Verfahrens
FR2463975A1 (fr) * 1979-08-22 1981-02-27 Onera (Off Nat Aerospatiale) Procede et appareil pour la gravure chimique par voie seche des circuits integres
US4289598A (en) * 1980-05-03 1981-09-15 Technics, Inc. Plasma reactor and method therefor
US4307179A (en) * 1980-07-03 1981-12-22 International Business Machines Corporation Planar metal interconnection system and process
DE3302161A1 (de) * 1983-01-22 1984-07-26 Klaus 4803 Steinhagen Kalwar Vorrichtung zur elektrischen koronabehandlung von profilstraengen aus elektrisch nichtleitendem oder leitendem material und zur weiterbehandlung der oberflaeche
US4807016A (en) * 1985-07-15 1989-02-21 Texas Instruments Incorporated Dry etch of phosphosilicate glass with selectivity to undoped oxide
JPS6274003A (ja) * 1985-09-26 1987-04-04 Nippon Kokan Kk <Nkk> 圧粉体の焼結方法
US4731156A (en) * 1987-02-25 1988-03-15 Itt Avionics, A Division Of Itt Corporation Plasma processes for surface modification of fluoropolymers using ammonia

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8607051A1 *

Also Published As

Publication number Publication date
DE3518197C2 (ja) 1987-07-09
JPS62503028A (ja) 1987-12-03
WO1986007051A1 (en) 1986-12-04
US4983255A (en) 1991-01-08
JP2523561B2 (ja) 1996-08-14
DE3518197A1 (de) 1986-11-27

Similar Documents

Publication Publication Date Title
EP0221968A1 (de) Verfahren zur entfernung von metallionen aus körpern aus glas oder keramischen werkstoffen
DE2736514C2 (de) Verfahren und Vorrichtung zum Beschichten von Oberflächen mit Kohlenstoff
DE69431573T2 (de) Verfahren zur Herstellung von Schichten
DE3322680C2 (ja)
EP1829837A1 (de) Verfahren und Vorrichtung zur Plasmabehandlung von alkali- und erdalkalihaltgen Oberflächen
DE2349839A1 (de) Verfahren zur schaffung einer ionenverarmungszone im glaskoerper
DE3933713A1 (de) Verfahren zur bildung einer leitenden metallschicht auf einem anorganischen substrat
DE2203080A1 (de) Verfahren zum Herstellen einer Schicht mit bestimmter Dicke auf einer Unterlage
DE3335623A1 (de) Verfahren zur herstellung einer kohlenstoff enthaltenden schicht, kohlenstoff enthaltende schicht, verwendung einer kohlenstoff enthaltenden schicht und vorrichtung zur durchfuehrung eines verfahrens zur herstellung einer kohlenstoff enthaltenden schicht
EP0328757A2 (de) Verfahren zur Herstellung dünner Schichten aus oxydischem Hochtemperatur-Supraleiter
WO2006027106A1 (de) Verfahren zum abscheiden von photokatalytischen titanoxid-schichten
DE1806514A1 (de) Verfahren und Vorrichtung fuer das Niederschlagen von Dampf
CH696179A5 (de) Plasma-Verdampfungsquelle für eine Vakuum Beschichtungsanordnung zum Aufbringen von Vergütungsschichten auf optische Substrate.
DE1521561B2 (de) Verfahren und Vorrichtung zum Auftragen dünner Schichten
DE1640529C3 (de) Verfahren zum Aufsprühen von Isolierschichten
DE3839903C2 (ja)
DE2460827C3 (de) Verfahen zum Herstellen einer dielektrischen Schicht über einer Metallisierungsschicht
DE3208086C2 (de) Verwendung einer Plasmakanone
DE2724348A1 (de) Glaspassiviertes halbleiterbauelement und verfahren zur herstellung
DE69912522T2 (de) Laserkammer mit keramischen Isolatoren, die mit dielektrischem Material beschichtet sind
DE4421045C2 (de) Einrichtung zur plamagestützten Beschichtung von Substraten, insbesondere mit elektrisch isolierendem Material
EP1675972A2 (de) Verfahren zur plasmabehandlung einer oberfl che
DE3100670C2 (de) Metall-Oxid-Halbleiter-Vorrichtung
EP0267304A1 (de) Verfahren zur Herstellung von Laser-Kathoden
DD142966A1 (de) Verfahren zur in situ-vorbehandlung und zur beschichtungvon substraten mit duennen schichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870224

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUNRO, HUGH, S.

Inventor name: GRUENWALD, HEINRICH