EP0214164B1 - Machine a deplacement positif, notamment pompe - Google Patents

Machine a deplacement positif, notamment pompe Download PDF

Info

Publication number
EP0214164B1
EP0214164B1 EP86901030A EP86901030A EP0214164B1 EP 0214164 B1 EP0214164 B1 EP 0214164B1 EP 86901030 A EP86901030 A EP 86901030A EP 86901030 A EP86901030 A EP 86901030A EP 0214164 B1 EP0214164 B1 EP 0214164B1
Authority
EP
European Patent Office
Prior art keywords
displacement
chambers
vanes
displacement chambers
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86901030A
Other languages
German (de)
English (en)
Other versions
EP0214164A1 (fr
Inventor
Kurt GÜTTINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gutag Innovations AG
Original Assignee
Gutag Innovations AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gutag Innovations AG filed Critical Gutag Innovations AG
Publication of EP0214164A1 publication Critical patent/EP0214164A1/fr
Application granted granted Critical
Publication of EP0214164B1 publication Critical patent/EP0214164B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0046Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C15/0065Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/04Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal axis type

Definitions

  • the present invention relates to a displacement machine, in particular a displacement pump, with displacement chambers, in each of which a displacement vane engages, the displacement chamber and displacement vane being able to be set in cyclical relative movement, during which the displacement vane with outer and inner sealing surfaces sealingly follow the walls of the displacement chamber with a common central drive , and wherein inlet and outlet channels for the medium flowing through the machine open into the displacement chambers.
  • Machines of this type are known, for example, from German Patent 22 30 773.
  • the drive takes place by means of rigidly acting eccentrics or cranks.
  • the displacement chambers and vanes are shaped in such a way that they only engage sealingly over a section of around 270 ° of the relative movement. It is therefore necessary to connect at least two displacement chambers with overlapping sealing or delivery areas in series in order to achieve even delivery without leaks.
  • the aim of the present invention is to provide a machine which allows all the disadvantages mentioned to be avoided.
  • a solution is described in the characterizing part of claim 1.
  • the radially adjustable member which generates a driving force with a radial and tangential component, acts on the driven carrier in such a way that the displacer vanes and chambers always remain in sealing contact.
  • Non-uniformities of the relative movement i.e. Deviations from the circular shape compensates for the radially adjustable link, which acts resilient, wedge-like or otherwise non-positive, but not positive.
  • the direction of the driving force can be selected so that the driven carrier is always supported in a certain position in a stable position by the mutual contact points of the displacement vanes and chambers arranged in an outer ring and cannot tilt.
  • the flexible drive which allows a not strictly circular relative movement, accordingly allows greater freedom in the design of the shape of the displacement chambers and wings, in particular their design in such a way that each chamber seals for itself over at least 360 ° of the relative movement.
  • Each chamber can therefore contribute directly to the funding, without series connection with another.
  • the drive preferably consists of a driver fastened on the drive shaft, which acts with a driving surface inclined with respect to the radial direction on a bushing which in turn is mounted on a pin of the carrier to be driven.
  • This arrangement has the advantage that the direction of the driving force changes when worn in the sense that the radial component of the force decreases somewhat, which is itself desirable. So that the displacement chambers and vanes expand outwards, there are particularly favorable conditions for stable operation despite the non-positively engaging drive force on one line, and optimal use of the available space.
  • Pumps or compressors with a correspondingly constructed, radially adjustable or night-adjustable drive are known, but not in combination with measures for stable operation and optimal use of space with a plurality of displacement chambers (FR-A-825 643, FR-A-1 095 539, GB-A-17,672 / 1909).
  • the shaft 5 has a thickened inner end 7 which is milled so that a flat driving surface 7b is formed on a projecting segment 7a.
  • the segment 7a engages in a cylindrical recess 8 of a plate-shaped carrier 9, where its driving surface 7b rests on a flattened point of a bush 7c.
  • the sleeve 7c is mounted on a pin 9a of the carrier 9.
  • This plate-shaped carrier 9 consists of one piece with ribs Migen displacement wings 10, which engage in groove-shaped displacement chambers 11, which are formed in a further plate-shaped carrier 12.
  • the displacement chambers 11 are surrounded by raised ribs 121 of the carrier 12.
  • a recess 122 is created within the ribs.
  • the end faces of both the ribs 121 and the displacer wing 10 are slightly convexly cambered to cover any large area between the parts 9 and 12 and thus to avoid friction.
  • the width of the ribs 121 is preferably less than twice the eccentricity of the movement of the carrier 9, which creates favorable conditions for solids that get between the parts 9 and 12 to be worked out effectively and quickly.
  • the two supports 9 and 12 can be made of plastic as simple molded parts.
  • the rear wall of the pump forms a plate 13, which is designed as a connecting plate by forming connecting channels 14 and 15 on the inside thereof, which inlet and outlet channels 19 and 20 of the displacement chambers 11 are underneath and with an inlet opening 16 and an outlet opening 17 connect.
  • FIG. 2 shows the special shape and arrangement of the existing displacement chambers and displacement blades
  • FIG. 3 shows the geometric shape of these displacement chambers and displacement blades in more detail.
  • Four displacer assemblies 10 are provided on the carrier 9 in a centrally symmetrical arrangement, which engage in four displacer chambers 11 arranged in a correspondingly centrally symmetrical manner in the plate-shaped carrier 12.
  • This centrally symmetrical arrangement of four displacement wings or displacement chambers of triangular or heart-shaped shape not only results in a very advantageous use of space on the carriers 9 and 12, but also a high positional stability of the movable carrier 9, when it is driven by the punctiform or linear support of the driving roller 7 in the recess 8.
  • a center line of symmetry M shown in FIG. 3 of the displacement wing and the associated displacement chamber is composed of two longer sections M b and M e each with a large radius of curvature R and with centers of curvature B or C and subsequent shorter sections m a , m b and m e with small radii of curvature r and centers of curvature A, B and C.
  • the center lines of the end parts above the sections m b and m e either run with a large radius of curvature and center of curvature A or with a small radius of curvature and centers of curvature B or C or according to an intervening curve, as will be explained in more detail.
  • the flanks of each displacement wing 10 and each displacement chamber 11 run according to corresponding curves, namely with large or small radii and corresponding centers of curvature A, B and C as can be seen from FIG. 3. It is important here that there are no discontinuities at the transitions between the parts with a small radius of curvature and the parts with a large radius of curvature, that is, the tags at the adjoining curve parts should merge into one another without a jump.
  • each of these chamber extensions 18 there is an inlet opening 19 or one penetrating the carrier 12 Outlet opening 20.
  • the inlet openings 19 are located radially within the outlet bores 20.
  • all inlet openings 19 are connected to one another and to the inlet 16 of the pump through the annular channel 14. Accordingly, all outlet openings 20 are connected to the ring channel 15 and, via the same, to the outlet 17 of the pump.
  • the four displacement chambers are therefore connected in parallel and work in parallel, which among other things has a favorable effect on the pulsation of the entire conveyor.
  • the carrier 9 is pressed against the carrier 12 by means of helical springs 21, which are supported in recesses in the carrier 9 or the bearing flange 2.
  • the carrier 9 is freely movable in an intermediate pressure mer 22.
  • this intermediate pressure chamber or compensation chamber 22 occurs during the running of the pump through the gap 23 between the abutting end faces of the carrier 9 and 12 and through a central opening of the carrier 9 under the pressure built up in the displacement chambers 11, a portion of the medium conveyed and collects in the intermediate pressure chamber 22, which fills with this medium. From this intermediate pressure chamber 22, the medium can then pass through the annular gap 24 between the bearing bush 4 and the crankshaft 5 to the outside into the annular space 25 closed by the seal 6.
  • the medium can flow back to the pump inlet 16 to the unpressurized suction side through a channel 26, in which an orifice 27 can be installed.
  • the channel 26 can be a molded tube. It has been shown that the correct dimensioning of the upstream pressure generated by the springs 21 is an essential prerequisite for the stable operation of the pump.
  • the form should, for example, be 1/4 to 1/2 of the total pressure, but should be dimensioned so that the drive motor can start after breaks.
  • the carrier 9 is driven by the simple mechanism consisting of the shaft 5, which is set in rotation, its driver segment 7, the bushing 7c and the pin 9a.
  • the situation is shown on a larger scale in FIG. 4. Again, it is assumed there that the carrier 9 is in the uppermost symmetrical position, ie the axis of the cylindrical recess 8 or the pin 9a is at point O, which is correspondingly designated in FIG. 2, and during a cyclical movement move this axis along a circle with the radius r e .
  • the carrier 9 can therefore perform an eccentric translational movement with the eccentric radius r e with respect to the axis of the shaft 5.
  • the driving surface 7b of the segment 7a is inclined relative to the connecting line between the axis 5 and the pin 9a by, for example, 15 to 20 °.
  • the acting force F N is perpendicular to the surface 7b, as shown in FIG. 4 . This force can be broken down into a tangential force F T directed in the current direction of movement of the carrier 9 and a radial force F R acting at right angles thereto.
  • the predominant tangential force F T in the illustrated conditions causes entrainment of the carrier 9 in the respective tangential direction or circumferential direction and thus brings about the cyclical translational circular movement of the carrier 9 and its displacer vanes 10.
  • the radial force F R ensures that the displacer vanes 10 rest securely in the Displacement chambers 11. It can be shown, and tests confirm, that in the arrangement and design of the displacement wings and chambers shown, relatively low resulting hydrostatic pressures act on the carrier 9 in the radial direction.
  • the radial component of the driving force F N therefore has an effect, in particular, when the displacer vanes are applied radially outward in the displacer chambers.
  • This drive has a quasi-elastic effect or adjusts itself in every direction, so that the above-mentioned optimal conditions are still met even if certain wear and tear has occurred.
  • Any wear in the displacement chambers and on the displacement vanes leads to the carrier 9 being displaced somewhat outwards, that is to say that its pin 9a describes a circular movement of somewhat larger diameter.
  • the bush moves slightly outwards on the driving surface 7b.
  • the drive conditions, in particular the direction of the force F N change only insignificantly. This is due, among other things, to the fact that the flat bearing surfaces of the segment 7a and the bushing 7c are practically not subject to wear.
  • the wear in the drive itself can have the effect that the bore of the bushing 7c is somewhat worked off at the location closest to the driving surface 7b, but the location worn in this way also has a radius corresponding to the pin 9a, which may be evenly worn, So that good storage and power transmission is always guaranteed.
  • the displacement wing initially moves horizontally to the right in the displacement chamber located at the top in FIG. 2. After a quarter turn, it reaches the position as shown in the chamber on the left in FIG. 2. It can be seen that during this movement the volume between the outer surface of the displacer wing 10 and the outer surface of the displacer chamber 11 has been reduced and the medium has been displaced in the direction of the outlet opening 20. In contrast, the volume between the inner surface of the displacement wing and the opposite the area of the displacement chamber on the inlet side increased significantly, so that 19 medium is sucked in through the inlet opening. After half a turn the position is reached, as shown in Fig. 2 below.
  • pulsations in the order of 1% of the delivery rate can be achieved.
  • a certain pulsation which is smaller than the leakage current and which mainly affects it is even desirable in order to rinse out any abrasion particles in the capillary gap between the end faces of the supports 9 and 12 and the gap filled with spring medium does not become too small because of the otherwise extremely high shear forces allow.
  • the design and arrangement of the displacement chamber and vanes shown allow very good use of space or, in other words, a high specific delivery rate and output of the pump.
  • the respective active piston widths are entered in FIG. 2 and designated KB.
  • the total active piston width is larger than the diameter of a circle surrounding the delivery chambers.
  • a compromise between the need to achieve a good seal and the need to avoid high friction is not only at the contact surface or in the gap 23 between the supports 9 and 12, but also between the end faces of the displacer vanes 10 and the opposite base surfaces of the displacer chambers 11 to find. Tests have shown that perfectly flat surfaces are unfavorable. A final shape according to FIG. 6 is more desirable. This means that the end face of the displacement wing should be slightly cambered so that there is practically only line contact between this end face and the base surface 11 of the displacement chamber 11.
  • This shape can be achieved automatically in the above-described fine machining with an abrasive or lapping agent, namely that the displacer blades 10 are slightly deformed during lapping with an alternately opposite direction of rotation and are thus processed somewhat more strongly on the sides.
  • the cambered shape can also be specified for the blank.
  • the profile of the displacer ribs 10 and displacer chambers 11 can have a slightly trapezoidal shape with rounded corners in order to achieve better demolding from pressing or injection molding tools.
  • FIG. 7 shows an embodiment variant in which the radial force component and adjustability are generated by means of an elastic section 5a of the shaft 5 in the form of a lamellar thinned section via a roller 71.
  • a compression spring acting radially on a driver could accordingly be provided.
  • the relative direction of movement between the two parts must make at least one full rotation through 360 ° with these tangents.
  • the piston cross-section that is decisive for the delivery rate is the product of the piston width as a result of the respective distance between these tangents and the invariable immersion depth of the displacer vane in the displacement chamber.
  • the respective piston stroke corresponds to the product of the angle of rotation and eccentricity, ie per revolution r e ' 2 n.
  • the shape of the displacement chamber depends on the shape of the displacement wing and the radius of the eccentric drive.
  • the displacement chambers each have an inlet and an outlet channel and are therefore connected in parallel as described above if a relatively low delivery pressure is desired with a large delivery rate, as is the case, for example, with one Circulation pump is the case. If higher pressures and a lower amount of feed are desired, two out of four chambers can be connected in series crosswise.
  • FIG. 8 corresponds to FIG. 3 and shows an embodiment variant of the shape of the displacer wing 10 and the displacer chamber 11. While according to FIG. 3 the end sections m b and m e consistently have the small radius of curvature r, these end sections according to FIG. 8 are each in each case a part mb extending over 60 ° or never with a radius of curvature r, a middle part Mb and Mc with a radius of curvature R and a short end part m'b and m'c with a radius of curvature r. The ends of the displacement chambers 11 are in this case also moved closer together and they open directly into oval inlet and outlet openings 19 'and 20'.
  • the displacement chamber 11 is surrounded on the inside by a rib 121, the width of which, according to the rule mentioned above, is less than twice the eccentric stroke right, and within this rib there is a flat recess 122, in the area of which there is an opening 35 which is similar to that with the suction side or pressure side of the pump, i.e. with an opening 19 'or with an annular channel connecting the openings 20' Channels 14 and 15 can be connected.
  • Triangular, closed pockets 124 are formed by outer, circumferential ribs 123 together with the delimiting ribs 121 of the displacement chamber. During operation of the pump, a certain intermediate pressure builds up in these pockets between the supports 9 and 12, which can be determined, if necessary, by relief passages with a defined flow resistance. The liquid cushions in the pockets 124 effectively prevent instabilities of the aforementioned type and thus contribute to the smooth running of the machine.
  • the drive can also be designed such that a roller corresponding to the roller 71 according to FIG. 7 is mounted on a rigid eccentric of the drive shaft and acts on a cylindrical driving surface of the carrier 9, the eccentricity of the movement of the roller being greater than the radius of the cyclical relative movement of the carrier 9.
  • a roller corresponding to the roller 71 according to FIG. 7 is mounted on a rigid eccentric of the drive shaft and acts on a cylindrical driving surface of the carrier 9, the eccentricity of the movement of the roller being greater than the radius of the cyclical relative movement of the carrier 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

La machine comporte deux supports (9, 12) en forme de plaque munis chacun d'une couronne d'ailettes de déplacement (10), respectivement de chambres de déplacement (11), engagées les unes dans les autres, et pouvant être déplacées en un mouvement de translation relative circulaire. L'entraînement a lieu par un engrenage (7-9) au centre des supports (9, 12), lequel exerce une force (FN) sur l'un des supports (9) à un endroit déplaçable radialement, cette force présentant une composante radiale (FR) et une composante tangentielle (FT). La direction de la force et la disposition des chambres (11) sont choisies de manière à assurer une position statique déterminée des ailettes (10) dans les chambres (11) indépendamment de l'usure. Des conditions de fonctionnement optimales sont ainsi obtenues avec une construction et une fabrication simples. Pour sa fabrication on procède de telle manière que les supports (9, 12) en forme de plaque à l'état d'ébauches soient rodés par paires dans des conditions semblables à leur fonctionnement et ensuite montés dans la machine.

Claims (9)

1. Machine à déplacement positif, en particulier pompe, avec plusieurs chambres déplacement (11) dans chacune desquelles est engagée une pale de déplacement (10), les chambres de déplacement et les pales de déplacement étant susceptibles d'être mises en mouvement relatif cyclique pendant lequel les pales de déplacement avec des surfaces d'étanchéité extérieurs et interieures suivent de manière étanche les parois des chambres de déplacement avec un entraînement central commun (7, 9) produisant le mouvement relatif et, pour le milieu traversant la machine, des canaux d'entrée (19) et de sortie (20) débouchant dans les chambres de déplacement (11), caractérisée en ce que l'entraînement comprend un seul élément adaptable radialement par lequel, à partir d'un arbre d'entraînement, une force d'entraînement avec des composantes radiales et tangentielles définies est transmise à un support de chambres de déplacement (11) ou des pales de déplacement (10), en ce que chacune des chambres et des pales de déplacement est disposée avec un canal d'entrée et de sortie (19, 20) selon une couronne entourant l'entraînement, les chambres de déplacement (11) et les pales de déplacement (10) comprenant chacune une surface d'étanchéité extérieure et intérieure s'étendant toutes deux sur au moins 360° et se déplaçant au cours du mouvement relatif cyclique l'une dans l'autre de manière étanche chaque fois sur un cycle entier du mouvement pour chaque chambre de déplacement individuellement des deux côtés des pales de déplacement, les chambres (11) et les pales (10) de déplacement ayant une forme s'évasant radialement vers l'éxterieur et les points de contact (D) des pales de déplacement (10) ayant dans les chambres de déplacement voisines une distance minimale (Bmin) qui garanti toujours la dispositif relative de ces éléments dans une position déterminée.
2. Machine selon la revendication 1, caractérisée en ce que l'entraînement comporte un arbre d'entraînement (5) sur lequel est fixé un entraîneur (7) qui agit avec une surface d'entraînement (7b) inclinée par rapport à la direction radiale sur une douille (7c) montée sur un boulon (9a) du support (9).
3. Machine selon la revendication 2, caractérisée en ce que la douille (7c) comprend une surface d'appui plane qui repose sur la surface d'entraînement (7b).
4. Machine selon la revendication 1, caractérisée en ce que l'entraînement comprend un entraîneur (7) qui agit de manière élastique, auto- réglable sur l'un des supports (9).
5. Machine selon la revendication 1, caractérisée en ce que l'entraîneur est un rouleau qui repose sur une surface d'entraînement cylindrique de l'un des supports, l'excentricité du mouvement du rouleau étant plus grande que le rayon du mouvement relatif cyclique.
6. Machine selon la revendication 4, caractérisée en ce que la force est proudite par une partie plate, élastique (5A) de l'arbre (5) de la transmission.
7. Machine selon l'une des revendications 1 à 6, caractérisée en ce que les chambres de déplacement (11) sont des rainures pour l'essential en forme de coeur ou de V, des canaux d'entrée et de sortie (19, 20) débouchant dans les chambres de déplacement à l'extrémité extérieure large de la forme en coeur ou en V.
8. Machine selon la revendication 7 dont le boîtier est de section pour l'essentiel circulaire, caractérisée en ce que plusieurs chambres de déplacement sont disposées de manière que les extrémités larges de la forme en couér ou en V se trouvent à la périphérie de la machine.
9. Machine selon l'une des revendications 7 ou 8, caractérisée en ce que les chambres de depla- cement (11) et les pales de déplacement (10) sont d'épaisseur uniforme, les flancs des chambres et des pales de déplacement se composant d'arcs de cercle se raccordant de manière continue, dont les centres de courbure se trouvent dans les coins d'un polygone régulier de nombre impair de côtés, les arcs de cercle se suivant alternativement avec des rayons de courbure plus grands et plus petits.
EP86901030A 1985-02-27 1986-02-21 Machine a deplacement positif, notamment pompe Expired - Lifetime EP0214164B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH894/85 1985-02-27
CH89485 1985-02-27

Publications (2)

Publication Number Publication Date
EP0214164A1 EP0214164A1 (fr) 1987-03-18
EP0214164B1 true EP0214164B1 (fr) 1990-05-23

Family

ID=4197655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86901030A Expired - Lifetime EP0214164B1 (fr) 1985-02-27 1986-02-21 Machine a deplacement positif, notamment pompe

Country Status (6)

Country Link
US (1) US4789315A (fr)
EP (1) EP0214164B1 (fr)
JP (1) JP2771160B2 (fr)
BR (1) BR8605494A (fr)
DE (1) DE3671503D1 (fr)
WO (1) WO1986005241A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180336A (en) * 1988-09-20 1993-01-19 Gutag Innovations Ag Oldham coupling
DE58901166D1 (de) * 1988-09-20 1992-05-21 Gutag Innovations Ag Taumelantrieb fuer ein translatorisch bewegtes bauteil.
DE58900498D1 (de) * 1988-09-20 1992-01-09 Gutag Innovations Ag Verdraengermaschine fuer inkompressible medien.
CH683552A5 (de) * 1991-06-22 1994-03-31 Aginfor Ag Verdrängungspumpe.
US20040241029A1 (en) * 2001-09-05 2004-12-02 Rapp Manfred Max Parallel rotating piston engine with side walls
EP1423584A1 (fr) * 2001-09-05 2004-06-02 RAPP, Manfred Max Machine a piston a rotation parallele pourvue de parois laterales
GB0600588D0 (en) * 2006-01-12 2006-02-22 Boc Group Plc Scroll-type apparatus
KR101144288B1 (ko) * 2011-10-11 2012-05-11 전광석 공기 압축기
JP5881528B2 (ja) * 2012-05-21 2016-03-09 株式会社日本自動車部品総合研究所 圧縮機
FR3075280B1 (fr) * 2017-12-14 2019-11-22 Mouvex Pompe volumetrique a nettoyage ameliore

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2230773A1 (de) * 1971-12-10 1973-06-20 Aginfor Ag Verdraengermaschine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE62264C (de) * E. H. GOLLINGS in Chicago, V. St. A.: Kreisel-Kraftmaschine oder Pumpe
FR7156E (fr) * 1905-03-28 1907-05-23 Pierre Samain Pompe ou moteur à piston annulaire
GB190917672A (en) * 1909-07-30 1910-01-06 Ole Martin Dahl Improvements in Rotary Pumps.
FR428218A (fr) * 1911-04-08 1911-08-25 George F Nelson Perfectionnements dans les pompes ou moteurs rotatifs
US1229676A (en) * 1915-07-28 1917-06-12 Francis D Tice Pump.
GB154261A (en) * 1919-07-10 1920-11-10 Cromwell Hanford Varley Improvements in rotary engines or pumps
FR630656A (fr) * 1927-03-10 1927-12-07 Perfectionnements dans les pompes à tambour à mouvement d'excentrique dans un cylindrique de plus grand diamètre
GB290251A (en) * 1927-05-11 1929-04-25 Vacuum Compressor Ab Improved process of grinding interfitting surfaces
US2112890A (en) * 1936-10-22 1938-04-05 Socony Vacuum Oil Co Inc Rotary power device
FR825643A (fr) * 1936-11-26 1938-03-09 Perfectionnements au capsulisme à excentrique
FR1095539A (fr) * 1953-12-10 1955-06-03 Pompe rotative
US2856860A (en) * 1955-08-03 1958-10-21 Mechanisms Company Fluid pressure transducer with end clearance control
FR1197750A (fr) * 1958-01-06 1959-12-02 Pompe à engrenage exempte de poussée axiale
US3097610A (en) * 1962-01-18 1963-07-16 Procon Pump & Engineering Co Pump and motor construction
GB1013263A (en) * 1962-09-04 1965-12-15 Borg Warner Pressure loaded rotary hydraulic pump or motor
DE1962109U (de) 1964-07-07 1967-06-15 Telefunken Patent Kondensator veraenderbarer kapazitaet.
CH476212A (de) * 1966-06-24 1969-07-31 Schindler Werner Verdrängungspumpe
US3627452A (en) * 1968-12-13 1971-12-14 Worthington Corp Flexible band fluid device
US3551079A (en) * 1969-05-05 1970-12-29 Emerson Electric Co Pressure sealed hydraulic pump or motor
GB1379907A (en) * 1971-05-05 1975-01-08 Stothert & Pitt Ltd Internally-meshing helical screw pumps
GB1411749A (en) * 1971-11-24 1975-10-29 Smiths Industries Ltd Gear pumps
DE2509536A1 (de) * 1975-03-05 1976-09-16 Bosch Gmbh Robert Kompressor mit einem zu seiner antriebswelle exzentrischen rollkolben
JPS5523353A (en) * 1978-08-05 1980-02-19 Mitsubishi Electric Corp Volume type fluid machine
DE2911655A1 (de) * 1979-03-24 1980-10-02 Erich Becker Rollkolbenpumpe
JPS5797090A (en) * 1980-12-06 1982-06-16 Kazuichi Ito Rotary pump
DE3106314A1 (de) * 1981-02-20 1982-09-09 SWF-Spezialfabrik für Autozubehör Gustav Rau GmbH, 7120 Bietigheim-Bissingen Verdraengermaschine
DE3112470A1 (de) * 1981-03-28 1982-10-07 Robert Bosch Gmbh, 7000 Stuttgart Zahnradmaschine (pumpe oder motor)
JPS5912188A (ja) * 1982-07-14 1984-01-21 Hitachi Ltd スクロ−ル形流体機械
JPS59128991A (ja) * 1983-01-10 1984-07-25 Nippon Soken Inc リング型ポンプ
JPS59147893A (ja) * 1983-02-14 1984-08-24 Nippon Soken Inc リング型ポンプ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2230773A1 (de) * 1971-12-10 1973-06-20 Aginfor Ag Verdraengermaschine

Also Published As

Publication number Publication date
DE3671503D1 (de) 1990-06-28
JP2771160B2 (ja) 1998-07-02
WO1986005241A1 (fr) 1986-09-12
JPS62501982A (ja) 1987-08-06
EP0214164A1 (fr) 1987-03-18
US4789315A (en) 1988-12-06
BR8605494A (pt) 1987-04-22

Similar Documents

Publication Publication Date Title
EP0214164B1 (fr) Machine a deplacement positif, notamment pompe
DE102008058392B4 (de) Verstellflügelpumpe
DE3815252A1 (de) Ringmembranpumpe
EP0401408B1 (fr) Machine à pistons radiaux
DE2829417A1 (de) Kreiskolbenmaschine
EP0371305B1 (fr) Arbre excentré à contrepoids
DE1901748C3 (de) Hydraulische Rotationsschlauchpumpe
DE69303388T2 (de) Anlage zur Energieumwandlung eines Fluidums mit veränderlicher Verdrängung
EP0362133B1 (fr) Machine pour fluide non compressible
EP0899423B1 (fr) Machine de déplacement de fluide du type à spirale
EP0614012A1 (fr) Machine de déplacement de fluide du type à spirales
DE4011671C2 (de) Regelbare Flügelzellenpumpe
EP0321781B1 (fr) Machine de déplacement de fluide du type à spirale
DE102005017834B4 (de) Zellenpumpe
DE4338875C2 (de) Reversierbare Innenzahnradmaschine (Pumpe oder Motor)
DE4218385C2 (de) Verdrängerpumpe zum Fördern von Flüssigkeiten, insbesondere von Feststoffpartikel enthaltenden Flüssigkeiten
DE102004021216B4 (de) Hochdruck-Innenzahnradmaschine mit mehrfacher hydrostatischer Lagerung pro Hohlrad
DE4421255C1 (de) Füllstücklose Innenzahnradpumpe
DE2137543C3 (de) Hydrostatische Schubkolbenmaschine
WO2018041425A1 (fr) Ensemble pompe
EP0293585A1 (fr) Machine réversible à engrenages (pompe ou moteur)
EP0474001B1 (fr) Pompe à engrenages internes pour fluide hydraulique
DE3346519C2 (fr)
DE671386C (de) Doppelt wirkende Pumpe mit zwei parallelachsig angeordneten Zylindern
DE3324878A1 (de) Fluegelzellen-vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19870212

17Q First examination report despatched

Effective date: 19880801

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3671503

Country of ref document: DE

Date of ref document: 19900628

ET Fr: translation filed
R20 Corrections of a patent specification

Effective date: 19900718

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86901030.6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020118

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020125

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020226

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020426

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050221