EP0215931A1 - Device for the individual adjustment of the intensity of several spectral lamps - Google Patents

Device for the individual adjustment of the intensity of several spectral lamps

Info

Publication number
EP0215931A1
EP0215931A1 EP86902308A EP86902308A EP0215931A1 EP 0215931 A1 EP0215931 A1 EP 0215931A1 EP 86902308 A EP86902308 A EP 86902308A EP 86902308 A EP86902308 A EP 86902308A EP 0215931 A1 EP0215931 A1 EP 0215931A1
Authority
EP
European Patent Office
Prior art keywords
intensity
lamps
radiation
spectral
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86902308A
Other languages
German (de)
French (fr)
Inventor
Tetsuo Hadeishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gruen-Optik Wetzlar GmbH
Gruen Optik Wetzlar GmbH
Original Assignee
Gruen-Optik Wetzlar GmbH
Gruen Optik Wetzlar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gruen-Optik Wetzlar GmbH, Gruen Optik Wetzlar GmbH filed Critical Gruen-Optik Wetzlar GmbH
Publication of EP0215931A1 publication Critical patent/EP0215931A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3922Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations and measurement of the incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4242Modulated light, e.g. for synchronizing source and detector circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • G01N2021/3114Multi-element AAS arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Un agencement de régulation individuelle de l'intensité de plusieurs lampes spectrales (1, 2) dont le rayonnement est rassemblé dans un seul trajet de rayonnement (4) se caractérise par le fait que les agencements de modulation de l'émission de chaque lampe spectrale (1, 2) ont des fréquences diverses, qu'un miroir diviseur (8) est introduit sur le trajet commun de rayonnement (4) afin de déclencher une partie du rayonnement total, qu'un récepteur photoélectrique (9) sert à générer un signal électrique proportionnel à l'intensité du rayonnement déclenché, et que des filtres de fréquences (11, 23) syntonisés avec les fréquences de modulation des lampes spectrales (1, 2) sont montés en aval du récepteur photoélectrique (9). Des régulateurs composés d'un circuit de régulation (12, 22) à phases couplées, d'une régulation automatique d'amplification (AGC) (13, 23) et d'un amplificateur de puissance (10, 20) sont subordonnés aux filtres de fréquence (11, 23) pour commander l'intensité de la lampe spectrale (1, 2) correspondante.An arrangement for individually regulating the intensity of several spectral lamps (1, 2) whose radiation is collected in a single radiation path (4) is characterized in that the emission modulation arrangements of each spectral lamp (1, 2) have various frequencies, that a dividing mirror (8) is introduced on the common radiation path (4) in order to trigger part of the total radiation, that a photoelectric receiver (9) is used to generate a electrical signal proportional to the intensity of the radiation triggered, and that frequency filters (11, 23) tuned with the modulation frequencies of the spectral lamps (1, 2) are mounted downstream of the photoelectric receiver (9). Regulators consisting of a phase-coupled regulation circuit (12, 22), an automatic amplification regulation (AGC) (13, 23) and a power amplifier (10, 20) are subordinated to the filters. frequency (11, 23) to control the intensity of the corresponding spectral lamp (1, 2).

Description

Anordnung zur individuellen Regelung der Intensität mehrerer SpektrallampenArrangement for individually regulating the intensity of several spectral lamps
Die Erfindung betrifft eine Anordnung nach dem Oberbegriff des Patent¬ anspruchs 1.The invention relates to an arrangement according to the preamble of claim 1.
Insbesondere Absorptionsspektrometer enthalten häufig mehrere Spektral¬ lampen zur Erzeugung einer an die jeweils zu untersuchende Probe ange¬ paßten MeΘstrahlung. Wenn die Lampen einzeln nacheinander aktiviert wer¬ den, dann können in einfacher Weise ihre jeweiligen Betriebsparameter in Abhängigkeit von einer aus dem Meßstrahlengang abgeleiteten Meßgröße direkt über das zentrale Versorgungsgerät geregelt werden. Werden die Lampen jedoch alle gleichzeitig aktiviert und mit Hilfe von Umlenkspie- gelπ zu einem gemeinsamen Meßstrahlenbündel zusammengefaßt, dann sind mehrere, dem gemeinsamen Versorgungsgerät nachgeordnete Regler zur indi¬ viduellen Einstellung der Betriebsparameter der einzelnen Lampen notwen¬ dig. Eine individuelle Steuerung dieser Regler in Abhängigkeit von einem aus dem Meßstrahlenbündel abgeleiteten Signal ist nicht möglich, da die Strahlungsanteilε der einzelnen Lampen in dem gemeinsamen Meßstrahlen¬ bündel nicht separiert werden können. Eine Stabilisierung schwankender Emissionsintensitäten einzelner Lampen oder z. B. eine gesteuerte Anpas¬ sung der Strahlungszusammensetzung an unterschiedliche Proben ist daher nicht möglich.Absorption spectrometers in particular often contain a plurality of spectral lamps for generating a measurement radiation which is matched to the particular sample to be examined. If the lamps are activated individually one after the other, then their respective operating parameters can be regulated in a simple manner directly via the central supply device as a function of a measured variable derived from the measuring beam path. However, if the lamps are all activated at the same time and combined with the aid of deflecting mirrors to form a common measuring beam, then several regulators, which are arranged downstream of the common supply device, are necessary for the individual setting of the operating parameters of the individual lamps. An individual control of these controllers as a function of a signal derived from the measuring beam is not possible, since the radiation fraction of the individual lamps in the common measuring beam cannot be separated. A stabilization of fluctuating emission intensities of individual lamps or z. B. A controlled adaptation of the radiation composition to different samples is therefore not possible.
Der Erfindung lag daher die Aufgabe zugrunde, eine Anordnung anzugeben, mit der in Abhängigkeit von einer aus dem Gesamtmeßstrahlenbündel abge¬ leiteten Regelgröße die Intensität mehrerer parallel zueinander betrie¬ bener Spektrallampen den unterschiedlichen Bedürfnissen in einfacher Weise angepaßt werden kann. Diese Aufgabe wird bei einer Anordnung der eingangs genannten Art er- findungsgemäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merk¬ male gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 4.The invention was therefore based on the object of specifying an arrangement which can be used to adapt the intensity of a plurality of spectral lamps operated in parallel to one another in a simple manner as a function of a control variable derived from the total measuring beam. In an arrangement of the type mentioned at the outset, this object is achieved according to the invention by the features specified in the characterizing part of claim 1. Advantageous further developments result from the features of claims 2 to 4.
Ausführungsbeispiele der Erfindung sind in der Zeichnung schematisch dargestellt und werden nachfolgend beschrieben. Im einzelnen zeigt:Embodiments of the invention are shown schematically in the drawing and are described below. In detail shows:
Figur 1 eine Anordnung mit mehreren parallel geschalteten Regelkreisen Figur 2 eine Anordnung mit einem abwechseln abstimmbaren Regelkreis.Figure 1 shows an arrangement with several control loops connected in parallel Figure 2 shows an arrangement with an alternately tunable control loop.
In Figur 1 wird Strahlung zweier unterschiedlicher Hohlkathodenlampen 1, 2' z. B. für die Elemente Se und Hg, mit Hilfe eines Teilerspiegels 3 zu einem gemeinsamen Strahlengang 4 zusammengefaßt. Eine Linse 5 sammelt die Strahlung und leitet sie durch ein wahlweise einschaltbares Spek¬ tralfilter 6 hindurch in eine Absorptionszelle 7. Vor der Absorptions¬ zelle 7 ist in den Strahlengang ein teildurchlässiger Spiegel 8 einge¬ fügt, der einen Teil der Gesamtstrahlung in Richtung auf einen Photomul- tiplier 9 ausblendet.In Figure 1, radiation from two different hollow cathode lamps 1, 2 ' z. B. for the elements Se and Hg, combined with the aid of a divider mirror 3 to form a common beam path 4. A lens 5 collects the radiation and directs it through an optionally switchable spectral filter 6 into an absorption cell 7. In front of the absorption cell 7, a partially transparent mirror 8 is inserted into the beam path, which part of the total radiation is directed towards one Hides the photomultiplier 9.
Die Betriebsspannung der Hohlkathodenlampe 1 wird von einem Leistungs¬ verstärker 10 erzeugt und z. B. mit einer Frequenz von 2 KHz moduliert. In gleicher Weise wird die Hohlkathodenlampe 2 durch den Leistungsver¬ stärker 20 versorgt, der die Emission der Lampe z. B. mit 9 KHz modu¬ liert. Durch die jeweilige Modulation erhalten die Strahlungsanteile The operating voltage of the hollow cathode lamp 1 is generated by a power amplifier 10 and z. B. modulated with a frequency of 2 kHz. In the same way, the hollow cathode lamp 2 is supplied by the power amplifier 20, which z. B. modulated with 9 KHz. The radiation components are obtained by the respective modulation
der beiden Lampen innerhalb des Meßstrahlenganges eine Kennung, die auch in dem durch den Photo ultiplier 9 erzeugten elektrischen Signal ent¬ halten ist. Durch Frequenzfilter 11 und 21 können beide Signalanteile getrennt werden. Phasengekoppelte Regelkreise 12, 22 (Phase-locked-loops, PLL) und automatische Verstärkungsregler 13, 23 (Automatic Gain Control, AGC) sorgen für eine phasenstarre Steuerung der Leistungsverstärker 10, 20 im Takt ihrer Modulationsfrequenzen.an identification of the two lamps within the measuring beam path, which is also contained in the electrical signal generated by the photo ultiplier 9. Both signal components can be separated by frequency filters 11 and 21. Phase-coupled control loops 12, 22 (phase-locked loops, PLL) and automatic gain controllers 13, 23 (automatic gain control, AGC) ensure phase-locked control of the power amplifiers 10, 20 in time with their modulation frequencies.
In Figur 2 sind die mit Figur 1 übereinstimmenden Bauelemente mit den¬ selben Bezugszeichen wie dort versehen. Das dem Photomultiplier 9 nach¬ geordnete Frequenzfilter 110 ist in diesem Fall elektronisch abstimmbar. Die Steuersignale dazu erhält es von der Schaltungsanordnung 120, z. B. einem Mikroprozessor.In FIG. 2, the components that correspond to FIG. 1 are provided with the same reference numerals as there. The frequency filter 110 arranged downstream of the photomultiplier 9 can be electronically tuned in this case. The control signals it receives from the circuit arrangement 120, for. B. a microprocessor.
Der Leistungsverstärker 130 besitzt zwei Ausgänge mit unterschiedlich frequenzmodulierten Versorgungsspannungen für die Lampen 1 und 2. Das vom Regler 13 kommende Verstärkungsregelungssignal wird durch die Schaltungsanordnung 120 synchron mit der Abstimmung des Frequenzfilters 110 auch dem entsprechend modulierten Ausgangssignal des Leistungsver¬ stärkers 130 zugeführt. Die Versorgungsspannung an dem anderen Ausgang oder evtl. vorhandenen weiteren Ausgängen des Leistungsverstärkers 130 bleibt während dieser Zeit ungeregelt. The power amplifier 130 has two outputs with different frequency-modulated supply voltages for the lamps 1 and 2. The gain control signal coming from the controller 13 is also supplied by the circuit arrangement 120 in synchronism with the tuning of the frequency filter 110 to the correspondingly modulated output signal of the power amplifier 130. The supply voltage at the other output or possibly further outputs of the power amplifier 130 remains unregulated during this time.
In Anbetracht der sehr schnellen Umschaltzeiten für die Abstimmung des Frequenzfilters und das Einschwingen des Verstärkungsregelungskreises im Vergleich zu den allgemeinen Schwankungen der Emissionsintensitäten der Lampen ist das tragbar. Der Vorteil liegt in einer weiteren Ver¬ ringerung des elektronischen Bauteileaufwandes. Selbstverständlich kann von der Schaltungsanordnung 120 auch ein Steuersignal für den der Ab¬ sorptionszelle 7 nachgeordneten, nicht dargestellten Meßschaltkreis ab¬ geleitet werden. Durch den Einsatz an sich bekannter digitaler Frequenz¬ filter kann die Signalauswertung weiter vereinfacht werden. In view of the very fast switching times for tuning the frequency filter and settling the gain control circuit in comparison to the general fluctuations in the emission intensities of the lamps, this is acceptable. The advantage lies in a further reduction in the expenditure on electronic components. Of course, the circuit arrangement 120 can also derive a control signal for the measuring circuit (not shown) arranged downstream of the absorption cell 7. The signal evaluation can be further simplified by using digital frequency filters known per se.

Claims

PatentansprücheClaims
1) Anordnung zur individuellen Regelung der Intensität mehrerer Spek¬ trallampen, deren Strahlung in einem gemeinsamen Strahlengang zu¬ sammengefaßt ist, dadurch gekennzeichnet, daß a) eine Anordnung zur Modulation der Emission jeder der Spektrallampen (1,2) mit einer unterschiedlichen Frequenz vorgesehen ist,1) Arrangement for individually regulating the intensity of a plurality of spectral lamps, the radiation of which is combined in a common beam path, characterized in that a) an arrangement for modulating the emission of each of the spectral lamps (1, 2) with a different frequency is provided ,
b) in den gemeinsamen Strahlengang (4) ein Teilerspiegel (8) zur Auskoppelung eines Teils der Gesamtstrahlung eingefügt ist,b) a divider mirror (8) is inserted into the common beam path (4) for coupling out part of the total radiation,
c) ein fotoelektrischer Empfänger (9) zur Erzeugung eines der aus¬ gekoppelten Strahlungsintensität proportionalen elektrischen Sig¬ nals vorgesehen ist,c) a photoelectric receiver (9) is provided for generating an electrical signal proportional to the coupled-out radiation intensity,
d) dem fotoelektrischen Empfänger auf die Modulationsfrequenzen der Spektrallampen abgestimmte Frequenzfilter (11,21) nachgeordnet sind,d) the photoelectric receiver is followed by frequency filters (11, 21) matched to the modulation frequencies of the spectral lamps,
e) denen aus einem phasengekoppelten Regelkreis (12,22) (PLL), einer automatischen Verstärkungsregelung (AGC) un einem Leistungsver¬ stärker (10,20) bestehende Regler zur Steuerung der Intensität der jeweiligen Spektrallampe zugeordnet sind. e) to which controllers consisting of a phase-coupled control loop (12, 22) (PLL), an automatic gain control (AGC) and a power amplifier (10, 20) are assigned to control the intensity of the respective spectral lamp.
2) Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß mehrere parallel zueinander geschaltete Frequenzfilter (11,21) mit ihnen jeweils nachgeordneten Verstärkerschaltungen vorgesehen sind.2) Arrangement according to claim 1, characterized in that a plurality of frequency filters (11, 21) connected in parallel to one another are provided with amplifier circuits arranged downstream of them.
3) Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß ein elektro¬ nisch abstimmbares Frequenzfilter (110), ein phasengekoppelter Regel¬ kreis (PLL), ein automatischer Verstärkungsregler (13) (AGC) und ein Leisungsverstärker (130) mit unterschiedlich modulierten Ausgängen zum Betrieb der Spektrallampen (1,2), sowie eine Schaltungsanordnung (120) zur abwechselnden Abstimmung des Frequenzfilters (110) auf die Modulationsfrequenzen der Spektrallampen und Umschaltung des Signals des Verstärkungsreglers (13) auf den entsprechend modulierten Ausgang des Leistungsverstärkers (130) vorgesehen sind.3) Arrangement according to claim 1, characterized in that an electronically tunable frequency filter (110), a phase-coupled control circuit (PLL), an automatic gain controller (13) (AGC) and a power amplifier (130) with differently modulated outputs for Operation of the spectral lamps (1, 2) and a circuit arrangement (120) for alternately tuning the frequency filter (110) to the modulation frequencies of the spectral lamps and switching the signal of the gain controller (13) to the correspondingly modulated output of the power amplifier (130) are provided.
4) Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß digitale Frequenzfilter vorgesehen sind. 4) Arrangement according to one of the preceding claims, characterized gekenn¬ characterized in that digital frequency filters are provided.
EP86902308A 1985-03-28 1986-03-29 Device for the individual adjustment of the intensity of several spectral lamps Withdrawn EP0215931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3511255 1985-03-28
DE19853511255 DE3511255A1 (en) 1985-03-28 1985-03-28 ARRANGEMENT FOR THE INDIVIDUAL CONTROL OF THE INTENSITY OF SEVERAL SPECTRAL LAMPS

Publications (1)

Publication Number Publication Date
EP0215931A1 true EP0215931A1 (en) 1987-04-01

Family

ID=6266569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902308A Withdrawn EP0215931A1 (en) 1985-03-28 1986-03-29 Device for the individual adjustment of the intensity of several spectral lamps

Country Status (4)

Country Link
US (1) US4815848A (en)
EP (1) EP0215931A1 (en)
DE (1) DE3511255A1 (en)
WO (1) WO1986005941A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735130A1 (en) * 1987-10-16 1989-04-27 R Seitner Mess Und Regeltechni Plasma light source arrangement
DE3827322A1 (en) * 1988-07-05 1990-01-11 Spectruma Gmbh DEVICE FOR SIMULTANEOUS ATOMIC ABSORPTION SPECTROMETRY
DE3932421A1 (en) * 1989-09-28 1991-04-11 Cammann Karl Prof Dr METHOD AND DEVICE FOR MEASURING ATOMIC SPECTRES FOR DETERMINING THE AMOUNT OF A SEARCHED ELEMENT
US5936716A (en) * 1996-05-31 1999-08-10 Pinsukanjana; Paul Ruengrit Method of controlling multi-species epitaxial deposition
US6075588A (en) * 1996-05-31 2000-06-13 The Regents Of The University Of California Integrated multi-channel optical-based flux monitor and method
US6181417B1 (en) * 1998-04-20 2001-01-30 Bayer Corporation Photometric readhead with light-shaping plate
DE19851863B3 (en) * 1998-11-10 2004-08-19 Cgk Computer Gesellschaft Konstanz Mbh Illumination intensity regulation device for form illumination device used for automatic scanning and sorting uses measured illumination intensity for controlling power amplifier supplying illumination lamp
JP2000214231A (en) 1999-01-27 2000-08-04 Ando Electric Co Ltd Electrooptical sampling prober
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
WO2008070269A2 (en) * 2006-10-06 2008-06-12 Novadaq Technologies, Inc. Methods, software and systems for imaging
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
WO2009135178A2 (en) 2008-05-02 2009-11-05 Flower Robert W Methods for production and use of substance-loaded erythrocytes (s-les) for observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
CA2914778A1 (en) 2012-06-21 2013-12-27 Novadaq Technologies Inc. Quantification and analysis of angiography and perfusion
CA2963987A1 (en) 2014-09-29 2016-04-07 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
KR101955134B1 (en) 2014-10-09 2019-03-06 노바다크 테크놀러지즈 유엘씨 Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
CN105207049B (en) * 2015-10-29 2018-08-31 中国工程物理研究院激光聚变研究中心 Laser spectrum power synthetic system and method
US20190265101A1 (en) * 2016-07-25 2019-08-29 Shimadzu Corporation Photometer
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
JP7211033B2 (en) * 2018-11-27 2023-01-24 株式会社島津製作所 atomic absorption spectrophotometer
CN114096039B (en) * 2021-11-29 2024-02-02 四维生态科技(杭州)有限公司 Spectrum adjusting system and method based on frequency modulation
CN116937965A (en) * 2023-09-12 2023-10-24 晋江市高威电磁科技股份有限公司 Numerical control software controlled power filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586441A (en) * 1967-07-12 1971-06-22 Instrumentation Labor Inc Atomic absorption spectroanalysis system
US3745349A (en) * 1971-11-18 1973-07-10 M Liston Single path,dual source radiant energy analyzer
US3928761A (en) * 1974-04-15 1975-12-23 Francis P Dunigan Photoelectric apparatus employing phase locked loop circuits
SE415397B (en) * 1978-06-02 1980-09-29 Asea Ab FIBEROPTICAL METDON
US4449821A (en) * 1982-07-14 1984-05-22 E. I. Du Pont De Nemours And Company Process colorimeter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8605941A1 *

Also Published As

Publication number Publication date
DE3511255A1 (en) 1986-10-02
WO1986005941A1 (en) 1986-10-09
US4815848A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
EP0215931A1 (en) Device for the individual adjustment of the intensity of several spectral lamps
DE4002356C2 (en) Distance measuring device
WO2002044754A1 (en) Method and device for carrying out frequency synthesis in a distance measuring device
DE3627608A1 (en) MEASURING DEVICE FOR MICROWAVE NOISE
DE69433106T2 (en) Photodetector device for a scattering medium with phase detection
DE19506275A1 (en) Variable wavelength light source with wide adjustment range
DE2522085C2 (en)
DE2213996C3 (en) Frequency-selective attenuation measuring station that can be used in particular in wobble operation
DE3151746C2 (en)
EP0111194B1 (en) Rotation speed measuring apparatus
DE2830678A1 (en) AUTOMATIC MUSIC VOICE DEVICE
DE19548539A1 (en) Mixing oscillator with a phase locked loop for a radio receiver
DE69636592T2 (en) Method and device for receiving a QAM signal
DE2038695C3 (en) Circuit arrangement for generating a constant spectral radiation distribution to stabilize the radiation from normal or reference light sources
EP0170793B1 (en) High-frequency transmitter modulated by binary data signals
DE929978C (en) Device with an oscillator which is provided with means controlled by a control voltage for automatic frequency correction and phase modulation of the oscillator voltage
EP1258063B1 (en) Device for adjusting laser diodes
EP1565990A1 (en) Frequency generator
DE2708570A1 (en) Multichannel transceiver with single reference oscillator - has phase comparator for outputs of reference frequency divider and divider programmed by channel selector
DE102018109718C5 (en) Optical frequency synthesis
DE2723766C2 (en) Circuit for digital frequency setting of a phase-regulated, in particular harmonic-synchronized oscillator
DE4306754A1 (en) Highly stable high frequency standard - varies hyperfine structure frequency with different light intensities causing regulation of laser light frequency
DE1541591C (en) Circuit arrangement with two-fold frequency conversion
EP0180153A2 (en) Digital crystal-stable FM discriminator
EP0358967B1 (en) Circuit for precision controlling differential frequency

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870303

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HADEISHI, TETSUO