EP0215931A1 - Anordnung zur individuellen regelung der intensität mehrerer spektrallampen - Google Patents

Anordnung zur individuellen regelung der intensität mehrerer spektrallampen

Info

Publication number
EP0215931A1
EP0215931A1 EP86902308A EP86902308A EP0215931A1 EP 0215931 A1 EP0215931 A1 EP 0215931A1 EP 86902308 A EP86902308 A EP 86902308A EP 86902308 A EP86902308 A EP 86902308A EP 0215931 A1 EP0215931 A1 EP 0215931A1
Authority
EP
European Patent Office
Prior art keywords
intensity
lamps
radiation
spectral
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86902308A
Other languages
English (en)
French (fr)
Inventor
Tetsuo Hadeishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gruen-Optik Wetzlar GmbH
Gruen Optik Wetzlar GmbH
Original Assignee
Gruen-Optik Wetzlar GmbH
Gruen Optik Wetzlar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gruen-Optik Wetzlar GmbH, Gruen Optik Wetzlar GmbH filed Critical Gruen-Optik Wetzlar GmbH
Publication of EP0215931A1 publication Critical patent/EP0215931A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3922Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations and measurement of the incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4242Modulated light, e.g. for synchronizing source and detector circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • G01N2021/3114Multi-element AAS arrangements

Definitions

  • the invention relates to an arrangement according to the preamble of claim 1.
  • Absorption spectrometers in particular often contain a plurality of spectral lamps for generating a measurement radiation which is matched to the particular sample to be examined. If the lamps are activated individually one after the other, then their respective operating parameters can be regulated in a simple manner directly via the central supply device as a function of a measured variable derived from the measuring beam path. However, if the lamps are all activated at the same time and combined with the aid of deflecting mirrors to form a common measuring beam, then several regulators, which are arranged downstream of the common supply device, are necessary for the individual setting of the operating parameters of the individual lamps.
  • the invention was therefore based on the object of specifying an arrangement which can be used to adapt the intensity of a plurality of spectral lamps operated in parallel to one another in a simple manner as a function of a control variable derived from the total measuring beam.
  • this object is achieved according to the invention by the features specified in the characterizing part of claim 1.
  • Advantageous further developments result from the features of claims 2 to 4.
  • Figure 1 shows an arrangement with several control loops connected in parallel
  • Figure 2 shows an arrangement with an alternately tunable control loop.
  • the operating voltage of the hollow cathode lamp 1 is generated by a power amplifier 10 and z. B. modulated with a frequency of 2 kHz.
  • the hollow cathode lamp 2 is supplied by the power amplifier 20, which z. B. modulated with 9 KHz.
  • the radiation components are obtained by the respective modulation
  • Phase-coupled control loops 12, 22 phase-locked loops, PLL
  • automatic gain controllers 13, 23 automatic gain control, AGC
  • the frequency filter 110 arranged downstream of the photomultiplier 9 can be electronically tuned in this case.
  • the power amplifier 130 has two outputs with different frequency-modulated supply voltages for the lamps 1 and 2.
  • the gain control signal coming from the controller 13 is also supplied by the circuit arrangement 120 in synchronism with the tuning of the frequency filter 110 to the correspondingly modulated output signal of the power amplifier 130.
  • the supply voltage at the other output or possibly further outputs of the power amplifier 130 remains unregulated during this time.
  • the circuit arrangement 120 can also derive a control signal for the measuring circuit (not shown) arranged downstream of the absorption cell 7.
  • the signal evaluation can be further simplified by using digital frequency filters known per se.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

Anordnung zur individuellen Regelung der Intensität mehrerer Spektrallampen
Die Erfindung betrifft eine Anordnung nach dem Oberbegriff des Patent¬ anspruchs 1.
Insbesondere Absorptionsspektrometer enthalten häufig mehrere Spektral¬ lampen zur Erzeugung einer an die jeweils zu untersuchende Probe ange¬ paßten MeΘstrahlung. Wenn die Lampen einzeln nacheinander aktiviert wer¬ den, dann können in einfacher Weise ihre jeweiligen Betriebsparameter in Abhängigkeit von einer aus dem Meßstrahlengang abgeleiteten Meßgröße direkt über das zentrale Versorgungsgerät geregelt werden. Werden die Lampen jedoch alle gleichzeitig aktiviert und mit Hilfe von Umlenkspie- gelπ zu einem gemeinsamen Meßstrahlenbündel zusammengefaßt, dann sind mehrere, dem gemeinsamen Versorgungsgerät nachgeordnete Regler zur indi¬ viduellen Einstellung der Betriebsparameter der einzelnen Lampen notwen¬ dig. Eine individuelle Steuerung dieser Regler in Abhängigkeit von einem aus dem Meßstrahlenbündel abgeleiteten Signal ist nicht möglich, da die Strahlungsanteilε der einzelnen Lampen in dem gemeinsamen Meßstrahlen¬ bündel nicht separiert werden können. Eine Stabilisierung schwankender Emissionsintensitäten einzelner Lampen oder z. B. eine gesteuerte Anpas¬ sung der Strahlungszusammensetzung an unterschiedliche Proben ist daher nicht möglich.
Der Erfindung lag daher die Aufgabe zugrunde, eine Anordnung anzugeben, mit der in Abhängigkeit von einer aus dem Gesamtmeßstrahlenbündel abge¬ leiteten Regelgröße die Intensität mehrerer parallel zueinander betrie¬ bener Spektrallampen den unterschiedlichen Bedürfnissen in einfacher Weise angepaßt werden kann. Diese Aufgabe wird bei einer Anordnung der eingangs genannten Art er- findungsgemäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merk¬ male gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 4.
Ausführungsbeispiele der Erfindung sind in der Zeichnung schematisch dargestellt und werden nachfolgend beschrieben. Im einzelnen zeigt:
Figur 1 eine Anordnung mit mehreren parallel geschalteten Regelkreisen Figur 2 eine Anordnung mit einem abwechseln abstimmbaren Regelkreis.
In Figur 1 wird Strahlung zweier unterschiedlicher Hohlkathodenlampen 1, 2' z. B. für die Elemente Se und Hg, mit Hilfe eines Teilerspiegels 3 zu einem gemeinsamen Strahlengang 4 zusammengefaßt. Eine Linse 5 sammelt die Strahlung und leitet sie durch ein wahlweise einschaltbares Spek¬ tralfilter 6 hindurch in eine Absorptionszelle 7. Vor der Absorptions¬ zelle 7 ist in den Strahlengang ein teildurchlässiger Spiegel 8 einge¬ fügt, der einen Teil der Gesamtstrahlung in Richtung auf einen Photomul- tiplier 9 ausblendet.
Die Betriebsspannung der Hohlkathodenlampe 1 wird von einem Leistungs¬ verstärker 10 erzeugt und z. B. mit einer Frequenz von 2 KHz moduliert. In gleicher Weise wird die Hohlkathodenlampe 2 durch den Leistungsver¬ stärker 20 versorgt, der die Emission der Lampe z. B. mit 9 KHz modu¬ liert. Durch die jeweilige Modulation erhalten die Strahlungsanteile
der beiden Lampen innerhalb des Meßstrahlenganges eine Kennung, die auch in dem durch den Photo ultiplier 9 erzeugten elektrischen Signal ent¬ halten ist. Durch Frequenzfilter 11 und 21 können beide Signalanteile getrennt werden. Phasengekoppelte Regelkreise 12, 22 (Phase-locked-loops, PLL) und automatische Verstärkungsregler 13, 23 (Automatic Gain Control, AGC) sorgen für eine phasenstarre Steuerung der Leistungsverstärker 10, 20 im Takt ihrer Modulationsfrequenzen.
In Figur 2 sind die mit Figur 1 übereinstimmenden Bauelemente mit den¬ selben Bezugszeichen wie dort versehen. Das dem Photomultiplier 9 nach¬ geordnete Frequenzfilter 110 ist in diesem Fall elektronisch abstimmbar. Die Steuersignale dazu erhält es von der Schaltungsanordnung 120, z. B. einem Mikroprozessor.
Der Leistungsverstärker 130 besitzt zwei Ausgänge mit unterschiedlich frequenzmodulierten Versorgungsspannungen für die Lampen 1 und 2. Das vom Regler 13 kommende Verstärkungsregelungssignal wird durch die Schaltungsanordnung 120 synchron mit der Abstimmung des Frequenzfilters 110 auch dem entsprechend modulierten Ausgangssignal des Leistungsver¬ stärkers 130 zugeführt. Die Versorgungsspannung an dem anderen Ausgang oder evtl. vorhandenen weiteren Ausgängen des Leistungsverstärkers 130 bleibt während dieser Zeit ungeregelt.
In Anbetracht der sehr schnellen Umschaltzeiten für die Abstimmung des Frequenzfilters und das Einschwingen des Verstärkungsregelungskreises im Vergleich zu den allgemeinen Schwankungen der Emissionsintensitäten der Lampen ist das tragbar. Der Vorteil liegt in einer weiteren Ver¬ ringerung des elektronischen Bauteileaufwandes. Selbstverständlich kann von der Schaltungsanordnung 120 auch ein Steuersignal für den der Ab¬ sorptionszelle 7 nachgeordneten, nicht dargestellten Meßschaltkreis ab¬ geleitet werden. Durch den Einsatz an sich bekannter digitaler Frequenz¬ filter kann die Signalauswertung weiter vereinfacht werden.

Claims

Patentansprüche
1) Anordnung zur individuellen Regelung der Intensität mehrerer Spek¬ trallampen, deren Strahlung in einem gemeinsamen Strahlengang zu¬ sammengefaßt ist, dadurch gekennzeichnet, daß a) eine Anordnung zur Modulation der Emission jeder der Spektrallampen (1,2) mit einer unterschiedlichen Frequenz vorgesehen ist,
b) in den gemeinsamen Strahlengang (4) ein Teilerspiegel (8) zur Auskoppelung eines Teils der Gesamtstrahlung eingefügt ist,
c) ein fotoelektrischer Empfänger (9) zur Erzeugung eines der aus¬ gekoppelten Strahlungsintensität proportionalen elektrischen Sig¬ nals vorgesehen ist,
d) dem fotoelektrischen Empfänger auf die Modulationsfrequenzen der Spektrallampen abgestimmte Frequenzfilter (11,21) nachgeordnet sind,
e) denen aus einem phasengekoppelten Regelkreis (12,22) (PLL), einer automatischen Verstärkungsregelung (AGC) un einem Leistungsver¬ stärker (10,20) bestehende Regler zur Steuerung der Intensität der jeweiligen Spektrallampe zugeordnet sind.
2) Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß mehrere parallel zueinander geschaltete Frequenzfilter (11,21) mit ihnen jeweils nachgeordneten Verstärkerschaltungen vorgesehen sind.
3) Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß ein elektro¬ nisch abstimmbares Frequenzfilter (110), ein phasengekoppelter Regel¬ kreis (PLL), ein automatischer Verstärkungsregler (13) (AGC) und ein Leisungsverstärker (130) mit unterschiedlich modulierten Ausgängen zum Betrieb der Spektrallampen (1,2), sowie eine Schaltungsanordnung (120) zur abwechselnden Abstimmung des Frequenzfilters (110) auf die Modulationsfrequenzen der Spektrallampen und Umschaltung des Signals des Verstärkungsreglers (13) auf den entsprechend modulierten Ausgang des Leistungsverstärkers (130) vorgesehen sind.
4) Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß digitale Frequenzfilter vorgesehen sind.
EP86902308A 1985-03-28 1986-03-29 Anordnung zur individuellen regelung der intensität mehrerer spektrallampen Withdrawn EP0215931A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853511255 DE3511255A1 (de) 1985-03-28 1985-03-28 Anordnung zur individuellen regelung der intensitaet mehrer spektrallampen
DE3511255 1985-03-28

Publications (1)

Publication Number Publication Date
EP0215931A1 true EP0215931A1 (de) 1987-04-01

Family

ID=6266569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902308A Withdrawn EP0215931A1 (de) 1985-03-28 1986-03-29 Anordnung zur individuellen regelung der intensität mehrerer spektrallampen

Country Status (4)

Country Link
US (1) US4815848A (de)
EP (1) EP0215931A1 (de)
DE (1) DE3511255A1 (de)
WO (1) WO1986005941A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735130A1 (de) * 1987-10-16 1989-04-27 R Seitner Mess Und Regeltechni Plasmalichtquellenanordnung
DE3827322A1 (de) * 1988-07-05 1990-01-11 Spectruma Gmbh Geraet zur simultanen atomabsorptionsspektrometrie
DE3932421A1 (de) * 1989-09-28 1991-04-11 Cammann Karl Prof Dr Verfahren und vorrichtung zur messung von atomspektren zur bestimmung der menge eines gesuchten elementes
US6075588A (en) * 1996-05-31 2000-06-13 The Regents Of The University Of California Integrated multi-channel optical-based flux monitor and method
US5936716A (en) * 1996-05-31 1999-08-10 Pinsukanjana; Paul Ruengrit Method of controlling multi-species epitaxial deposition
US6181417B1 (en) * 1998-04-20 2001-01-30 Bayer Corporation Photometric readhead with light-shaping plate
DE19851863B3 (de) * 1998-11-10 2004-08-19 Cgk Computer Gesellschaft Konstanz Mbh Vorrichtung zur Beleuchtung von Formularen und zur Regelung der Beleuchtungsstärke
JP2000214231A (ja) * 1999-01-27 2000-08-04 Ando Electric Co Ltd 電気光学サンプリングプロ―バ
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
WO2008070269A2 (en) * 2006-10-06 2008-06-12 Novadaq Technologies, Inc. Methods, software and systems for imaging
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
EP2285421B1 (de) 2008-05-02 2018-04-11 Novadaq Technologies ULC Verfahren zur herstellung und verwendung substanzbeladener erythrozyten zur beobachtung und behandlung von mikrovaskulärer hämodynamik
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
JP6028096B2 (ja) 2012-06-21 2016-11-16 ノバダック テクノロジーズ インコーポレイテッド 血管造影及びかん流の定量化並びに解析手法
AU2015327665B2 (en) 2014-09-29 2018-09-27 Stryker European Operations Limited Imaging a target fluorophore in a biological material in the presence of autofluorescence
JP6487544B2 (ja) 2014-10-09 2019-03-20 ノバダック テクノロジーズ ユーエルシー 蛍光媒介光電式容積脈波記録法を用いた組織中の絶対血流の定量化
CN105207049B (zh) * 2015-10-29 2018-08-31 中国工程物理研究院激光聚变研究中心 激光光谱功率合成系统及方法
CN109564152A (zh) * 2016-07-25 2019-04-02 株式会社岛津制作所 光度计
WO2018145193A1 (en) 2017-02-10 2018-08-16 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
JP7211033B2 (ja) * 2018-11-27 2023-01-24 株式会社島津製作所 原子吸光分光光度計
CN114096039B (zh) * 2021-11-29 2024-02-02 四维生态科技(杭州)有限公司 一种基于频率调制的光谱调节系统及方法
CN116937965A (zh) * 2023-09-12 2023-10-24 晋江市高威电磁科技股份有限公司 一种数控软件控制的电源滤波器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586441A (en) * 1967-07-12 1971-06-22 Instrumentation Labor Inc Atomic absorption spectroanalysis system
US3745349A (en) * 1971-11-18 1973-07-10 M Liston Single path,dual source radiant energy analyzer
US3928761A (en) * 1974-04-15 1975-12-23 Francis P Dunigan Photoelectric apparatus employing phase locked loop circuits
SE415397B (sv) * 1978-06-02 1980-09-29 Asea Ab Fiberoptiskt metdon
US4449821A (en) * 1982-07-14 1984-05-22 E. I. Du Pont De Nemours And Company Process colorimeter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8605941A1 *

Also Published As

Publication number Publication date
DE3511255A1 (de) 1986-10-02
WO1986005941A1 (en) 1986-10-09
US4815848A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
EP0215931A1 (de) Anordnung zur individuellen regelung der intensität mehrerer spektrallampen
DE4002356C2 (de) Abstandsmeßgerät
WO2002044754A1 (de) Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerat
EP0010064A1 (de) Verfahren zur elektrooptischen Distanzmessung sowie Vorrichtung zur Durchführung des Verfahrens
DE3627608A1 (de) Messvorrichtung fuer mikrowellen-rauschen
DE69433106T2 (de) Photodetektorvorrichtung für ein streuendes Medium mit Phasendetektion
DE19506275A1 (de) Lichtquelle variabler Wellenlänge
DE2522085C2 (de)
DE2213996C3 (de) Frequenzselektiver, insbesondere im Wobbeibetrieb einsetzbarer Dämpfungsmeßplatz
DE3151746C2 (de)
EP0111194B1 (de) Einrichtung zur Messung der Rotationsgeschwindigkeit
DE2830678A1 (de) Automatische musik-stimmeinrichtung
DE19548539A1 (de) Mischoszillator mit einem phasengerasteten Regelkreis für einen Rundfunkempfänger
DE69636592T2 (de) Verfahren und Einrichtung zum Empfang eines QAM-Signals
DE2038695C3 (de) Schaltungsanordnung zur Erzeugung einer konstanten spektralen Strahlungsverteilung zur Stabilisierung der Ausstrahlung von Normal- oder Referenzlichtquellen
EP0170793B1 (de) Durch binäre Datensignale modulierbarer Hochfrequenzsender
DE929978C (de) Vorrichtung mit einem Oszillator, der mit von einer Regelspannung gesteuerten Mitteln fuer selbsttaetige Frequenzkorrektur und Phasenmodulation der Oszillatorspannung versehen ist
EP1258063B1 (de) Regelvorrichtung für laserdioden
EP1565990A1 (de) Frequenzgenerator
DE2708570A1 (de) Vielkanalsignal-uebertragungs- und -empfangseinrichtung
DE102018109718C5 (de) Optische Frequenzsynthese
DE2618956C2 (de) Einrichtung zur Herstellung von Frequenzskalen für Funk- und Meßgeräte
DE4306754A1 (de) Atomfrequenznormal
DE1541591C (de) Schaltungsanordnung mit zweimaliger Frequenzumsetzung
EP0358967B1 (de) Schaltkreis zur hochgenauen Schlupffrequenzeinstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870303

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HADEISHI, TETSUO